JPS60158627A - Controlling method of surface reaction - Google Patents

Controlling method of surface reaction

Info

Publication number
JPS60158627A
JPS60158627A JP1194584A JP1194584A JPS60158627A JP S60158627 A JPS60158627 A JP S60158627A JP 1194584 A JP1194584 A JP 1194584A JP 1194584 A JP1194584 A JP 1194584A JP S60158627 A JPS60158627 A JP S60158627A
Authority
JP
Japan
Prior art keywords
temperature
vapor pressure
sample
reaction
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1194584A
Other languages
Japanese (ja)
Other versions
JPH0614518B2 (en
Inventor
Shinichi Taji
新一 田地
Sadayuki Okudaira
奥平 定之
Kiichiro Mukai
向 喜一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59011945A priority Critical patent/JPH0614518B2/en
Publication of JPS60158627A publication Critical patent/JPS60158627A/en
Publication of JPH0614518B2 publication Critical patent/JPH0614518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To control a surface reaction at the surface of a sample not to be injected with energy particles at a vacuum etching device by a method wherein the sample is held at a temperature whereat vapor pressure of a reaction product becomes to 1/10 or less of vapor pressure at the room temperature, and the temperature thereof is set to the temperature or more whereat vapor pressure of the reaction product becomes to pressure or more of a vacuum vessel. CONSTITUTION:Particles having energy larger than heat energy is injected continuously or intermittently to a solid sample 8 put in an atmosphere of gas of at least one kind in a vacuum vessel, and the surface of the sample 8 is etched and modified. At this time, the sample 8 is held at the temperature whereat vapor pressure of a reaction product becomes to 1/10 or less of vapor pressure at the room temperature. Moreover the temperature thereof is set to the temperature or more whereat vapor pressure of the reaction product becomes to pressure or more of the vacuum vessel. Accordingly, a surface reaction at the surface not injected with energy particles is controlled with high precision.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、固体のエツチングおよび固体表面の改質に係
り、とくに、高寸法精度の加工と改質に好適な表面反応
の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to etching of solids and modification of the surface of solids, and particularly to a method of controlling surface reactions suitable for processing and modification with high dimensional accuracy.

〔発明の背景〕[Background of the invention]

従来の高エネルギー粒子を利用した半導体製造プロセス
においては、固体試料および固体材料の温度が水温に保
たれていたため、固体温度が比較的高く、活性ガスと固
体が容易に反応し、イオンや電子、レーザー等のエネル
ギー粒子による表面反応の促進効果の高精度制御がなか
なかできないという欠点があった。とくに、ドライエツ
チングでは、プラズマ中のラジカル等の反応性中性粒子
と固体との反応の制御が困難であり、マスク下のエツチ
ングが太くなるという欠点があった。
In the conventional semiconductor manufacturing process using high-energy particles, the temperature of the solid sample and solid material was kept at water temperature, so the solid temperature was relatively high, and the active gas and solid reacted easily, causing ions, electrons, The drawback is that it is difficult to precisely control the effect of promoting surface reactions using energetic particles such as lasers. In particular, dry etching has the disadvantage that it is difficult to control the reaction between reactive neutral particles such as radicals in the plasma and the solid, and that the etching under the mask becomes thick.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高エネルギー粒子が固体へ入射させて
処理する際において、該呈ネルギー粒子が入射しない面
での表面反応を高精度に制御する方法を提供することに
ある。
An object of the present invention is to provide a method for highly accurately controlling surface reactions on surfaces where energetic particles do not enter when high-energy particles are incident on a solid for treatment.

〔発明の概要〕[Summary of the invention]

ドライエツチングでは、水平面に、イオンや電子等の高
エネルギー粒子といラジカル等の中性粒子が同時に入射
する一方、サイドウオールには、中性粒子だけが入射す
る。機栂解析から、高エネルギー粒子照射により、固体
の極く表面に、疑似″高温″状態がつくり出され、その
ため、ガス粒子やラジカルと表面電子の反応が大きく活
性化される効果があることがわかった。
In dry etching, high-energy particles such as ions and electrons and neutral particles such as radicals are simultaneously incident on a horizontal surface, while only neutral particles are incident on the sidewall. Kito's analysis shows that high-energy particle irradiation creates a pseudo-high-temperature state on the very surface of a solid, which has the effect of greatly activating reactions between gas particles and radicals and surface electrons. Understood.

