JP3972379B2 - heating furnace - Google Patents

heating furnace Download PDF

Info

Publication number
JP3972379B2
JP3972379B2 JP34793495A JP34793495A JP3972379B2 JP 3972379 B2 JP3972379 B2 JP 3972379B2 JP 34793495 A JP34793495 A JP 34793495A JP 34793495 A JP34793495 A JP 34793495A JP 3972379 B2 JP3972379 B2 JP 3972379B2
Authority
JP
Japan
Prior art keywords
lamp
lamps
heating furnace
shielding member
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34793495A
Other languages
Japanese (ja)
Other versions
JPH09167742A (en
Inventor
宗範 富田
等 羽深
雅典 黛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP34793495A priority Critical patent/JP3972379B2/en
Publication of JPH09167742A publication Critical patent/JPH09167742A/en
Application granted granted Critical
Publication of JP3972379B2 publication Critical patent/JP3972379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ランプ加熱装置を備えた加熱炉に関し、特に半導体単結晶基板などの被加熱物を均一に加熱することができる加熱炉に関するものである。
【0002】
【従来の技術】
従来の気相エピタキシャル成長装置として、図5に示すものが知られている。この装置は、透明な石英ガラスからなる反応容器31の上下に抵抗加熱体32,32を配備し、反応容器31内にシリコンなどからなる半導体の単結晶基板wを載置し、これを抵抗加熱体32,32で反応温度に加熱しつつ、原料ガス33を反応容器31内に導入することにより、単結晶基板w上にシリコンなどの単結晶薄膜を気相成長させるものである。この場合、原料ガス33が単結晶基板wの表面で反応してシリコンなどが生成し、これが単結晶基板w上に堆積されることによって単結晶薄膜が成長される。
【0003】
しかし、抵抗加熱体32では伝導伝熱による加熱が主なものであるため、上記エピタキシャル成長装置では反応容器31も加熱されるので、反応容器31の外壁内面で原料ガスの反応が発生する。この結果、前記外壁内面にシリコンなどの堆積が生じ、これらが剥離して、単結晶基板w上に成長されつつある単結晶薄膜上に落下するため、該単結晶薄膜に突起状表面欠陥などが多発する問題があった。
【0004】
この問題を解決するため、上記抵抗加熱体に代えて赤外線ランプを多数本、並列に配備して構成されたランプ加熱装置が用いられている。このようなランプ加熱装置による加熱は、主として輻射伝熱によるものであり、赤外線は反応容器の石英ガラス製外壁を透過する。すなわち赤外線ランプは、石英ガラスに吸収されにくい光を放射するため、石英ガラス製外壁を高温に加熱することがないので、単結晶基板にのみエピタキシャル成長反応が生じる利点がある。
【0005】
ところが、複数のランプを設けた場合、各ランプのフィラメント部などに個体差があり、同一電圧を加えても個々のランプで発熱量が異なるため、半導体単結晶基板などの被加熱物を均一に加熱するのが難しいという問題があった。
すなわちランプ加熱装置として、図6に示すように赤外線反射用の傘44を設けた電球41を複数並列に配備したものが知られているが、このランプ加熱装置ではランプ41,41が相互に加熱し合う構造となっていないため、個々のランプ間の発熱量の差が、そのまま単結晶基板wなどの被加熱物の加熱ムラとなって現れていた。図6において符号42はフィラメント部、符号43は根元部である。
【0006】
例えば、大直径のシリコン基板を枚葉式に加熱するときには、シリコン基板表面の場所によって加熱温度が異なりやすくなり、小直径のシリコン基板をバッチ式で加熱するときには、シリコン基板間で加熱温度ムラが発生しやすかった。この加熱温度ムラを抑えるためには、シリコン基板を支持するサセプタを回転させる必要あり、それだけエピタキシャル成長装置の構造が複雑となり、維持管理が面倒になる問題があった。
このような問題点は、シリコン基板を加熱処理するためのその他の装置、例えば酸化膜形成装置などにも生じていた。
【0007】
このような不具合を解消するためには、例えば図7に示すように、隣接するランプ52,52の側面全体を互いに直接対向させることにより、フィラメント部53,53が互いに対向相手を加熱する構造としたランプ加熱装置51が考えられる。このランプ加熱装置は、隣合うランプのフィラメント部相互間の輻射伝熱量が下記[数1]で求められることに着目したものである。
【0008】
【数1】
輻射伝熱量=係数×(T1 4−T2 4
ただし、T1 は一方のランプのフィラメント部の絶対温度
2 は他方のランプのフィラメント部の絶対温度
【0009】
すなわち、このランプ加熱装置は、各ランプが相互に輻射熱を伝播する構造とすることにより、温度が低いランプのフィラメント部は、温度が高いランプのフィラメント部から熱を受け取って同一温度になるまで昇温し、逆に温度が高いランプのフィラメント部は、温度が低いランプのフィラメント部に熱を与えて同一温度になるまで降温することを利用したものである。
【0010】
別のランプ加熱装置として、要部構造が図8に示されるものが知られている。このランプ加熱装置は、特公平7−99737号公報に開示された半導体ウエーハ加工処理用反応器に配備されているものである。
このランプ加熱装置ではランプ71のフィラメント部72が、反射板81(上記公報の図4における外側の反射器178に相当する。)に形成した貫通孔82に挿入され、フィラメント部72は反射板81の片側に、根元部73は反射板81の反対側に位置している。74はフィラメント、75はガラス球である。
【0011】
【発明が解決しようとする課題】
しかし、図7のランプ加熱装置のようにランプ全体を直接対向させてフィラメント部同士が加熱し合う構造とすると、ランプの根元部(被発熱部分であって、通常は冷却を必要とする部分)も相手のフィラメント部により加熱されるため、根元部が破損あるいは焼損する結果、ランプの寿命が短くなるという新たな問題が発生した。
【0012】
また、図8のランプ加熱装置では、ランプ71を反射板81でフィラメント部72と根元部73に仕切ったので、ランプの寿命が図7の装置に比べて長くなる利点はあるものの、フィラメント74からの光が矢印線で示すように、ガラス球75内を通って根元部73に漏れるため、ランプの寿命向上効果は不十分であった。
【0013】
したがって本発明の目的は、上記ランプ加熱装置の利点はそのまま生かしつつ、その欠点を解消したランプ加熱装置を備えた加熱炉を提供することにある。
本発明は、隣接するランプのフィラメント部同士の間には障害物のない構造とすることにより、フィラメント部相互間で直接輻射伝熱が生じるように構成するとともに、根元部相互間の輻射伝熱を遮る遮蔽部材を設けたものであり、これにより加熱の均一性を確保すると同時に、ランプの寿命を延ばすようにしたものである。
【0014】
【課題を解決するための手段】
本発明の加熱炉は、例えば図1,2に示すように、加熱炉本体1の外壁の少なくとも一部を透光性外壁とし、この透光性外壁の外側かつ近傍にランプ加熱装置11を設け、加熱炉本体内1に載置したシリコン基板Wなどの被加熱物をランプ加熱装置11からの輻射熱で加熱するようにしたものにおいて、ランプ加熱装置11は、ランプ12を複数、かつ隣合うランプのフィラメント部13と13を互いに直接対向させて設けることにより、フィラメント部13と13の間で直接的に輻射伝熱が生じるように構成するとともに、各ランプの根元部14と14の間に、隣合うランプからの輻射伝熱を遮る平板状遮断部材(遮蔽板5a)を設けたことを特徴とする(請求項1)
