JPS60160667A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60160667A
JPS60160667A JP1510584A JP1510584A JPS60160667A JP S60160667 A JPS60160667 A JP S60160667A JP 1510584 A JP1510584 A JP 1510584A JP 1510584 A JP1510584 A JP 1510584A JP S60160667 A JPS60160667 A JP S60160667A
Authority
JP
Japan
Prior art keywords
film
gate electrode
silicon substrate
thin
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1510584A
Other languages
Japanese (ja)
Inventor
Takashi Azuma
吾妻 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1510584A priority Critical patent/JPS60160667A/en
Publication of JPS60160667A publication Critical patent/JPS60160667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a gate electrode having low resistance by a method wherein a thin-film consisting of a refractory metal is formed on an silicon substrate, the thin-film is annealed through heating in a non-oxidizing atmosphere, oxygen in the thin-film is reacted with the silicon substrate and an SiO2 film is shaped just under the thin-film. CONSTITUTION:A refractory metal is formed on the whole surface of a P type silicon substrate 1, and a gate electrode 2 is shaped through patterning. Oxygen in the gate electrode 2 diffuses up to the surface of the silicon substrate 1 through heating and annealing in a non-oxidizing atmosphere to form an SiO2 film 3 just under the gate electrode 2. An N type impurity is implanted while using the gate electrode 2 as a mask to shape N<+> regions 4, 5 as a source and a drain. Oxygen in the gate electrode can be reduced, and resistance is lowered.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高集積化、高速化さちたMO8O8形量積回路
いて好適な半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a semiconductor device suitable for highly integrated and high-speed MO8O8 type mass integrated circuits.

〔発明の背景〕[Background of the invention]

近年、MOS形の集積回路で高集積化や高速化が進めら
れているが、これにともなってゲート酸化膜(Stow
膜)の厚さが薄くなる傾向にある。例えばメガビット級
のMOSメモリ素子では、1Mビットで上200A程度
、これよりさらに高ビットでは100A程度にまで薄く
なる。
In recent years, MOS-type integrated circuits have become more highly integrated and faster.
There is a tendency for the thickness of the film to become thinner. For example, in a megabit class MOS memory element, the thickness is about 200A for 1Mbit, and about 100A for higher bits.

また、高速にするためにはゲート電極材料の低抵抗化が
進められ、これに適した高温度耐性をもつりフラクトリ
ーメタルの薄膜の高純度化形成技術もますます進められ
ている。
Furthermore, in order to achieve higher speeds, the resistance of gate electrode materials has been reduced, and technology for forming high-purity thin films of factory metals with high temperature resistance suitable for this purpose is also progressing.

しかしながら、膜厚100A程度の810.膜の厚さを
制御する際、酸素分圧が十分にコントロールされた雰囲
気中では比較的低温でシリコン基板上に膜を形成するの
が可能であるが、これを室温中に取り出して放置すると
、例えば24時間で膜厚が10〜20チ増加し、膜厚制
御がで睡なくなってしまう。
However, the film thickness of 810. When controlling the thickness of a film, it is possible to form a film on a silicon substrate at a relatively low temperature in an atmosphere where the oxygen partial pressure is sufficiently controlled, but if the film is taken out and left at room temperature, For example, the film thickness increases by 10 to 20 inches in 24 hours, making it difficult to control the film thickness.

また、ゲート電極を構成するりフラクトリーメタル薄膜
は、高真空中で蒸着によって、または低真空中でスパッ
タリングによって基板上に形成されるが、このために雰
囲気中の酸素や窒素等のガスが膜に含まれてしまう。
In addition, the factory metal thin film that constitutes the gate electrode is formed on the substrate by vapor deposition in a high vacuum or by sputtering in a low vacuum. It will be included in

これは高真空中でスパッタリングした場合も同′様であ
る。このようにゲート電極中にガス、特に酸素が存在す
ると、その抵抗値に大きな影響を与えるという問題があ
る。
The same is true when sputtering is performed in a high vacuum. As described above, there is a problem in that the presence of gas, especially oxygen, in the gate electrode greatly affects its resistance value.

