JPS60161616A - Infrared heating unit for semiconductor wafer - Google Patents

Infrared heating unit for semiconductor wafer

Info

Publication number
JPS60161616A
JPS60161616A JP1731784A JP1731784A JPS60161616A JP S60161616 A JPS60161616 A JP S60161616A JP 1731784 A JP1731784 A JP 1731784A JP 1731784 A JP1731784 A JP 1731784A JP S60161616 A JPS60161616 A JP S60161616A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
infrared ray
susceptor
light
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1731784A
Other languages
Japanese (ja)
Inventor
Naoki Suzuki
直樹 鈴木
Masaki Suzuki
正樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1731784A priority Critical patent/JPS60161616A/en
Publication of JPS60161616A publication Critical patent/JPS60161616A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To equalize the distribution of temperature on a semiconductor substrate, to make the thickness of a film and resistivity uniform and to reduce a crystallographic slip by arranging an optical compensating lens between an infrared ray lamp and a susceptor. CONSTITUTION:An infrared ray lamp heater unit 13 consists of infrared ray lamps 14 and reflecting mirrors 15 reflecting reflected beams from the infrared ray lamps 14 as parallel beams. An optical compensating lens 20 is disposed between the infrared ray lamp heater unit 13 and a susceptor 19. Beams vertically projected to the concave section of the optical compensating lens 20 are refracted, and projected to the periphery of a semiconductor substrate 18 on the susceptor 19. Since the periphery of the semiconductor substrate 18 also receives beams rectilinearly propagated through sections except the concave section, the periphery of the substrate 18 receives the amount of light more than the center. The uniformity of the distribution of temperature on the substrate 18 is improved, and an equal epitaxial growth film can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、赤外線加熱装置、特に半導体工業で利用され
るSi (シリコン)ウエノ・等の赤外線加熱装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to an infrared heating device, in particular to an infrared heating device for Si (silicon) etc. used in the semiconductor industry.

従来例の構成とその問題点 半導体工業におけるエピタキシャル装置においては、反
応ガス分子が半導体基板表面で熱によシ分解析出してエ
ピタキシャル層を形成するものであるが、こうして形成
される膜の厚さ、および比抵抗の均一性、スリップの有
無は、半導体基板の表面温度に大きく影響される。従っ
て、良質な気相成長膜を得るためには、半導体基板を全
面に渡って均一な温度分布に保持することが必要である
Conventional structure and its problems In epitaxial equipment in the semiconductor industry, reactive gas molecules are separated and separated by heat on the surface of a semiconductor substrate to form an epitaxial layer, but the thickness of the film thus formed is , the uniformity of specific resistance, and the presence or absence of slip are greatly influenced by the surface temperature of the semiconductor substrate. Therefore, in order to obtain a high-quality vapor-phase grown film, it is necessary to maintain a uniform temperature distribution over the entire surface of the semiconductor substrate.

従来の赤外線加熱方式を使用したエピタキシャル装置は
、第1図にその具体構成を示すように、石英ベルジャ1
とベース板2によって、完全に外外と遮断することがで
きるようになっていて、べ 。
The epitaxial device using the conventional infrared heating method is a quartz bell jar 1, as shown in Fig. 1.
With the base plate 2 and the base plate 2, it can be completely isolated from the outside.