また、本発明の加熱炉は、例えば図4に示すとおり、隣合うランプ12,12の根元部14と根元部14の間に、隣合うランプからの輻射伝熱を遮る遮蔽部材17を設けたものであって、この遮蔽部材17を、ランプの根元部の外径よりわずかに大きい径を有する貫通孔15aを形成した第1の遮蔽部材(第1の平板15)と、第1の遮蔽部材の一方の面に連結した第2の遮蔽部材(第2の平板16)とにより構成し、第1の遮蔽部材の貫通孔にランプの根元部を挿通して貫通孔の内周面によりフィラメント部13の基端部近傍部を包囲するとともに、第2の遮蔽部材を隣合うランプの根元部と根元部の間に、ランプの軸線にほぼ平行に配置したことを特徴とする(請求項2)。
【0015】
本発明に係るランプ加熱装置を備えた加熱炉の具体例としては、気相エピタキシャル成長装置(CVD装置)、酸化膜形成装置、ランプアニール装置など、半導体単結晶基板に何らかの熱処理を施す装置が挙げられる。
【0016】
前記ランプ12は、図2に示すように棒状のものとし、各ランプについてフィラメント部13,13の側面を互いに対向させるとともに、根元部14と14を対向させ、更に前記遮蔽板5aを隣合うランプの根元部14,14の対向間隙に設けたものが好ましい。前記遮蔽板5aは、高融点金属材料で構成するとともに、その外面のうちランプからの輻射熱を受ける部分を鏡面状の高反射率面に仕上げることが好ましい。
お、本発明では所望により、フィラメント部が球状のランプを設けることもできる。
【0017】
多数本のランプの配列の態様としては、例えば図1、図2に示すものが可能であり、これは加熱炉の上側および下側に棒状ランプ12,12,…を互いに平行に配列したものである。
【0018】
【発明の実施の形態】
次に、本発明の実施の形態を、図面を参照して説明する。
実施の形態1(請求項1に対応するもの)
図1は、本発明の加熱炉を使用した気相エピタキシャル成長装置の概略構造を示す縦断面図、図2はランプ加熱装置の一部を示す平面断面図である。この加熱炉ではランプ加熱装置11を、加熱炉本体1の天板2の外側かつ直近、および底板3の外側かつ直近に設ける。ランプ加熱装置11は棒状ランプ12を複数本、加熱炉本体1の中心軸線と直交させて等間隔に、かつ互いに平行に配備することにより構成する。これにより、ランプのフィラメント部13,13の側面を互いに真正面に対向させる。ただし、天板2側のランプと底板3側のランプでは、その向きを逆にする。
【0019】
天板2側に設けたランプ加熱装置の11の上方を、反射率および耐熱性が高い金属材料による反射板5で被う。底板3側に設けたランプ加熱装置の11の下方も同様に反射板5で被う。これらの反射板5に、これと同一の材料からなる遮蔽板5aを鉛直方向に突出させて設けることにより、遮蔽板5aをランプの根元部14,14の対向間隙に位置させる。
【0020】
このランプ加熱装置11では、天板2側の全てのランプが相互に輻射伝熱し合い、底板側においても全てのランプが相互に輻射伝熱し合う。このため、シリコン基板Wに向かう輻射熱線の強さが、天板2の全面にわたって均一化されると同時に、底板3の全面にわたっても均一化される。
また、隣合うランプ12のフィラメント部13からの輻射熱線が遮蔽板5aで遮られるため、根元部14の過熱防止効果が向上する。すなわち、図8のランプ加熱装置と違って、図3に示すように、フィラメント13aからガラス球13b内を通って根元部14に漏れてくる光をも遮断することができる。
【0021】
実施の形態2(請求項2に対応するもの)
図4はランプ加熱装置の要部構成および、その作用を説明する模式的平面図である。
このランプ加熱装置では、棒状ランプ12の根元部14の外径よりわずかに大きい径を有する貫通孔15aを形成した第1の平板15と、第1の平板15の一方の面に直交させて連結した第2の平板16とにより遮蔽部材17を構成する。そして、前記貫通孔15aに根元部14を挿通して貫通孔15aの内周面によりフィラメント部13の基端部近傍部を包囲するとともに、第2の平板16を、隣合うランプの根元部14と根元部14の間に、ランプ12の軸線に平行に配置する。
前記貫通孔15aの径を上記のように限定した理由は、根元部14を貫通孔15aに挿通して、これを図示しない電源ソケットに差し込むためと、貫通孔15aの内周面と棒状ランプ12との隙間をできるだけ小さくすることが、根元部14の過熱防止に有効なためである。
【0022】
このランプ加熱装置では、図4に示す矢印線で明らかなように、フィラメント13aから直接根元部14に向かう光を遮断・反射することができるうえ、フィラメント13aからガラス球13b内を通って根元部14に向かう光をも遮断することができるので、ランプの寿命向上効果が著しく向上する。
なお、この実施の形態では、遮蔽部材17を第1の平板と第2の平板とで構成したが、加熱炉本体の形状、ランプの配列形態等に応じて、第1、第2の遮蔽部材として凹状に湾曲した部材や、筒状の部材を用いて遮蔽部材を構成することもできる。
【0023】
次に、加熱炉の参考例について、図面を参照して説明する。
図9は、この参考例に係る加熱炉を使用した気相エピタキシャル成長装置の平面図である。ただし図9は便宜上、後記する反射板5を除去した状態で示してある。図10は、図9の縦断面図である。図11は図9のA−A線断面図であって、ランプの根元部と遮断部材の関係を示すものである。ただし、図10および図11は、反射板5を取り付けた状態で示してある。
【0024】
図11に示すようにこの加熱炉では、加熱炉本体1を縦型円筒状とし、加熱炉本体1の天板2、底板3、周壁4を透明な石英ガラス製とする。天板2の直上に、これを被う反射板5を設ける。天板2、周壁4の上端部および反射板5により形成される区画室6内にランプ加熱装置11を設ける。
加熱炉本体1の上部には、反射板5および天板2を貫通して、原料ガス供給管7を設ける。底板3上に石英ガラス製の平板状サセプタ8を固定して設ける。底板3のうち周壁4近傍の位置に排気管9を接続する。
【0025】
ランプ加熱装置11は、同一規格の棒状ランプ12を複数(図示例では8本)、その中心軸線を同一水平面上に位置させて等角度ピッチで、かつ根元部14を加熱炉本体1の直径方向外側に向けて設ける。このように、隣合うランプのフィラメント部13,13の側面を互いに直接対向させる(フィラメント部13,13間に輻射熱を遮る障害物のない構造とする)ことにより、これらのフィラメント部間で直接的に輻射伝熱が生じるように構成するとともに、各ランプの根元部14,14間に、隣合うランプからの輻射伝熱を遮る遮断部材21を設ける。
【0026】
遮蔽部材21の材質としては、耐熱性に優れたSiCなどのセラミックが採用できるが、輻射熱の有効利用を考慮すると、セラミック材料または耐熱合金材料を円環状に成形し、下面側に断面輪郭線が放物線状(または円弧状)の凹状鏡面部22を形成するのが好ましい。遮蔽部材21の上面側は平面状とする。凹状鏡面部22は、ランプ12の根元部14の配置位置に対応して等角度ピッチで形成する。凹状鏡面部22は、前記円環状部材に凹部を形成した後、金や銀など反射率の高い金属の薄膜を、例えば真空蒸着で堆積することにより形成する。
【0027】
この参考例では、図11に示すようにランプ12を、その根元部14の上半部が凹状鏡面部22で被われるように設ける。この場合、根元部14と遮蔽部材21の配置の上下関係は、遮蔽部材21の下面23が根元部14の中心軸線よりも僅かに下になるようするのが好ましい。ランプ12の中心軸線は遮蔽部材21の凹面鏡部22の焦点に一致させることが好ましい。これにより、凹状鏡面部22に到達した輻射熱線の殆どを鉛直方向下向きに反射させることができる。
【0028】
この気相エピタキシャル成長装置の作用について説明すると、1枚の大直径シリコン基板Wをサセプタ8に載置し、ランプ加熱装置11を作動させて反応温度に加熱・維持した状態で原料ガス供給管7を介して、原料ガス33を加熱炉本体1内に供給してエピタキシャル成長反応を進行させる。
【0029】
この場合において、ランプ加熱装置11からの輻射熱線の一部は、直接天板2を透過してシリコン基板Wに照射され、一部は反射板5で反射した後、天板2を透過してシリコン基板Wに照射される。そして、複数のランプ全てが相互に輻射伝熱し合うことによって全てのランプが等温度となるため、シリコン基板Wに向かう輻射熱線の強さが、天板2の全面にわたって均一化される。この結果、従来の加熱炉と違って、大直径のシリコン基板Wを回転させることなく、その全体を均一温度に加熱することができて、均一品質のエピタキシャル成長製品を安定して製造することできる。
【0030】
また、隣接するランプからの輻射熱線は、遮蔽部材21によって遮られるため各ランプの根元部14には照射されなくなるので、この遮蔽部材21を設けない従来のランプ加熱装置に比べて根元部14の温度が大幅に低下し、その寿命が著しく向上する。