〔発明の目的〕[Purpose of the invention]

本発明は従来のこのような点を解決するためになされた
もので、その目的とするところは、薄いゲート酸化膜と
低抵抗のゲート電極が得られるような半導体装置の製造
方法を提供することにある。
The present invention has been made to solve these conventional problems, and its purpose is to provide a method for manufacturing a semiconductor device that allows a thin gate oxide film and a low-resistance gate electrode to be obtained. It is in.

〔発明の概要〕[Summary of the invention]

本発明はこのような目的を達成するために、シリコン基
板上にり7ラクトリーメタルの薄膜を形成し、非酸化性
雰囲気中で加熱して薄膜をアニールし、薄膜中の酸素を
シリコン基板と反応させて薄膜直下に5inll膜を形
成するようにしたものである。
In order to achieve such an object, the present invention forms a thin film of 7 Lactoly metal on a silicon substrate, heats it in a non-oxidizing atmosphere to anneal the thin film, and removes the oxygen in the thin film from the silicon substrate. The reaction was carried out to form a 5 inch film directly under the thin film.

また、シリコン基板上に薄いポリシリコンを形成してお
き、ポリシリコンと上記薄膜中の酸素との反応によりs
ho、膜を形成するようにしたものである。
In addition, thin polysilicon is formed on a silicon substrate, and s
ho, it is designed to form a film.

〔発明の実施例〕[Embodiments of the invention]

一般に、モリブデン、タングステン等のり7ラクトリー
メタル中に酸素が導入されると、これらのメタルの酸化
物が形成されるが、そこに高温中でシリコンが存在する
と、リフラクトリ−メタルは還元されてもとのメタルに
戻る。この反応は例えばモリブデンの場合、次のような
反応式になる。
Generally, when oxygen is introduced into refractory metals such as molybdenum and tungsten, oxides of these metals are formed, but if silicon is present at high temperatures, the refractory metals are reduced even though they are reduced. Back to metal with. For example, in the case of molybdenum, this reaction has the following reaction formula.

2M、OB+3J = 2M0+38IO。2M, OB+3J = 2M0+38IO.

従って、シリコン基板上にモリブデンをスパッタリング
して薄膜を形成し、これを高温中で処理すると、モリブ
デン薄膜中に吸蔵されていた酸素が基板上まで拡散し、
上記のような反応が起こってきわめて薄いSin、膜が
薄膜直下に形成され、同時にモリブデン薄膜中の酸素吸
蔵率が減少して次に、第1図(a)〜(C)を用いて、
本発明の一実施例であるMOS FETの製造方法につ
いて説明する。
Therefore, when molybdenum is sputtered to form a thin film on a silicon substrate and this is treated at high temperature, the oxygen occluded in the molybdenum thin film diffuses onto the substrate.
As the above reaction occurs, an extremely thin film of Sin is formed directly below the thin film, and at the same time the oxygen storage rate in the thin molybdenum film decreases.
A method for manufacturing a MOS FET, which is an embodiment of the present invention, will be described.

先づ、P形シリコン基板1上にリフラクトリ−メタルを
全面に形成した後、ホトリソグラフィ技術を用いてパタ
ーニングを行なってゲート電極2を形成する(第1図(
a))。
First, a refractory metal is formed on the entire surface of a P-type silicon substrate 1, and then patterned using photolithography to form a gate electrode 2 (see FIG. 1).
a)).