一方、サイドウオールでは、ラジカルと固体、ガス分子
と固体といった水冷さ扛た温度での反応が起る。
On the other hand, in the sidewall, reactions occur between radicals and solids, and between gas molecules and solids, at temperatures comparable to water.

したがって、深さ方向エツチングを変えないでサイドエ
ツチングを小さくするためには、試料(固体)の温度を
下げてやれば良いことがわかった。
Therefore, it was found that in order to reduce the side etching without changing the etching in the depth direction, it is sufficient to lower the temperature of the sample (solid).

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は、高周波放電平行平板型カソードカップル式プ
ラズマエツチング装置の試料台1ならびに対向電極2に
、冷却装置゛(水温以下、−120℃以上)を具備させ
た装置を示す。冷却装置は、ヒートパイプの原理を使用
したものであり、溶媒溜め3とパイプ4、さらに排気装
置5からなり、溶媒をかえることで、上記温度を容易実
現可能であり、安定性にも優れており、典型的には1時
間に設定温度±1.5 ℃に保持可能な装置である。
FIG. 1 shows a high-frequency discharge parallel plate cathode-coupled plasma etching apparatus in which a sample stage 1 and a counter electrode 2 are equipped with a cooling device (water temperature or lower, -120 DEG C. or higher). The cooling device uses the principle of a heat pipe, and consists of a solvent reservoir 3, a pipe 4, and an exhaust device 5. By changing the solvent, the above temperature can be easily achieved, and it has excellent stability. The device is typically capable of maintaining a set temperature of ±1.5°C for one hour.

プラズマは、、g周波電力を試料台1に印加し両電極間
で発生させる。ガス導入口は、ボート6である。
Plasma is generated between both electrodes by applying g-frequency power to the sample stage 1. The gas inlet is the boat 6.

本装置を用い、SF6ガスによるPo1y −Siのエ
ツチングを行なった結果を第2図に示す。エツチング条
件は5X10Pa、高周波型カニ200W(電力密度0
.2 W/a1)であり、Po1y Si (厚さ1,
2 μm)のマスク材料には、ホトレジストAz135
0Jを使用した。第2図は、試料台温度とエツチング完
了時のサイドエツチング量(寸法シフト量:マスク端か
らの寸法を示す)の関係を示したものであり、このエツ
ングにおいて温度を下げるにともない、寸法シフトが小
さくなることがわかった。さらに、サイドエツチング量
は、Po1y −SiとSF8ガスプラズマの反応生成
物であるSiF4の蒸気圧が室温での蒸気圧の1710
以下となる温度以下、すなわち、約−10℃以下となる
温度で、20℃でのサイドエツチング量0.8 μmの
174以下と顕著となる。この時深さ方向へのエツチン
グ速度は変化しないという特徴がある。同様な現像は、
AQやW、レジスト、MOなど他の電子材料でも確認で
きた。すなわち、本方法においては、反応生成物の蒸気
圧が、室温での蒸気圧のl/10以下となる温度に試料
を保持することにより、サイドエツチングを極めて小さ
くすることができる。しかし、温度が低すぎると冷却部
へのガスの眼差が起こり、エツチングが不可能であった
。このガス吸着は、導入するガスであるSF6の試料温
度での蒸気圧が、真空容器のガス圧力以下となった場合
に起こることがわかった。
FIG. 2 shows the results of etching Po1y-Si with SF6 gas using this apparatus. Etching conditions are 5X10Pa, high frequency crab 200W (power density 0
.. 2 W/a1), and PolySi (thickness 1,
2 μm) mask material is photoresist Az135.
0J was used. Figure 2 shows the relationship between the sample stage temperature and the side etching amount (dimensional shift amount: the dimension from the edge of the mask) at the end of etching. I found out that it gets smaller. Furthermore, the amount of side etching is determined by the fact that the vapor pressure of SiF4, which is a reaction product of Poly-Si and SF8 gas plasma, is 1710% of the vapor pressure at room temperature.
At a temperature below, that is, at a temperature below about -10°C, the side etching amount at 20°C is 0.8 μm, which is 174 or below, which becomes remarkable. At this time, the etching rate in the depth direction does not change. A similar development is
It was also confirmed in other electronic materials such as AQ, W, resist, and MO. That is, in this method, side etching can be extremely reduced by maintaining the sample at a temperature where the vapor pressure of the reaction product is 1/10 or less of the vapor pressure at room temperature. However, if the temperature is too low, gas leakage to the cooling part occurs, making etching impossible. It has been found that this gas adsorption occurs when the vapor pressure of SF6, which is the gas to be introduced, at the sample temperature becomes lower than the gas pressure of the vacuum container.

