JPS60157728A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS60157728A
JPS60157728A JP1275484A JP1275484A JPS60157728A JP S60157728 A JPS60157728 A JP S60157728A JP 1275484 A JP1275484 A JP 1275484A JP 1275484 A JP1275484 A JP 1275484A JP S60157728 A JPS60157728 A JP S60157728A
Authority
JP
Japan
Prior art keywords
angle
substrate
incidence
oxidizing gas
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1275484A
Other languages
Japanese (ja)
Inventor
Hideaki Niimi
秀明 新見
Noboru Isoe
磯江 昇
Kunio Wakai
若居 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1275484A priority Critical patent/JPS60157728A/en
Priority to DE8585100803T priority patent/DE3573672D1/en
Priority to EP85100803A priority patent/EP0151445B2/en
Publication of JPS60157728A publication Critical patent/JPS60157728A/en
Priority to US07/145,599 priority patent/US4855175A/en
Priority to US07/352,256 priority patent/US5000984A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic recording medium which excels in the magnetic characteristics with an extremely small magnetic domain and high coercive force, by spraying the oxidative gas directly to a substrate from the upper side of a stick-resistant plate set under a cylindrical scan and at the tip side of said plate with an angle kept in a specific range to the steam current of a ferromagnetic material or spraying the oxidative gas directly to the substrate from the direction having no cross to said steam current. CONSTITUTION:A ferromagnetic material 10 is heated and evaporated by a ferromagnetic material evaporating source 9 and vapor-deposited obliquely to a substrate 4. The source 9 is set under a vacuum tank 1 and opposite to the substrate 4 moving along the circumferential surface of a cylindrical can 3. At the same time, the oxidative gas is sprayed directly to the substrate 4 at least at the minimum incident angle part A through a gas pipe 12 set between the can 3 and a stick-resistant plate 11. The pipe 12 is set so that the distance D is set at <=15cm between a gas spray nozzle 12a and the part A of the substrate 4 and an angle alpha is set at <=30 between the pipe 12 and a steam current B which is supplied at the minimum incident angle theta.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は強磁性金属薄膜層を記録層とする磁気記録媒
体の製造方法に関し、さらに詳しくは、真空蒸着法によ
り強磁性金属薄膜層中に酸素原子を含有する磁気特性に
優れた前記の磁気記録媒体の製造方法に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for manufacturing a magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer, and more specifically relates to a method for manufacturing a magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer. The present invention relates to a method for manufacturing the above-mentioned magnetic recording medium containing excellent magnetic properties.

〔背景技術〕[Background technology]

強磁性金属薄膜層を記録層とする磁気記録媒体は、通富
、プラスチックフィルムなどの基体を真空蒸着装置内に
取りつけた円筒状キャンの周側面に沿って移動させ、こ
の基体に強磁性材料を真空蒸着することによってつくら
れており、磁気特性に優れた前記の磁気記録媒体を製造
する場合には、斜め入射蒸着を行うとともに蒸気流の最
高入射角部近傍から蒸気流に向かって酸素ガスを導入し
たり(特開昭58−41442号、特開昭58−833
28号)あるいは最低入射角部近傍から蒸気流に向かっ
て酸素ガスを導入したり(特開昭58−41443号、
特開昭58−8332T号)している。
A magnetic recording medium with a ferromagnetic metal thin film layer as a recording layer is produced by moving a substrate such as a plastic film along the circumferential side of a cylindrical can installed in a vacuum evaporation device, and depositing a ferromagnetic material onto this substrate. When manufacturing the above-mentioned magnetic recording medium, which is made by vacuum evaporation and has excellent magnetic properties, oblique incidence evaporation is performed and oxygen gas is directed toward the vapor flow from near the highest incident angle of the vapor flow. (Japanese Patent Application Laid-Open No. 58-41442, JP-A No. 58-833)
No. 28) or introducing oxygen gas toward the vapor flow from near the lowest angle of incidence (Japanese Patent Laid-Open No. 58-41443,
JP-A-58-8332T).

ところが、斜め入射蒸着を行うとともに蒸気流の最高入
射角部近傍から蒸気流に向かって酸素ガスを導入する方
法では、磁気特性を未だ充分に向上することができず、
特に、この方法で得られる磁気記録媒体は、酸素原子導
入による保磁力の向上効果が蒸着速度に大きく依存し、
蒸着速度が大きくなると、強磁性金属薄膜層中に含有さ
れる酸素原子濃度が基体との界面で急激に高くなりまた
基体から遠ざかるにつれて急激に低くなって、酸素原子
を含有させた効果があまり発揮されず、量産に適した比
較的高速度の蒸着条件下では、磁気特性に優れた磁気記
録媒体を得ることが難しい。
However, the method of performing oblique incidence evaporation and introducing oxygen gas toward the vapor flow from near the highest incident angle of the vapor flow has not yet been able to sufficiently improve the magnetic properties.
In particular, in the magnetic recording medium obtained by this method, the effect of improving coercive force due to the introduction of oxygen atoms greatly depends on the deposition rate.
As the deposition rate increases, the concentration of oxygen atoms contained in the ferromagnetic metal thin film layer increases rapidly at the interface with the substrate, and decreases rapidly as it moves away from the substrate, making the effect of containing oxygen atoms less effective. Therefore, it is difficult to obtain a magnetic recording medium with excellent magnetic properties under relatively high-speed deposition conditions suitable for mass production.