次に、非酸化性雰囲気中(例えば窒素、アルゴンガス中
、温度1000程度)で加熱アニールすると、ゲート電
極2中の酸素がシリコン基板1の表面まで拡散してゲー
ト電極2の直下に810.膜3を形成する(第1図(b
))。このSin、膜3はリフラクトリ−メタル形成時
の雰囲気およびアニール温度2時間により制御すること
ができるが、非常に薄い膜厚が得られる。
Next, when heat annealing is performed in a non-oxidizing atmosphere (for example, in nitrogen or argon gas at a temperature of about 1,000 ℃), oxygen in the gate electrode 2 diffuses to the surface of the silicon substrate 1 and forms an 810.degree. Form a film 3 (see Figure 1(b)
)). Although this Sin film 3 can be controlled by the atmosphere during refractory metal formation and the annealing temperature for 2 hours, a very thin film can be obtained.

次にゲート電極2をマスクにしてN形不純物を注入して
ソース、ドレインとなる虻領域4,5を形成する。
Next, using the gate electrode 2 as a mask, N-type impurities are implanted to form dovetail regions 4 and 5 that will become the source and drain.

次に、他の実施例を第2図(、)〜(d)を用いて説明
する。
Next, another embodiment will be described using FIGS. 2(,) to (d).

先づ、P形シリコン基板1上に50A 程度の厚さにポ
リシリコンロを形成する(第2図(a))。
First, a polysilicon film having a thickness of about 50 Å is formed on a P-type silicon substrate 1 (FIG. 2(a)).

次に、ポリシリコンロ上にリフラクトリ−メタルを形成
した後、パターニングしてゲート電極2を形成する(第
2図(b))。
Next, a refractory metal is formed on the polysilicon layer and then patterned to form a gate electrode 2 (FIG. 2(b)).

次に、非酸化性雰囲気中で加熱してゲート電極2中に吸
蔵している酸素によってポリシリコンロをSin、膜3
となす(第2図(C))。
Next, by heating in a non-oxidizing atmosphere, oxygen occluded in the gate electrode 2 converts the polysilicon layer into Sin, and the film 3
and eggplant (Figure 2 (C)).

次に、N形不純物を注入して虻領域4,5を形成する(
第2図(d))。
Next, N-type impurities are implanted to form fly regions 4 and 5 (
Figure 2(d)).

また、第3図(、)〜(C)に示すように、第2図(b
)のポリシリコンロ上にゲート電極2を形成した後、ゲ
ート電極2をマスクにしてポリシリコンロをエツチング
除去しく第3図(a))、Lかる後、非酸化性雰囲気中
で加熱してゲート′l!極2の直下に残ったポリシリコ
ンロを酸化して5IO1l膜3を形成しく第3図(b)
 ) 、次いでN形不純物を注入して虻領域4,5を形
成することもできる。
In addition, as shown in Figures 3(,) to (C), Figure 2(b)
After forming the gate electrode 2 on the polysilicon layer shown in FIG. 3(a), the polysilicon layer is etched away using the gate electrode 2 as a mask. Gate'l! The polysilicon layer remaining directly under the electrode 2 is oxidized to form a 5IO1L film 3. FIG. 3(b)
), then N-type impurities may be implanted to form the dovetail regions 4 and 5.