したがって、真空容器圧力以上の蒸気圧となる温度以上
であるとンが必要である。
Therefore, the temperature must be higher than the temperature at which the vapor pressure is higher than the vacuum vessel pressure.

以上の範囲の温度では、本発明は第2図でわかるように
、サイドエツチングの量が極めて小さくでき、高集積L
SIのエツチングとして優れた方法である。
In the above temperature range, the amount of side etching can be extremely small, as shown in FIG.
This is an excellent method for etching SI.

本反応制御法は、マイクロ波エツチング装置やイオンビ
ームエツチング装置等の他のエツチング装置にも有効で
あり、また、真空容器自体の冷却もプラズマエツチング
反応の制御に関係があると判明した。ただし、この場合
には、2重構造など゛露滴対策が必要であった。
This reaction control method is also effective for other etching apparatuses such as microwave etching apparatuses and ion beam etching apparatuses, and it has also been found that cooling of the vacuum chamber itself is also relevant to controlling the plasma etching reaction. However, in this case, measures against dew droplets, such as a double structure, were required.

本発明は、イオンビームやエレクトロビームを使ったり
ソグラフイでも有効である。リソグラフィでは、これら
のビームの横方置床がりだけの広がりに押えた高精度パ
ターン形成が可能であった。
The present invention is also effective using ion beams, electrobeams, and lithography. With lithography, it was possible to form high-precision patterns by limiting the spread of these beams to only the horizontal floor space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いたエツチング装置の断面図
、第2図は本発明の効果を示す曲線図である。 ■・・・試料台(電極)、2・・・対向電極、3・・・
溶媒溜め、4・・・パイプ、5・・・ポンプ、6・・・
ガス導入孔、第 1 図 第 2 (2) 1) −21) −ヂ/ −、(ρ 省入料ひ温度(C)
FIG. 1 is a sectional view of an etching apparatus used to carry out the present invention, and FIG. 2 is a curve diagram showing the effects of the present invention. ■... Sample stage (electrode), 2... Counter electrode, 3...
Solvent reservoir, 4...pipe, 5...pump, 6...
Gas inlet hole, Fig. 1 Fig. 2 (2) 1) -21) -di/ -, (ρ Temperature (C)

Claims (1)

【特許請求の範囲】 ■、真空容器内の、少なくとも一種類のガス雰囲気中に
置いた固体試料に熱エネルギー以上のエネルギーを有す
る粒子が連続的もしくは間けつ的に入射し、該固体表面
にエツチングおよび固体表面の改質をおこなう系におい
て、該固体試料を該雰囲気ガスと該固体試料との反応に
よる生成物の少なくとも一種類の安全なガス状反応生成
物が、その生成物の室温における蒸気圧の1/10以下
の蒸気圧となる温度以下に保持し、かつ、その温度での
該雰囲気ガス蒸気圧が真空容器圧力以下とならない状態
で処理を行なうことを特徴とする表面反応の制御方法。 2、特許請求の範囲第1項記載の表面反応の制御方法に
において、固体表面温度の制御にビーl−パイプを使う
ことを特徴とした表面反応の制御方法。
[Claims] (1) Particles having energy greater than thermal energy are continuously or intermittently incident on a solid sample placed in an atmosphere of at least one type of gas in a vacuum container, and the solid surface is etched. and a system for modifying the surface of a solid, in which at least one safe gaseous reaction product of the reaction between the atmospheric gas and the solid sample is heated to a vapor pressure of the product at room temperature. 1. A method for controlling a surface reaction, comprising: maintaining the temperature at a temperature at which the vapor pressure is 1/10 or less, and performing the treatment in a state where the vapor pressure of the atmospheric gas at that temperature does not fall below the vacuum vessel pressure. 2. A surface reaction control method according to claim 1, characterized in that a beer L-pipe is used to control the solid surface temperature.
JP59011945A 1984-01-27 1984-01-27 Surface reaction control method Expired - Lifetime JPH0614518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59011945A JPH0614518B2 (en) 1984-01-27 1984-01-27 Surface reaction control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59011945A JPH0614518B2 (en) 1984-01-27 1984-01-27 Surface reaction control method