さらに、遮蔽部材21に放物線状の凹状鏡面部22を設けたため、遮蔽部材21に到達した輻射熱線を反射させてシリコン基板Wを加熱することができるので、ランプからの輻射熱線の使用効率も向上する。
【0031】
実験例1および比較例1〕
実験例1では図9のエピタキシャル成長装置を用いて、また比較例1では図9の装置から遮蔽部材21(アルミニウム基材の表面に金メッキを施したもの)を除去して、それぞれシリコン基板の加熱を行った。その他の条件は実験例1と比較例1で共通にした。ただし、エピタキシャル成長用の原料ガスの供給は行わなかった。
【0032】
根元部14の直径・長さが約30mm・約30mm、フィラメント部13の直径・長さが約35mm・約100mmで出力が2000ワットである同一規格のランプ12を合計8本、図9のように配列した。各ランプに約2000ワットの電力を供給し、約6cm下方に載置した直径200mmのシリコン基板Wを約800℃に加熱した。
上記8本のランプは、いずれもフィラメント部自身の昇温温度の理論値が2727℃のものであるにも関わらず実際には、理論値と最も差があるランプで約300℃の差が認められた。これは、フィラメント部の個体差と、加熱に使用したことによるフィラメント部の劣化とに起因するものと考えられる。
【0033】
各ランプの根元部の温度を熱電対で測定したところ、実験例1では、いずれのランプにおいても約290℃〜約310℃の範囲内に収まっていた。これに対し比較例1では、約330〜約380℃とバラツキが大きかった。また、加熱されたシリコン基板について、その表面の数箇所について温度を熱電対で測定したところ実験例1、比較例1とも、最高値と最低値との差は6℃であった。以上の結果から、従来構造の加熱炉の利点を損なうことなく、ランプ根元部の温度低下が可能となることが確認できた。
【0034】
さらに、実験例1、比較例1においてランプ加熱装置をON,OFFさせて昇降温操作を繰り返し行い、ランプの耐久性を調べた結果、比較例1では2週間後にランプの根元部に変色が生じて加熱不能となった。これに対し実験例1では、3〜4週間、通電加熱が可能であった。
このように、実験例1ではランプの寿命が大幅に延び、従ってエピタキシャル基板製品のコストを削減することが可能となった。
【0035】
【発明の効果】
以上の説明で明らかなように、本発明の加熱炉に配備したランプ加熱装置ではランプを複数、かつ隣合うランプのフィラメント部を互いに対向させて設けることにより、これらのフィラメント部間で直接的に輻射伝熱が生じるように構成するとともに、それぞれのランプの根元部間に、隣合うランプからの輻射伝熱を遮る遮断部材を設けたため、以下のように、加熱特性および耐久性に優れた、ランプ加熱式の加熱炉を提供することができる。すなわち、
(1)本発明に係るランプ加熱装置では、隣接するフィラメント部が加熱し合うので、それぞれのランプのフィラメント部を個々に凹状の反射面で被った従来構造のランプ加熱装置に比べて、加熱温度の均一性が向上する。また、この均一性は、隣接するランプの側面全体を互いに直接対向させて設けた場合(図7を参照)と同等に優れたものとなる。従って、例えば大直径のシリコン基板を枚葉式に加熱するときには、シリコン基板表面の場所による加熱温度のバラツキが小さくなり、小直径のシリコン基板をバッチ式で加熱するときには、シリコン基板間での加熱温度ムラを小さくすることができる。また、このようなランプ加熱装置を備えた加熱炉の具体例としての気相エピタキシャル成長装置、ランプアニール装置あるいは酸化膜形成装置では、品質が均一な製品を歩留り良く製造することができる。
(2)対向するランプ根元部間に(ランプ根元部同士の対向間隙に)所定の遮蔽部材を設けたので、ランプ根元部の温度が、図7に示す構造のものに比べて低下し、その寿命が大幅に延びる。
(3)本発明では特に上記遮蔽部材を、ランプ根元部の外径よりわずかに大きい径を有する貫通孔を形成した第1の遮蔽部材と、この第1の遮蔽部材の一方の面に連結した第2の遮蔽部材とにより構成し、第1の遮蔽部材の貫通孔にランプの根元部を挿通して貫通孔の内周面によりフィラメント部の基端部近傍部を包囲するとともに、第2の遮蔽部材を隣合うランプの根元部と根元部の間に、ランプの軸線にほぼ平行に配置した(図4を参照)ので、上記したように、ランプのフィラメント部から直接根元部に向かう光を遮断・反射することができるうえ、フィラメント部からガラス球内を通って根元部に向かう光をも遮断することができるので、ランプの寿命向上効果は著しいものがある。
【図面の簡単な説明】
図1本発明の実施の形態に係る加熱炉の概略構造を示す縦断面図である。
図2図1の加熱炉におけるランプ加熱装置の一部を示す平面断面図である。
図3図2のランプ加熱装置の作用説明図である。
図4別の実施の形態に係る加熱炉における、ランプ加熱装置の要部構成および作用を説明する模式的平面図である。
図5】 抵抗加熱体を設けた気相エピタキシャル成長装置の概略縦断面図である。
図6】 赤外線反射用の傘を設けた電球を複数並列に配備した、従来のランプ加熱装置を示す説明図である。
図7】 隣接するランプの側面全体を互いに直接対向させて設けた加熱炉の問題点を説明する平面図である。
図8】 従来例の半導体ウエーハ加工処理用反応器に備えられたランプ加熱装置の要部構造、およびその問題点を説明する模式的平面図である。
図9参考例に係る加熱炉の平面図である。
図10図9の縦断面図である。
図11図9のA−A線断面図であって、ランプ根元部と遮断部材の関係を示すものである。
【符号の説明】
1 加熱炉本体
2 天板
3 底板
4 周壁
5 反射板
5a 遮蔽板
6 区画室
7 原料ガス供給管
8 サセプタ
9 排気管
11 ランプ加熱装置
12 棒状ランプ
13 フィラメント部
13a フィラメント
13b ガラス球
14 根元部
15,16 平板
15a 貫通孔
17 遮蔽部材
21 遮断部材
22 凹状鏡面部
23 下面
W シリコン基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating furnace provided with a lamp heating device, and more particularly to a heating furnace capable of uniformly heating an object to be heated such as a semiconductor single crystal substrate.
[0002]
[Prior art]
As a conventional vapor phase epitaxial growth apparatus, one shown in FIG. 5 is known. In this apparatus, resistance heaters 32 and 32 are provided above and below a reaction vessel 31 made of transparent quartz glass, a semiconductor single crystal substrate w made of silicon or the like is placed in the reaction vessel 31, and this is heated by resistance heating. A single crystal thin film such as silicon is vapor-phase grown on the single crystal substrate w by introducing the raw material gas 33 into the reaction vessel 31 while being heated to the reaction temperature by the bodies 32 and 32. In this case, the raw material gas 33 reacts on the surface of the single crystal substrate w to generate silicon or the like, which is deposited on the single crystal substrate w, thereby growing a single crystal thin film.
[0003]