−ス板2には反応ガスを供給するだめのガス供給口3と
、反応ガスを排出するだめのガス排出口4が取り付けら
れている。またベース板2上には、半導体基板6を載せ
る基台6(以下上ブタと呼ぶ)が設置されている。また
石英ベルジャ1の外側には、半導体基板5を加熱するだ
めの赤外線ランプ7と、赤外線ランプ7の反射光線が効
率よく垂直に半導体基板6に照射するように反射鏡8が
取り付けられている。しかしながら以上のように構成さ
れた従来のエピタキシャル装置では赤外線ランプ7によ
ってサセプタ6と半導体基板6とが1000°C以上の
温度に加熱され、反応ガスがガス供給口3から排出口4
に向かって流れるので、このときの半導体基板6の温度
分布は赤外線ランプ7から供給される熱エネルギーと半
導体基板6及び半導体基板6が載置されているサセプタ
6の外周面からの伝熱、輻射、対流、熱伝達との平衡状
態によって決定され、サセプタ6の上面には赤外線ラン
プ7からの一定の輻射熱を受け、一方外周面については
遮熱されておらずその表面温度に対応した大量の熱が放
出される。従ってサセプタ6の表面、即ち半導体基板6
の温度分布は、中央部で温度が高く外周で低いという分
布となってしまう。また赤外線ランプ自体に関しても、
端に比べて中央の方がよりフィラーメント温度が高い傾
向がある。また、ガス供給口3から供給されたガスが、
半導体基板6に最初に当たった部分は温度が低くなる。
A gas supply port 3 for supplying a reaction gas and a gas discharge port 4 for discharging the reaction gas are attached to the base plate 2. Further, on the base plate 2, a base 6 (hereinafter referred to as an upper cover) on which a semiconductor substrate 6 is placed is installed. Further, on the outside of the quartz bell jar 1, an infrared lamp 7 for heating the semiconductor substrate 5 and a reflecting mirror 8 are attached so that the reflected light of the infrared lamp 7 efficiently irradiates the semiconductor substrate 6 vertically. However, in the conventional epitaxial apparatus configured as described above, the susceptor 6 and the semiconductor substrate 6 are heated to a temperature of 1000°C or more by the infrared lamp 7, and the reaction gas is pumped from the gas supply port 3 to the discharge port 4.
Therefore, the temperature distribution of the semiconductor substrate 6 at this time is due to thermal energy supplied from the infrared lamp 7, heat transfer from the semiconductor substrate 6 and the outer peripheral surface of the susceptor 6 on which the semiconductor substrate 6 is placed, and radiation. The upper surface of the susceptor 6 receives a certain amount of radiant heat from the infrared lamp 7, while the outer peripheral surface is not shielded and receives a large amount of heat corresponding to its surface temperature. is released. Therefore, the surface of the susceptor 6, that is, the semiconductor substrate 6
The temperature distribution is such that the temperature is high at the center and low at the outer periphery. Regarding the infrared lamp itself,
The filament temperature tends to be higher in the center than at the edges. Moreover, the gas supplied from the gas supply port 3 is
The temperature of the portion that first hits the semiconductor substrate 6 becomes lower.

これらのため半導体基板6上にエピタキシャル成長させ
た膜厚は中央に比べて端の方が薄いという欠点を有し、
また温度差による結晶学的スリップなどの結晶欠陥を生
じやすいという欠点を有していた。
For these reasons, the film epitaxially grown on the semiconductor substrate 6 has the disadvantage that it is thinner at the edges than at the center.
It also has the disadvantage of being susceptible to crystal defects such as crystallographic slip due to temperature differences.

発明の目的 本発明は、上記欠点に鑑み赤外線ランプを用いて、簡単
な構成で、半導体基板上の温度分布を均一にすることに
より、膜の厚さ、および比抵抗の均一性、スリップの減
少等、温度均一性に関する問題を解決するだめの赤外線
加熱装置を提供することにある。
Purpose of the Invention In view of the above-mentioned drawbacks, the present invention uses an infrared lamp to uniformize the temperature distribution on a semiconductor substrate with a simple configuration, thereby improving the uniformity of film thickness and specific resistance, and reducing slippage. It is an object of the present invention to provide an infrared heating device that solves problems related to temperature uniformity.

発明の構成 本発明は半導体基板を配置させる支持具と、前記支持具
を加熱するだめの赤外線ランプと、前記支持具と前記赤
外線ランプの間に位置し、赤外光を透過することのでき
る材質よりなり、かつ入射した光を屈折させて光の入射
強度分布を補正する光学補正レンズとからなり、半導体
ウェハの外周部分が中心より多くの光量を受けることに
より、半導体基板上の温度分布を均一にし、均一な膜厚
を成長させるという特有の効果を有する。
Structure of the Invention The present invention provides a support for arranging a semiconductor substrate, an infrared lamp for heating the support, and a material that is located between the support and the infrared lamp and is capable of transmitting infrared light. It consists of an optical correction lens that refracts the incident light and corrects the incident intensity distribution of the light.The outer periphery of the semiconductor wafer receives more light than the center, which makes the temperature distribution on the semiconductor substrate uniform. It has the unique effect of growing a uniform film thickness.

実施例の説明 以下に本発明の一実施例について図面を参照しながら説
明する。第2図は本発明の一実施例の反応室の断面図で
ある。反応室9は、内部に水冷溝1oが施されたステン
レスより成る壁面部材11と上部開閉ブロック12とか
ら構成されている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a sectional view of a reaction chamber according to an embodiment of the present invention. The reaction chamber 9 is composed of a wall member 11 made of stainless steel and having a water cooling groove 1o therein, and an upper opening/closing block 12.