〔発明の効果〕〔Effect of the invention〕

このように本発明に係る半導体装置の製造方法によると
、薄いゲー) Sin、膜が容易に得られ、しかもリフ
ラクトリ−メタル中に吸蔵してい曳酸素を利用してJo
g膜を作るためにゲート電極中の酸素を減少でき低抵抗
化がはかれるという優れた効果がある。
As described above, according to the method of manufacturing a semiconductor device according to the present invention, a thin film of silicon (Si) can be easily obtained, and moreover, it is possible to obtain a thin silicon film using the drawn oxygen occluded in the refractory metal.
This has the excellent effect of reducing the amount of oxygen in the gate electrode to form a g film, resulting in lower resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(c)は本発明に係る半導体装置の製造
方法の一実施例における各工程の断面図、第2図(−)
〜(d)は他の実施例における各工程の断面図、第3図
(、)〜(e)は他の実施例における各工程の断面図で
ある。 1・・・・シリコン基板、2・・・・ゲート電極、3 
・−−−SIO,膜、4,5日・・N+領領域6・・・
・ポリシリコン。 第1図 第2図
Figures 1 (,) to (c) are cross-sectional views of each step in an embodiment of the method for manufacturing a semiconductor device according to the present invention, and Figure 2 (-)
-(d) are sectional views of each process in another embodiment, and FIGS. 3(a) to 3(e) are sectional views of each process in another embodiment. 1...Silicon substrate, 2...Gate electrode, 3
・---SIO, membrane, 4th and 5th days...N+ area 6...
・Polysilicon. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、 シリコン基板上にリフラクトリ−メタルからなる
薄い膜を形成し、非酸化性雰囲気中で加熱して膜中の酸
素をシリコン基板のシリコンと反応させ、膜の直下KS
lO,膜を形成することを特徴とする半導体装置の製造
方法。 2、 シリコン基板上にポリシリコン薄膜を形成し、こ
のポリシリコン薄膜の上にリフラクトリ−メタルからな
る薄い膜を形成し、非酸化性雰囲気中で加熱して膜中の
酸素をポリシリコン薄膜のシリコンと反応きせ、膜の直
下にSin、膜を形成することを特徴とする半導体装置
の製造方法。
[Claims] 1. A thin film made of refractory metal is formed on a silicon substrate, heated in a non-oxidizing atmosphere to cause oxygen in the film to react with silicon on the silicon substrate, and the KS directly below the film is heated.
1. A method for manufacturing a semiconductor device, the method comprising forming a 1O2 film. 2. Form a polysilicon thin film on a silicon substrate, form a thin film made of refractory metal on top of this polysilicon thin film, and heat it in a non-oxidizing atmosphere to remove oxygen in the film from the silicon of the polysilicon thin film. A method for manufacturing a semiconductor device, characterized in that a film of Sin is formed directly under the film by reacting with the film.
JP1510584A 1984-02-01 1984-02-01 Manufacture of semiconductor device Pending JPS60160667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1510584A JPS60160667A (en) 1984-02-01 1984-02-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1510584A JPS60160667A (en) 1984-02-01 1984-02-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60160667A true JPS60160667A (en) 1985-08-22

Family

ID=11879554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1510584A Pending JPS60160667A (en) 1984-02-01 1984-02-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60160667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593229B1 (en) 1999-06-04 2003-07-15 Hitachi, Ltd. Semiconductor integrated circuit device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593229B1 (en) 1999-06-04 2003-07-15 Hitachi, Ltd. Semiconductor integrated circuit device and method for manufacturing the same
US6737341B1 (en) 1999-06-04 2004-05-18 Renesas Technology Corporation Semiconductor integrated circuit device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4505028A (en) Method of producing semiconductor device
JP2615390B2 (en) Method of manufacturing silicon carbide field effect transistor
JPH03227516A (en) Manufacture of semiconductor device
JPS60160667A (en) Manufacture of semiconductor device
JPH11289087A (en) Semiconductor device and its manufacture
JPS59200418A (en) Manufacture of semiconductor device
JPS63119268A (en) Manufacture of semiconductor device
JP3261444B2 (en) Manufacturing method of semiconductor thin film
JPH04266031A (en) Manufacture of semiconductor device
JPS61135156A (en) Semiconductor device and manufacture thereof
JPH01276616A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JP2857170B2 (en) Method for manufacturing semiconductor device
JPH04155967A (en) Manufacture of semiconductor device
JPH02181918A (en) Manufacture of semiconductor device
JPH02114641A (en) Manufacture of semiconductor device
JPS6138264B2 (en)
JP2650972B2 (en) Method for manufacturing semiconductor device
JPH09293722A (en) Manufacture of semiconductor device
JPH01289165A (en) Manufacture of semiconductor device
JPS63283064A (en) Formation of polycide pattern
JPH0349230A (en) Semiconductor device and manufacture thereof
JPS5846651A (en) Structure of electrode wiring and its manufacture
JPS58162062A (en) Manufacture of semiconductor device
JPH0738103A (en) Semiconductor device and manufacture thereof