However, since the resistance heating body 32 is mainly heated by conduction heat transfer, the reaction vessel 31 is also heated in the epitaxial growth apparatus, and the reaction of the raw material gas occurs on the inner surface of the outer wall of the reaction vessel 31. As a result, deposition of silicon or the like occurs on the inner surface of the outer wall, and these peel off and fall on the single crystal thin film that is being grown on the single crystal substrate w. There were frequent problems.
[0004]
In order to solve this problem, a lamp heating apparatus configured by arranging a large number of infrared lamps in parallel instead of the resistance heater is used. Heating by such a lamp heating device is mainly due to radiant heat transfer, and infrared rays are transmitted through the outer wall made of quartz glass of the reaction vessel. That is, the infrared lamp emits light that is difficult to be absorbed by the quartz glass, so that the outer wall of the quartz glass is not heated to a high temperature, so that an epitaxial growth reaction occurs only on the single crystal substrate.
[0005]
However, when a plurality of lamps are provided, there is an individual difference in the filament part of each lamp, and even if the same voltage is applied, the amount of heat generated varies among the individual lamps. There was a problem that it was difficult to heat.
That is, as a lamp heating device, as shown in FIG. 6 , a plurality of light bulbs 41 provided with infrared reflecting umbrellas 44 are arranged in parallel. In this lamp heating device, the lamps 41 and 41 are mutually heated. Since the structure is not compatible, the difference in calorific value between the individual lamps appears as heating unevenness of the object to be heated such as the single crystal substrate w. In FIG. 6 , reference numeral 42 denotes a filament part, and reference numeral 43 denotes a root part.
[0006]
For example, when heating a large-diameter silicon substrate in a single wafer type, the heating temperature tends to vary depending on the location of the surface of the silicon substrate, and when heating a small-diameter silicon substrate in batch mode, there is uneven heating temperature between the silicon substrates. It was easy to occur. In order to suppress this heating temperature unevenness, it is necessary to rotate the susceptor that supports the silicon substrate, so that the structure of the epitaxial growth apparatus becomes complicated and the maintenance becomes troublesome.
Such a problem has also occurred in other apparatuses for heat-treating a silicon substrate, such as an oxide film forming apparatus.
[0007]
In order to solve such a problem, for example, as shown in FIG. 7 , the entire side surfaces of the adjacent lamps 52, 52 are directly opposed to each other so that the filament parts 53, 53 heat the opposing counterparts. A lamp heating device 51 can be considered. This lamp heating apparatus pays attention to the fact that the amount of radiant heat transfer between the filament parts of adjacent lamps is obtained by the following [Equation 1].
[0008]
[Expression 1]
Radiation heat transfer amount = Coefficient x (T 1 4 -T 2 4 )
Where T 1 is the absolute temperature of the filament part of one lamp and T 2 is the absolute temperature of the filament part of the other lamp.
In other words, this lamp heating apparatus has a structure in which each lamp propagates radiant heat to each other, so that the filament part of the lamp having a low temperature rises until it receives the heat from the filament part of the lamp having a high temperature and reaches the same temperature. On the contrary, the filament part of the lamp having a high temperature is used by applying heat to the filament part of the lamp having a low temperature and lowering the temperature until it reaches the same temperature.