この上部開閉ブロック12には、内部に赤外線ランプヒ
ーターユニット13が設置されている。赤外線ランプヒ
ーターユニット13は、赤外線ランプ14と、赤外線ラ
ンプ140反射光を平行光線として反射させる反射鏡1
6とからなる。まだこの反応室9の一端にはガス供給装
置(図示せず)から伸びだガス供給管16が結合され、
更に他端にはガス排気管17が結合されている。反応室
9の内部には半導体基板18f:載置するためのサセプ
タ19が設置されている。更に、赤外線ランプヒーター
ユニット13とサセプタ19の間に、透明石英ガラスか
らなる光学補正レンズ20が固定具21により固定され
ている。この光学補正レンズ20の形状は、上面の中央
部分が凹面となり、ナの凹面部分の直径が半導体基板1
8の直径より小さく設計されている。
An infrared lamp heater unit 13 is installed inside the upper opening/closing block 12. The infrared lamp heater unit 13 includes an infrared lamp 14 and a reflector 1 that reflects the reflected light from the infrared lamp 140 as parallel light.
It consists of 6. A gas supply pipe 16 extending from a gas supply device (not shown) is connected to one end of the reaction chamber 9.
Further, a gas exhaust pipe 17 is connected to the other end. Inside the reaction chamber 9, a susceptor 19 for placing a semiconductor substrate 18f is installed. Further, an optical correction lens 20 made of transparent quartz glass is fixed between the infrared lamp heater unit 13 and the susceptor 19 by a fixture 21. The shape of the optical correction lens 20 is such that the central part of the upper surface is concave, and the diameter of the concave part on the inside is the same as that of the semiconductor substrate.
It is designed to be smaller than the diameter of 8.

以上のように構成されたエピタキシャル装置について以
下その動作を説明すると、光学補正レンズ2oは第3図
に示すように、入射面の中央部が凹面となっていて光を
発散するような適当な曲率に設計されている。そのだめ
凹面部に垂直に入射した光は屈折し、サセプタ19上の
半導体基板18の全面に入射する。また半導体基板18
の周囲では、凹面部以外を直進した光も受けることにな
り、その結果、半導体基板18の周囲が中心に比べて、
より多くの光量を受ける。
The operation of the epitaxial device constructed as described above will be explained below. As shown in FIG. It is designed to. Therefore, the light incident perpendicularly on the concave portion is refracted and incident on the entire surface of the semiconductor substrate 18 on the susceptor 19. Also, the semiconductor substrate 18
The area around the semiconductor substrate 18 receives light that has traveled straight through areas other than the concave surface, and as a result, the area around the semiconductor substrate 18 receives light that has passed straight through areas other than the concave surface.
Receives more light.

以上のように、光学補正レンズ20を赤外線ランプヒー
ターユニット13とサセプタ19との間に配置すること
によって、半導体基板18上の温度分布の均一性が向上
し、かつ均一なエピタキシャル成長膜を得ることができ
る。
As described above, by arranging the optical correction lens 20 between the infrared lamp heater unit 13 and the susceptor 19, it is possible to improve the uniformity of the temperature distribution on the semiconductor substrate 18 and to obtain a uniform epitaxially grown film. can.

なお本実施例において、光学補正レンズは、部分的に凹
面を有するものとしたが、サセプタ上で希望の光強度分
布を得ることができるように非球面等様々の設計が可能
である。
In this embodiment, the optical correction lens has a partially concave surface, but various designs such as an aspheric surface are possible so that a desired light intensity distribution can be obtained on the susceptor.

また本実施例では光学補正レンズの材質は透明石英ガラ
スとしたが、赤外光を透過し耐熱性があればどのような
材質のものでもよい。さらに本実施例では反応室窓部材
と光学補正レンズを一体に形成したが、別々に形成して
も良い。
Further, in this embodiment, the material of the optical correction lens is transparent quartz glass, but any material may be used as long as it transmits infrared light and has heat resistance. Further, in this embodiment, the reaction chamber window member and the optical correction lens are formed integrally, but they may be formed separately.

また本実施例では、エピタキシャル成長に適用したもの
であるが、エピタキシャル成長に限らず、他の気相成長
にもまたアニール装置にも適用できることはいうまでも
ない。
Further, in this embodiment, the present invention is applied to epitaxial growth, but it goes without saying that the present invention is applicable not only to epitaxial growth but also to other types of vapor phase growth and to annealing apparatuses.