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP3004476A Division JPH0652726B2 (en) 1991-01-18 1991-01-18 Dry etching method
JP447491A Division JPH0652725B2 (en) 1991-01-18 1991-01-18 Dry etching equipment
JP3004475A Division JP2509389B2 (en) 1991-01-18 1991-01-18 Dry etching equipment

Publications (2)

Publication Number Publication Date
JPS60158627A true JPS60158627A (en) 1985-08-20
JPH0614518B2 JPH0614518B2 (en) 1994-02-23

Family

ID=11791780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59011945A Expired - Lifetime JPH0614518B2 (en) 1984-01-27 1984-01-27 Surface reaction control method

Country Status (1)

Country Link
JP (1) JPH0614518B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144330A (en) * 1985-12-19 1987-06-27 Nec Corp Reactive sputtering etching method
JPS63110726A (en) * 1986-10-29 1988-05-16 Hitachi Ltd Etching method
JPS63160227A (en) * 1986-12-23 1988-07-04 Nec Corp Dry etching
JPS6432628A (en) * 1986-09-05 1989-02-02 Hitachi Ltd Dry etching method
JPH01103836A (en) * 1987-07-02 1989-04-20 Toshiba Corp Dry etching and apparatus therefor
JPH01200630A (en) * 1988-02-05 1989-08-11 Toshiba Corp Dry etching
JPH01231323A (en) * 1988-03-11 1989-09-14 Sumitomo Metal Ind Ltd Plasma etching device
JPH02146728A (en) * 1989-08-30 1990-06-05 Hitachi Ltd Plasma etching and device therefor
US4986877A (en) * 1987-07-29 1991-01-22 Hitachi, Ltd. Method of dry etching
US4992136A (en) * 1987-07-29 1991-02-12 Hitachi, Ltd. Dry etching method
US5147500A (en) * 1987-07-31 1992-09-15 Hitachi, Ltd. Dry etching method
US5316616A (en) * 1988-02-09 1994-05-31 Fujitsu Limited Dry etching with hydrogen bromide or bromine
US5354416A (en) * 1986-09-05 1994-10-11 Sadayuki Okudaira Dry etching method
US5356515A (en) * 1990-10-19 1994-10-18 Tokyo Electron Limited Dry etching method
US5409562A (en) * 1991-08-16 1995-04-25 Hitachi, Ltd. Dry-etching method and apparatus
US5567267A (en) * 1992-11-20 1996-10-22 Tokyo Electron Limited Method of controlling temperature of susceptor
US5643473A (en) * 1987-07-31 1997-07-01 Hitachi, Ltd. Dry etching method
US5900162A (en) * 1989-02-15 1999-05-04 Hitachi, Ltd. Plasma etching method and apparatus
JP2020523794A (en) * 2017-06-13 2020-08-06 東京エレクトロン株式会社 How to pattern a magnetic tunnel junction
JP2020167281A (en) * 2019-03-29 2020-10-08 ローム株式会社 Semiconductor substrate structure, method for manufacturing the same, and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108579A (en) * 1978-02-14 1979-08-25 Fujitsu Ltd Method and device for plasma etching
JPS558593A (en) * 1978-07-03 1980-01-22 American Water Services Apparatus for cleaning pipe of heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108579A (en) * 1978-02-14 1979-08-25 Fujitsu Ltd Method and device for plasma etching
JPS558593A (en) * 1978-07-03 1980-01-22 American Water Services Apparatus for cleaning pipe of heat exchanger