[0010]
As another lamp heating apparatus, one having a main structure shown in FIG. 8 is known. This lamp heating apparatus is provided in a semiconductor wafer processing reactor disclosed in Japanese Patent Publication No. 7-99737.
In this lamp heating apparatus, the filament part 72 of the lamp 71 is inserted into a through hole 82 formed in the reflector 81 (corresponding to the outer reflector 178 in FIG. 4 of the above publication), and the filament part 72 is inserted into the reflector 81. The base 73 is located on the opposite side of the reflector 81. 74 is a filament, and 75 is a glass sphere.
[0011]
[Problems to be solved by the invention]
However, if the structure is such that the entire lamps face each other directly and the filament parts heat each other as in the lamp heating device of FIG. 7 , the root part of the lamp (the part to be heated, which usually requires cooling). Since the base part is also heated by the counterpart filament part, the root part is damaged or burned out, resulting in a new problem of shortening the lamp life.
[0012]
Further, in the lamp heating apparatus of FIG. 8 , since the lamp 71 is divided into the filament part 72 and the root part 73 by the reflector 81, there is an advantage that the life of the lamp is longer than that of the apparatus of FIG. As indicated by the arrow line, the light passes through the glass bulb 75 and leaks to the root portion 73, so that the lamp life improvement effect is insufficient.
[0013]
Accordingly, an object of the present invention is to provide a heating furnace equipped with a lamp heating device that eliminates the disadvantages while taking advantage of the advantages of the lamp heating device.
The present invention has a structure in which there is no obstacle between the filament parts of adjacent lamps so that direct radiation heat transfer occurs between the filament parts, and radiation heat transfer between the root parts. This is to provide a shielding member that shields the lamp, thereby ensuring the uniformity of heating and at the same time extending the life of the lamp.
[0014]
[Means for Solving the Problems]
In the heating furnace of the present invention, for example, as shown in FIGS. 1 and 2, at least a part of the outer wall of the heating furnace body 1 is a translucent outer wall, and a lamp heating device 11 is provided outside and in the vicinity of the translucent outer wall. In an apparatus in which an object to be heated such as a silicon substrate W placed in the heating furnace body 1 is heated by radiant heat from the lamp heating device 11, the lamp heating device 11 includes a plurality of lamps 12 adjacent to each other. By providing the filament parts 13 and 13 directly opposite each other, it is configured so that radiant heat transfer occurs directly between the filament parts 13 and 13, and between the root parts 14 and 14 of each lamp, A flat plate-shaped blocking member (shielding plate 5a) that blocks radiation heat transfer from adjacent lamps is provided (Claim 1) .
Moreover, the heating furnace of this invention provided the shielding member 17 which interrupts | blocks the radiant heat transfer from an adjacent lamp | ramp between the root part 14 and the root part 14 of the adjacent lamp | ramp 12,12 as shown, for example in FIG. The shielding member 17 includes a first shielding member (first flat plate 15) in which a through hole 15a having a diameter slightly larger than the outer diameter of the base portion of the lamp is formed, and a first shielding member. And a second shielding member (second flat plate 16) connected to one surface of the first shielding member. The root portion of the lamp is inserted into the through hole of the first shielding member, and the filament portion is formed by the inner peripheral surface of the through hole. In addition, the second shielding member is disposed substantially parallel to the axis of the lamp between the root portions of the adjacent lamps. .
[0015]
Specific examples of the heating furnace provided with the lamp heating apparatus according to the present invention include apparatuses for performing some kind of heat treatment on the semiconductor single crystal substrate, such as a vapor phase epitaxial growth apparatus (CVD apparatus), an oxide film forming apparatus, and a lamp annealing apparatus. .
[0016]
The lamp 12 has a rod shape as shown in FIG. 2 , and the side surfaces of the filament portions 13 and 13 are opposed to each other, the root portions 14 and 14 are opposed to each other, and the shielding plate 5a is adjacent to the lamp. What was provided in the opposing gap | interval of the base parts 14 and 14 of this is preferable. The shielding plate 5a, together constitute a high-melting point metal material, it is not preferable to finish the part exposed to radiant heat from the lamp out of the outer surface of the mirror-like high reflectivity surface.
Na us, optionally in the present invention may also be filament portion provided spherical lamp.
[0017]
Things as the aspect of the number of lamps arranged in, for example FIG. 1, Ri can der those shown in FIG. 2, which was bar-shaped lamp 12, 12, arranged ... in parallel to each other on the upper and lower sides of the heating furnace It is.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 (corresponding to claim 1)
FIG. 1 is a longitudinal sectional view showing a schematic structure of a vapor phase epitaxial growth apparatus using the heating furnace of the present invention, and FIG. 2 is a plan sectional view showing a part of the lamp heating apparatus. In this heating furnace, the lamp heating device 11 is provided outside and close to the top plate 2 of the heating furnace main body 1 and outside and close to the bottom plate 3. The lamp heating device 11 is configured by arranging a plurality of rod-shaped lamps 12 at equal intervals and in parallel with each other perpendicular to the central axis of the heating furnace body 1. Thereby, the side surfaces of the filament portions 13 and 13 of the lamp are opposed to each other directly in front. However, the directions of the lamp on the top plate 2 side and the lamp on the bottom plate 3 side are reversed.
[0019]
The upper part of the lamp heating device 11 provided on the top plate 2 side is covered with a reflecting plate 5 made of a metal material having high reflectivity and heat resistance. The lower part of the lamp heating device 11 provided on the bottom plate 3 side is also covered with the reflection plate 5 in the same manner. By providing a shielding plate 5a made of the same material as these on the reflecting plate 5 so as to protrude in the vertical direction, the shielding plate 5a is positioned in the facing gap between the root portions 14 and 14 of the lamp.
[0020]
In the lamp heating device 11, all the lamps on the top plate 2 side radiate heat to each other, and all the lamps also radiate heat to each other on the bottom plate side. For this reason, the intensity of radiant heat rays toward the sheet silicon substrate W is, at the same time are uniform over the entire surface of the top plate 2, is uniform even over the entire surface of the bottom plate 3.
Moreover, since the radiant heat ray from the filament part 13 of the adjacent lamp | ramp 12 is interrupted | blocked by the shielding board 5a, the overheating prevention effect of the root part 14 improves. That is, unlike the lamp heating apparatus of FIG. 8 , as shown in FIG. 3 , light leaking from the filament 13a through the glass bulb 13b to the root portion 14 can also be blocked.
[0021]
Embodiment 2 (corresponding to claim 2)
FIG. 4 is a schematic plan view for explaining the main configuration of the lamp heating device and the operation thereof.