発明の効果 以上のように本発明は、光学補正レンズを赤外線ランプ
とサセプタとの間に配置することによって、半導体基板
表面の均一な温度分布を得ることができ、その結果半導
体基板上に均一な膜を成長させたリアニールすることが
でき、結晶学的なスリップも低減しその実用的効果は大
なるものがある。
Effects of the Invention As described above, the present invention can obtain a uniform temperature distribution on the surface of a semiconductor substrate by disposing an optical correction lens between an infrared lamp and a susceptor, and as a result, a uniform temperature distribution on the semiconductor substrate can be obtained. The film can be reannealed after it has been grown, and crystallographic slip can be reduced, which has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の赤外線ランプを用いたエピタキシャル
成長装置の断面図、第2図は本発明の一実施例における
半導体ウェハの赤外線加熱装置の断面図、第3歯は、光
学補正レンズに光が垂直に入射した場合の光の経路を示
した説明図である。 9・・・・・・反応室、13・・・・・赤外線ランプヒ
ーターユニット、16・・・・・・ガス供給管、17・
・・・・・ガス排気管、18・・・・・・半導体基板、
19・・・・サセプタ、20・・・・・・光学補正レン
ズ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図
Fig. 1 is a sectional view of an epitaxial growth apparatus using a conventional infrared lamp, and Fig. 2 is a sectional view of an infrared heating apparatus for semiconductor wafers according to an embodiment of the present invention. FIG. 2 is an explanatory diagram showing the path of light when the light is incident perpendicularly. 9... Reaction chamber, 13... Infrared lamp heater unit, 16... Gas supply pipe, 17...
...Gas exhaust pipe, 18...Semiconductor substrate,
19...Susceptor, 20...Optical correction lens. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板を配置させる支持具と、前記支持具を加熱す
るだめの赤外線ランプと、前記支持具と前記赤外線ラン
プの間に位置し、赤外光を透過することのできる材質よ
りなり、かつ入射した光を屈折させて光の入射強度分布
を補正する光学補正レンズとからなる半導体ウニ/・の
赤外線加熱装置、
a support for arranging a semiconductor substrate; an infrared lamp for heating the support; and a support that is located between the support and the infrared lamp and is made of a material that can transmit infrared light and that is An infrared heating device for semiconductor sea urchins, consisting of an optical correction lens that refracts light and corrects the incident intensity distribution of the light.
JP1731784A 1984-02-01 1984-02-01 Infrared heating unit for semiconductor wafer Pending JPS60161616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1731784A JPS60161616A (en) 1984-02-01 1984-02-01 Infrared heating unit for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1731784A JPS60161616A (en) 1984-02-01 1984-02-01 Infrared heating unit for semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS60161616A true JPS60161616A (en) 1985-08-23

Family

ID=11940637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1731784A Pending JPS60161616A (en) 1984-02-01 1984-02-01 Infrared heating unit for semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS60161616A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320971A2 (en) * 1987-12-18 1989-06-21 Kabushiki Kaisha Toshiba Epitaxial growth apparatus
US5452396A (en) * 1994-02-07 1995-09-19 Midwest Research Institute Optical processing furnace with quartz muffle and diffuser plate
US5504831A (en) * 1993-11-10 1996-04-02 Micron Semiconductor, Inc. System for compensating against wafer edge heat loss in rapid thermal processing
US5532457A (en) * 1994-06-22 1996-07-02 International Business Machines Corporation Modified quartz plate to provide non-uniform light source
US6454863B1 (en) * 1998-11-19 2002-09-24 Asm America, Inc. Compact process chamber for improved process uniformity
US7169233B2 (en) 2003-11-21 2007-01-30 Asm America, Inc. Reactor chamber
CN105027270A (en) * 2013-03-11 2015-11-04 应用材料公司 Pyrometry filter for thermal process chamber
JP2016225429A (en) * 2015-05-29 2016-12-28 株式会社Screenホールディングス Heat treatment apparatus
JP2018182153A (en) * 2017-04-18 2018-11-15 株式会社Screenホールディングス Thermal treatment apparatus
JP2019021828A (en) * 2017-07-20 2019-02-07 株式会社Screenホールディングス Thermal treatment apparatus
JP2019021738A (en) * 2017-07-14 2019-02-07 株式会社Screenホールディングス Thermal treatment apparatus
KR20190104726A (en) * 2018-03-02 2019-09-11 주성엔지니어링(주) Apparatus for treating substrate