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144330A (en) * 1985-12-19 1987-06-27 Nec Corp Reactive sputtering etching method
US5354416A (en) * 1986-09-05 1994-10-11 Sadayuki Okudaira Dry etching method
JPS6432628A (en) * 1986-09-05 1989-02-02 Hitachi Ltd Dry etching method
US5705029A (en) * 1986-09-05 1998-01-06 Hitachi, Ltd. Dry etching method
JPS63110726A (en) * 1986-10-29 1988-05-16 Hitachi Ltd Etching method
US4943344A (en) * 1986-10-29 1990-07-24 Hitachi, Ltd. Etching method
JPS63160227A (en) * 1986-12-23 1988-07-04 Nec Corp Dry etching
JPH01103836A (en) * 1987-07-02 1989-04-20 Toshiba Corp Dry etching and apparatus therefor
US4986877A (en) * 1987-07-29 1991-01-22 Hitachi, Ltd. Method of dry etching
US4992136A (en) * 1987-07-29 1991-02-12 Hitachi, Ltd. Dry etching method
US5643473A (en) * 1987-07-31 1997-07-01 Hitachi, Ltd. Dry etching method
US5147500A (en) * 1987-07-31 1992-09-15 Hitachi, Ltd. Dry etching method
JPH01200630A (en) * 1988-02-05 1989-08-11 Toshiba Corp Dry etching
US5316616A (en) * 1988-02-09 1994-05-31 Fujitsu Limited Dry etching with hydrogen bromide or bromine
JPH01231323A (en) * 1988-03-11 1989-09-14 Sumitomo Metal Ind Ltd Plasma etching device
US5900162A (en) * 1989-02-15 1999-05-04 Hitachi, Ltd. Plasma etching method and apparatus
US6165377A (en) * 1989-02-15 2000-12-26 Hitachi, Ltd. Plasma etching method and apparatus
JPH02146728A (en) * 1989-08-30 1990-06-05 Hitachi Ltd Plasma etching and device therefor
US5356515A (en) * 1990-10-19 1994-10-18 Tokyo Electron Limited Dry etching method
US5409562A (en) * 1991-08-16 1995-04-25 Hitachi, Ltd. Dry-etching method and apparatus
US5567267A (en) * 1992-11-20 1996-10-22 Tokyo Electron Limited Method of controlling temperature of susceptor
JP2020523794A (en) * 2017-06-13 2020-08-06 東京エレクトロン株式会社 How to pattern a magnetic tunnel junction
JP2020167281A (en) * 2019-03-29 2020-10-08 ローム株式会社 Semiconductor substrate structure, method for manufacturing the same, and semiconductor device

Also Published As

Publication number Publication date
JPH0614518B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
JPS60158627A (en) Controlling method of surface reaction
US5593539A (en) Plasma source for etching
JPH0691035B2 (en) Low temperature dry etching method and apparatus
JPS63141316A (en) Low temperature dry-etching method
JP2509389B2 (en) Dry etching equipment
JPH0652726B2 (en) Dry etching method
JPH0652725B2 (en) Dry etching equipment
JPH0393224A (en) Dry etching
JP3002033B2 (en) Dry etching method
JPS6015931A (en) Reactive ion etching process
JPS58164788A (en) Chemical dry etching device
JPS61246382A (en) Dry etching device
JPH01278023A (en) Method and device for dry etching
JPH0529131B2 (en)
JPH0691041B2 (en) Reactive sputter etching method
JP3023931B2 (en) Plasma processing method and apparatus
JP2728483B2 (en) Sample post-treatment method and device
WO1989007335A1 (en) Improved etching method for photoresists or polymers
JPH059937B2 (en)
JPS58145131A (en) Dry etching of chrome film
JPH04345027A (en) Dry etching device
JPS643840B2 (en)
JPH04360526A (en) Fine pattern forming method
KR920007449B1 (en) Surface treatment method and there apparatus of semiconductor device manufacturing process
JPH04343421A (en) Plasma treatment device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term