In this lamp heating apparatus, a first flat plate 15 having a through hole 15 a having a diameter slightly larger than the outer diameter of the root portion 14 of the rod-shaped lamp 12 is connected to one surface of the first flat plate 15 so as to be orthogonal to each other. The shielding member 17 is configured by the second flat plate 16. Then, the root portion 14 is inserted into the through hole 15a to surround the vicinity of the proximal end portion of the filament portion 13 by the inner peripheral surface of the through hole 15a, and the second flat plate 16 is replaced with the root portion 14 of the adjacent lamp. And the root portion 14 are arranged in parallel to the axis of the lamp 12.
The reason for limiting the diameter of the through hole 15a as described above is that the root portion 14 is inserted into the through hole 15a and inserted into a power socket (not shown), and the inner peripheral surface of the through hole 15a and the rod-shaped lamp 12 are inserted. This is because it is effective for preventing overheating of the root portion 14 to make the gap between the base portion 14 as small as possible.
[0022]
In this lamp heating device, as is apparent from the arrow line shown in FIG. 4 , light directed from the filament 13a directly to the root portion 14 can be blocked and reflected, and the root portion passes from the filament 13a through the glass bulb 13b. Since the light which goes to 14 can also be interrupted | blocked, the lifetime improvement effect of a lamp improves remarkably.
In the second embodiment, it is constituted of the shielding member 17 between the first flat plate and the second flat plate, the shape of the furnace body, in accordance with the arrangement form or the like of the lamp, first, second shield The shielding member can also be configured by using a concavely curved member or a cylindrical member as the member.
[0023]
Next, a reference example of the heating furnace will be described with reference to the drawings.
FIG. 9 is a plan view of a vapor phase epitaxial growth apparatus using the heating furnace according to this reference example . However, for the sake of convenience, FIG. 9 shows a state in which a reflector 5 described later is removed. 10 is a longitudinal sectional view of FIG. FIG. 11 is a cross-sectional view taken along the line AA in FIG. 9 and shows the relationship between the root portion of the lamp and the blocking member. However, FIG. 10 and FIG. 11 are shown with the reflecting plate 5 attached.
[0024]
As shown in FIG. 11 , in this heating furnace, the heating furnace body 1 is a vertical cylindrical shape, and the top plate 2, the bottom plate 3, and the peripheral wall 4 of the heating furnace body 1 are made of transparent quartz glass. A reflective plate 5 is provided immediately above the top plate 2 to cover it. A lamp heating device 11 is provided in a compartment 6 formed by the top plate 2, the upper end of the peripheral wall 4 and the reflection plate 5.
In the upper part of the heating furnace main body 1, a source gas supply pipe 7 is provided so as to penetrate the reflecting plate 5 and the top plate 2. A flat susceptor 8 made of quartz glass is fixedly provided on the bottom plate 3. An exhaust pipe 9 is connected to a position in the vicinity of the peripheral wall 4 in the bottom plate 3.
[0025]
The lamp heating apparatus 11 includes a plurality of rod-shaped lamps 12 of the same standard (eight in the illustrated example), their central axes are positioned on the same horizontal plane with an equiangular pitch, and the root portion 14 in the diameter direction of the heating furnace body 1. Provide outward. In this way, the side surfaces of the filament parts 13 and 13 of the adjacent lamps are directly opposed to each other (the structure having no obstacle that blocks the radiant heat between the filament parts 13 and 13), so that the filament parts directly And a blocking member 21 for blocking the radiant heat transfer from the adjacent lamps is provided between the base portions 14 of the lamps.
[0026]
As the material of the shielding member 21, ceramics such as SiC having excellent heat resistance can be adopted. However, in consideration of the effective use of radiant heat, a ceramic material or a heat-resistant alloy material is formed in an annular shape, and a cross-sectional outline is formed on the lower surface side. A parabolic (or arc-shaped) concave mirror surface portion 22 is preferably formed. The upper surface side of the shielding member 21 is planar. The concave mirror surface portion 22 is formed at an equiangular pitch corresponding to the arrangement position of the root portion 14 of the lamp 12. The concave mirror surface portion 22 is formed by forming a concave portion in the annular member and then depositing a thin metal film having a high reflectance such as gold or silver by, for example, vacuum deposition.
[0027]
In this reference example, as shown in FIG. 11 , the lamp 12 is provided so that the upper half portion of the root portion 14 is covered with the concave mirror surface portion 22. In this case, it is preferable that the vertical relationship between the arrangement of the root portion 14 and the shielding member 21 is such that the lower surface 23 of the shielding member 21 is slightly below the central axis of the root portion 14. The central axis of the lamp 12 is preferably matched with the focal point of the concave mirror portion 22 of the shielding member 21. Thereby, most of the radiant heat rays reaching the concave mirror surface portion 22 can be reflected downward in the vertical direction.
[0028]
The operation of this vapor phase epitaxial growth apparatus will be described. One large-diameter silicon substrate W is placed on the susceptor 8, the lamp heating apparatus 11 is operated, and the source gas supply pipe 7 is heated and maintained at the reaction temperature. Then, the source gas 33 is supplied into the heating furnace body 1 to advance the epitaxial growth reaction.
[0029]
In this case, a part of the radiant heat rays from the lamp heating device 11 are directly transmitted through the top plate 2 and irradiated to the silicon substrate W, and a part of the radiant heat rays are reflected by the reflecting plate 5 and then transmitted through the top plate 2. The silicon substrate W is irradiated. Since all of the plurality of lamps radiate heat to each other, all the lamps have the same temperature, so that the intensity of the radiant heat rays directed toward the silicon substrate W is made uniform over the entire surface of the top plate 2. As a result, unlike the conventional heating furnace, the entire silicon substrate W can be heated to a uniform temperature without rotating, and a uniform quality epitaxially grown product can be manufactured stably.
[0030]
Further, since the radiant heat rays from the adjacent lamps are blocked by the shielding member 21, they are not irradiated to the root portions 14 of the respective lamps. Therefore, compared to the conventional lamp heating apparatus in which this shielding member 21 is not provided, The temperature is greatly reduced and its life is significantly improved.
Further, since the parabolic concave mirror surface portion 22 is provided on the shielding member 21, the radiant heat rays reaching the shielding member 21 can be reflected to heat the silicon substrate W, so that the use efficiency of the radiant heat rays from the lamp is also improved. To do.
[0031]
[ Experimental Example 1 and Comparative Example 1]
In Experimental Example 1, the epitaxial growth apparatus of FIG. 9 was used, and in Comparative Example 1, the shielding member 21 (the surface of the aluminum base material subjected to gold plating) was removed from the apparatus of FIG. went. Other conditions were common to Experimental Example 1 and Comparative Example 1. However, the source gas for epitaxial growth was not supplied.