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320971A2 (en) * 1987-12-18 1989-06-21 Kabushiki Kaisha Toshiba Epitaxial growth apparatus
EP0320971A3 (en) * 1987-12-18 1990-09-26 Kabushiki Kaisha Toshiba Epitaxial growth apparatus
US5504831A (en) * 1993-11-10 1996-04-02 Micron Semiconductor, Inc. System for compensating against wafer edge heat loss in rapid thermal processing
US5719991A (en) * 1993-11-10 1998-02-17 Micron Technology, Inc. System for compensating against wafer edge heat loss in rapid thermal processing
US5452396A (en) * 1994-02-07 1995-09-19 Midwest Research Institute Optical processing furnace with quartz muffle and diffuser plate
US5577157A (en) * 1994-02-07 1996-11-19 Midwest Research Institute Optical processing furnace with quartz muffle and diffuser plate
US5532457A (en) * 1994-06-22 1996-07-02 International Business Machines Corporation Modified quartz plate to provide non-uniform light source
US5648005A (en) * 1994-06-22 1997-07-15 International Business Machines Corporation Modified quartz plate to provide non-uniform light source
US6454863B1 (en) * 1998-11-19 2002-09-24 Asm America, Inc. Compact process chamber for improved process uniformity
US7169233B2 (en) 2003-11-21 2007-01-30 Asm America, Inc. Reactor chamber
CN105027270A (en) * 2013-03-11 2015-11-04 应用材料公司 Pyrometry filter for thermal process chamber
US9786529B2 (en) 2013-03-11 2017-10-10 Applied Materials, Inc. Pyrometry filter for thermal process chamber
CN108598017A (en) * 2013-03-11 2018-09-28 应用材料公司 High temperature measurement filter for thermal processing chamber
US10147623B2 (en) 2013-03-11 2018-12-04 Applied Materials, Inc. Pyrometry filter for thermal process chamber
CN108598017B (en) * 2013-03-11 2021-12-31 应用材料公司 Pyrometric filter for thermal processing chamber
JP2016225429A (en) * 2015-05-29 2016-12-28 株式会社Screenホールディングス Heat treatment apparatus
US10153184B2 (en) 2015-05-29 2018-12-11 SCREEN Holdings Co., Ltd. Light irradiation type heat treatment apparatus
JP2018182153A (en) * 2017-04-18 2018-11-15 株式会社Screenホールディングス Thermal treatment apparatus
JP2019021738A (en) * 2017-07-14 2019-02-07 株式会社Screenホールディングス Thermal treatment apparatus
US11328941B2 (en) 2017-07-14 2022-05-10 SCREEN Holdings Co., Ltd. Light irradiation type heat treatment apparatus
JP2019021828A (en) * 2017-07-20 2019-02-07 株式会社Screenホールディングス Thermal treatment apparatus
KR20190104726A (en) * 2018-03-02 2019-09-11 주성엔지니어링(주) Apparatus for treating substrate

Similar Documents

Publication Publication Date Title
KR0181942B1 (en) Pressure resistant thermal reactor system for semiconductor process
US20240044004A1 (en) Multi zone spot heating in epi
US6454863B1 (en) Compact process chamber for improved process uniformity
US6617247B2 (en) Method of processing a semiconductor wafer in a reaction chamber with a rotating component
KR910007109B1 (en) Reflector apparatus for chemical vapor deposition reactors
US9029739B2 (en) Apparatus and methods for rapid thermal processing
JPS60161616A (en) Infrared heating unit for semiconductor wafer
JP2002217110A (en) Heating apparatus and semiconductor manufacturing apparatus using the same
JP2000138170A (en) Semiconductor equipment
JPH08139047A (en) Heat treatment apparatus
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JPS60189927A (en) Vapor phase reactor
JP3972379B2 (en) heating furnace
JPS594434A (en) Vapor phase reactor
EP0162111A1 (en) Method and apparatus for chemical vapor deposition
JPH0323629A (en) Manufacture apparatus for semiconductor element
JPS62101021A (en) Semiconductor manufacturing equipment
JPH0545052B2 (en)
KR920008036B1 (en) Vacuum reactive furnace for photo cvd and rtp
JPH0518452B2 (en)
JPH0410410A (en) Thin film processing equipment
KR20030059745A (en) Wafer temperature compensator using reflector
JPS60189924A (en) Vapor phase reactor
JPH01152718A (en) Semiconductor manufacturing apparatus
JPH03207861A (en) Heater