[0032]
FIG. 9 shows a total of eight lamps 12 of the same standard having a diameter and length of the root portion 14 of about 30 mm and about 30 mm, a diameter and length of the filament portion 13 of about 35 mm and about 100 mm, and an output of 2000 watts . Arranged. A power of about 2000 watts was supplied to each lamp, and a 200 mm diameter silicon substrate W placed about 6 cm below was heated to about 800 ° C.
In all of the above eight lamps, although the theoretical value of the temperature rise of the filament itself is 2727 ° C., in fact, a difference of about 300 ° C. is recognized among the lamps that are most different from the theoretical value. It was. This is considered to be caused by individual differences in the filament part and deterioration of the filament part due to use in heating.
[0033]
When the temperature of the base of each lamp was measured with a thermocouple, in Experimental Example 1 , all lamps were within the range of about 290 ° C. to about 310 ° C. In contrast, in Comparative Example 1, the variation was about 330 to about 380 ° C., which was large. Moreover, when the temperature was measured with several thermocouples on the heated silicon substrate, the difference between the maximum value and the minimum value in both Experimental Example 1 and Comparative Example 1 was 6 ° C. From the above results, it was confirmed that the temperature of the lamp root can be lowered without impairing the advantages of the heating furnace having the conventional structure.
[0034]
Furthermore, as a result of repeating the heating / cooling operation by turning on and off the lamp heating device in Experimental Example 1 and Comparative Example 1 and examining the durability of the lamp, in Comparative Example 1, discoloration occurs at the base of the lamp after two weeks. It became impossible to heat. On the other hand, in Experiment 1 , it was possible to carry out energization heating for 3 to 4 weeks.
As described above, in the experimental example 1 , the lamp life is greatly extended, and thus the cost of the epitaxial substrate product can be reduced.
[0035]
【The invention's effect】
As is apparent from the above description, in the lamp heating apparatus provided in the heating furnace of the present invention, a plurality of lamps and adjacent filament portions of adjacent lamps are provided so as to face each other, so that these filament portions are directly connected. It is configured to generate radiant heat transfer, and a blocking member that blocks radiant heat transfer from adjacent lamps is provided between the bases of each lamp, so that it has excellent heating characteristics and durability as follows. A lamp heating type heating furnace can be provided. That is,
(1) In the lamp heating apparatus according to the present invention, the adjacent filament parts heat each other, so that the heating temperature is higher than that of a lamp heating apparatus having a conventional structure in which the filament parts of each lamp are individually covered with a concave reflecting surface. Improves uniformity. In addition, this uniformity is as excellent as when the entire side surfaces of adjacent lamps are provided directly opposite each other (see FIG. 7 ). Therefore, for example, when heating a large-diameter silicon substrate in a single wafer mode, the variation in the heating temperature depending on the location of the silicon substrate surface is reduced, and when heating a small-diameter silicon substrate in batch mode, heating between the silicon substrates is performed. Temperature unevenness can be reduced. In addition, in a vapor phase epitaxial growth apparatus, a lamp annealing apparatus, or an oxide film forming apparatus as specific examples of a heating furnace provided with such a lamp heating apparatus, a product with uniform quality can be manufactured with a high yield.
(2) Since a predetermined shielding member is provided between the lamp base portions facing each other (in the facing gap between the lamp root portions), the temperature of the lamp root portion is lower than that of the structure shown in FIG. Life is greatly extended.
(3) In the present invention, in particular, the shielding member is connected to a first shielding member having a through hole having a diameter slightly larger than the outer diameter of the lamp base portion, and one surface of the first shielding member. And the second shielding member, the base portion of the lamp is inserted into the through hole of the first shielding member, and the vicinity of the proximal end portion of the filament portion is surrounded by the inner peripheral surface of the through hole. Since the shielding member is disposed between the root portions of the adjacent lamps and substantially parallel to the axis of the lamp (see FIG. 4 ), as described above, the light directed directly from the filament portion of the lamp to the root portion is transmitted. In addition to being able to block / reflect light, it is also possible to block light from the filament part through the glass sphere toward the root part, so that the lamp life is significantly improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic structure of a heating furnace according to an embodiment of the present invention .
FIG. 2 is a plan sectional view showing a part of a lamp heating device in the heating furnace of FIG . 1 ;
FIG. 3 is an operation explanatory diagram of the lamp heating device of FIG . 2 ;
FIG. 4 is a schematic plan view for explaining the main configuration and operation of a lamp heating apparatus in a heating furnace according to another embodiment.
FIG. 5 is a schematic longitudinal sectional view of a vapor phase epitaxial growth apparatus provided with a resistance heater.
FIG. 6 is an explanatory view showing a conventional lamp heating device in which a plurality of light bulbs provided with infrared reflecting umbrellas are arranged in parallel.
FIG. 7 is a plan view for explaining a problem of a heating furnace provided with the entire side surfaces of adjacent lamps facing each other directly.
FIG. 8 is a schematic plan view for explaining the main structure of a lamp heating device provided in a conventional semiconductor wafer processing reactor and its problems.
FIG. 9 is a plan view of a heating furnace according to a reference example .
FIG. 10 is a longitudinal sectional view of FIG . 9 ;
FIG. 11 is a cross-sectional view taken along line AA in FIG . 9 , showing the relationship between the lamp root and the blocking member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heating furnace main body 2 Top plate 3 Bottom plate 4 Perimeter wall 5 Reflection plate 5a Shielding plate 6 Compartment room 7 Source gas supply pipe 8 Susceptor 9 Exhaust pipe 11 Lamp heating device 12 Rod lamp 13 Filament part 13a Filament 13b Glass bulb 14 Root part 15, 16 Flat plate 15a Through-hole 17 Shielding member 21 Shielding member 22 Concave mirror surface portion 23 Lower surface W Silicon substrate

Claims (3)

加熱炉本体の外壁の少なくとも一部を透光性外壁とし、この透光性外壁の外側かつ近傍にランプ加熱装置を設け、前記加熱炉本体内の被加熱物を前記ランプ加熱装置からの輻射熱により、前記透光性外壁を介して加熱するようにした加熱炉において、前記ランプ加熱装置は、ランプを複数、かつ隣合うランプのフィラメント部同士を対向させて設けることにより、これらのランプのフィラメント部間で直接的に輻射伝熱が生じるように構成するとともに、隣合うランプの根元部と根元部の間に、隣合うランプからの輻射伝熱を遮る平板状遮蔽部材を、ランプの軸線にほぼ平行に設けたことを特徴とする加熱炉。  At least a part of the outer wall of the heating furnace body is made a translucent outer wall, a lamp heating device is provided outside and in the vicinity of the translucent outer wall, and an object to be heated in the heating furnace body is radiated by the radiant heat from the lamp heating device. In the heating furnace that is heated through the translucent outer wall, the lamp heating device is provided with a plurality of lamps and the filament parts of adjacent lamps facing each other, so that the filament parts of these lamps are provided. A flat plate-shaped shielding member that blocks radiation heat transfer from the adjacent lamps is arranged on the axis of the lamp between the roots of the adjacent lamps. A heating furnace provided in parallel. 加熱炉本体の外壁の少なくとも一部を透光性外壁とし、この透光性外壁の外側かつ近傍にランプ加熱装置を設け、前記加熱炉本体内の被加熱物を前記ランプ加熱装置からの輻射熱により、前記透光性外壁を介して加熱するようにした加熱炉において、前記ランプ加熱装置は、ランプを複数、かつ隣合うランプのフィラメント部同士を対向させて設けることにより、これらのランプのフィラメント部間で直接的に輻射伝熱が生じるように構成するとともに、隣合うランプの根元部と根元部の間に、隣合うランプからの輻射伝熱を遮る遮蔽部材を設けたものであり、
該遮蔽部材は、前記ランプの根元部の外径よりわずかに大きい径を有する貫通孔を形成した第1の遮蔽部材と、第1の遮蔽部材の一方の面に連結した第2の遮蔽部材とにより構成し、第1の遮蔽部材の貫通孔にランプの根元部を挿通して貫通孔の内周面によりフィラメント部の基端部近傍部を包囲するとともに、第2の遮蔽部材を隣合うランプの根元部と根元部の間に、ランプの軸線にほぼ平行に配置したことを特徴とする加熱炉。
At least a part of the outer wall of the heating furnace body is made a translucent outer wall, a lamp heating device is provided outside and in the vicinity of the translucent outer wall, and an object to be heated in the heating furnace body is radiated by the radiant heat from the lamp heating device. In the heating furnace that is heated through the translucent outer wall, the lamp heating device is provided with a plurality of lamps and the filament parts of adjacent lamps facing each other, so that the filament parts of these lamps are provided. It is configured so that radiant heat transfer occurs directly between the base parts of the adjacent lamps, and a shielding member that blocks radiant heat transfer from the adjacent lamps is provided between the base parts of the adjacent lamps.
The shielding member includes a first shielding member in which a through hole having a diameter slightly larger than an outer diameter of a root portion of the lamp is formed, and a second shielding member connected to one surface of the first shielding member. The base portion of the lamp portion is surrounded by the inner peripheral surface of the through hole and the second shielding member is adjacent to the lamp. A heating furnace characterized by being arranged substantially parallel to the axis of the lamp between the roots of the lamp.
前記遮蔽部材の表面のうち、前記ランプの根元部と対向する部分を鏡面状に仕上げたことを特徴とする請求項1または2に記載の加熱炉。  3. The heating furnace according to claim 1, wherein a portion of the surface of the shielding member facing a root portion of the lamp is mirror-finished.
JP34793495A 1995-12-14 1995-12-14 heating furnace Expired - Lifetime JP3972379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34793495A JP3972379B2 (en) 1995-12-14 1995-12-14 heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34793495A JP3972379B2 (en) 1995-12-14 1995-12-14 heating furnace

Publications (2)

Publication Number Publication Date
JPH09167742A JPH09167742A (en) 1997-06-24
JP3972379B2 true JP3972379B2 (en) 2007-09-05

Family

ID=18393601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34793495A Expired - Lifetime JP3972379B2 (en) 1995-12-14 1995-12-14 heating furnace

Country Status (1)

Country Link
JP (1) JP3972379B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023555A (en) * 1998-08-17 2000-02-08 Eaton Corporation Radiant heating apparatus and method
KR20120054636A (en) * 2009-08-18 2012-05-30 도쿄엘렉트론가부시키가이샤 Heat treatment apparatus
JP6038503B2 (en) * 2011-07-01 2016-12-07 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
JP5807522B2 (en) * 2011-11-17 2015-11-10 信越半導体株式会社 Epitaxial growth equipment
US10504719B2 (en) 2012-04-25 2019-12-10 Applied Materials, Inc. Cooled reflective adapter plate for a deposition chamber
KR102325891B1 (en) * 2013-07-31 2021-11-15 에바텍 아크티엔게젤샤프트 Radiation heater arrangement
CN105408993A (en) 2013-08-06 2016-03-16 应用材料公司 Locally heated multi-zone substrate support
JP5891255B2 (en) * 2014-03-17 2016-03-22 株式会社Screenホールディングス Heat treatment equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031000U (en) * 1983-08-09 1985-03-02 ウシオ電機株式会社 light irradiation furnace
JPS63260018A (en) * 1987-04-17 1988-10-27 Hitachi Ltd Lamp annealer
JP2940047B2 (en) * 1989-02-14 1999-08-25 株式会社日本自動車部品総合研究所 Heat treatment apparatus and heat treatment method
US5108792A (en) * 1990-03-09 1992-04-28 Applied Materials, Inc. Double-dome reactor for semiconductor processing
US5179677A (en) * 1990-08-16 1993-01-12 Applied Materials, Inc. Apparatus and method for substrate heating utilizing various infrared means to achieve uniform intensity
JP3099101B2 (en) * 1993-05-10 2000-10-16 東京エレクトロン株式会社 Heat treatment equipment

Also Published As

Publication number Publication date
JPH09167742A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
JP3484651B2 (en) Heating device and heating method
US6331697B2 (en) System and method for rapid thermal processing
JP5191373B2 (en) Epitaxial wafer manufacturing method and manufacturing apparatus
US11337277B2 (en) Circular lamp arrays
JPH05114571A (en) Quick heat-treating method for semiconductor wafer by irradiation
TWI512884B (en) Improved edge ring lip
US9842753B2 (en) Absorbing lamphead face
TWI663285B (en) Absorbing reflector for semiconductor processing chamber
JPH11508870A (en) System and method for heat treatment of a semiconductor substrate
CN107731718A (en) Support cylinder for thermal processing chamber
TWI685897B (en) Rapid thermal processing chamber with linear control lamps
JP3972379B2 (en) heating furnace
WO2013181263A1 (en) Apparatus and methods for rapid thermal processing
KR100970013B1 (en) Heat treating device
US8450652B2 (en) Apparatus for thermally treating semiconductor substrates
JP2000138170A (en) Semiconductor equipment
JPS60161616A (en) Infrared heating unit for semiconductor wafer
WO2014176174A1 (en) Absorbing lamphead face
TW202235919A (en) Reflector plate for substrate processing
JP2003022982A (en) Heat treatment device
JPH04713A (en) Heating apparatus for substrate
JP7416554B1 (en) Heat source holding mechanism, heat source holding method, and semiconductor processing apparatus used in semiconductor processing equipment
JPH0737669B2 (en) Heater for CVD equipment
JPH0545052B2 (en)
JP3784662B2 (en) Heat treatment equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term