また、斜め入射蒸着を行うとともに蒸気流の最低入射角
部近傍から蒸気流に向かって酸素ガスを導入する方法で
は、前記の特開昭58−83327号公報によると、強
磁性金属薄膜層中における酸素原子が基体から遠ざかる
につれて漸増するように含有された磁気記録媒体が得ら
れると記載されているが、この発明の発明上らが検討し
たところでは、特開昭58−83327号公報による方
法では、記載されたような結果は得られずに、強磁性金
属薄膜層中における酸素原子が基体から遠ざかるにつれ
て漸減するように含有された磁気記録媒体が得られ、こ
の/li減する度合が前記の最高入射角部近傍から蒸気
流に向かって酸素ガスを導入する方法に比して少ないた
め、酸素原子を含有させた効果は前記の場合はど減殺さ
れることはないものの、充分には発揮されず、従って、
磁気特性の向上は未だ満足できるものではなく、特に、
量産に適した蒸着条件下では、前記の最高入射角部近傍
から蒸気流に向かって酸素ガスを導入する場合と同様に
磁気特性に優れた磁気記録媒体を得ることが難しい。
Furthermore, in the method of performing oblique incidence evaporation and introducing oxygen gas toward the vapor flow from the vicinity of the lowest incident angle of the vapor flow, according to the above-mentioned Japanese Patent Application Laid-Open No. 58-83327, It is stated that a magnetic recording medium in which oxygen atoms are gradually increased as they move away from the substrate can be obtained, but according to the inventors of the present invention, the method according to JP-A No. 58-83327 cannot be used. However, a magnetic recording medium was obtained in which oxygen atoms in the ferromagnetic metal thin film layer gradually decreased as they moved away from the substrate, and the degree of /li decrease was as described above. This is less than the method of introducing oxygen gas toward the vapor flow from near the highest incident angle, so the effect of containing oxygen atoms is not diminished in the above case, but is not fully exerted. Therefore,
The improvement of magnetic properties is still not satisfactory, especially
Under vapor deposition conditions suitable for mass production, it is difficult to obtain a magnetic recording medium with excellent magnetic properties, similar to the case where oxygen gas is introduced toward the vapor flow from near the highest incident angle.

〔発明の目的〕[Purpose of the invention]

この発明はかかる現状に鑑み、斜め入射蒸着時の酸化性
ガスの導入方法を改善し、特に量産に適した蒸着条件下
で、磁区が極めて小さくて高保磁力を有する磁気特性に
優れた磁気記録媒体を得ることのできる磁気記録媒体の
製造方法を提供することを目的としてなされたものであ
る。
In view of the current situation, the present invention improves the method of introducing oxidizing gas during oblique incidence deposition, and provides a magnetic recording medium with excellent magnetic properties having extremely small magnetic domains and high coercive force under deposition conditions particularly suitable for mass production. The purpose of this invention is to provide a method for manufacturing a magnetic recording medium that can obtain the following.

〔発明の概要〕[Summary of the invention]

この発明は、かかる目的を達成するため種々検討を行っ
た結果なされたもので、まず、斜め入射蒸着時の酸化性
ガスの導入方法を詳細に検討した結果、酸化性ガスを強
磁性材料の蒸気流に向+)で吹きつけたのでは、酸化性
ガスと蒸気流との(正i突散乱が生し、基体に入射する
蒸気流の入射角度か乱れるため磁気特性が充分に向上さ
れないが、蒸気流と交叉しないように最低入射角部ある
いは最高入射角部の基体に酸化性カスを吹きつければ、
このような問題は解消することを見いだした。そして、
さらに、強磁性金属薄膜層の磁気特性と強磁性金属薄膜
層中における酸素原子の深さ方向の分布について検討し
た結果、従来のように強磁性金属薄膜層中における酸素
原子が基体から遠ざかるにつれて漸減するように含有さ
せたのでは、斜め入射蒸着の陰影効果によって生しる粒
子間隔か広(て磁気的な相互作用が弱いところ、即ち基
体との界面近傍に酸素原子が多量含有されるとはいえ、
その後粒子が成長して粒子間隔が極めて狭くなる磁気的
な相互作用の強いところ、即ち表面近傍に酸素原子が少
量しか含有されないため、酸素原子を含有させた効果が
あまり発揮されず、その結果、高い保磁力が得られず、
良好な磁気特性が得られないが、最高入射角部で粒子の
核が形成される際、充分な酸素を供給して、形成される
強磁性金属薄膜層の基体との界面層における酸素原子の
含有量を適当に調整すれば、強磁性金属M膜層を構成す
る柱状粒子の粒子サイズを小さくすることができて、磁
区を小さくすることができ、さらに、その後粒子が成長
して粒子間隔が極めて狭くなる磁気的な相互作用の強い
ところ、即ち表面近傍部に、多量の酸素を供給して強磁
性金属薄膜層の表面層における酸素原子の含有量を中間
層部での含有量に比してできるだけ多くすれば、表面層
に非磁性酸化物が多く形成されて磁気的な相互作用が抑
制され、酸素原子を導入した効果が充分に発揮されて、
磁区がさらに微細化され、また保磁力が一段と向上され
ることを見いだして、この発明をなすに至ったものであ
る。
This invention was made as a result of various studies to achieve the above object. First, as a result of detailed studies on the method of introducing oxidizing gas during oblique incidence evaporation, it was found that oxidizing gas was If the gas is blown in the direction of the flow, the magnetic properties will not be sufficiently improved because the oxidizing gas and the vapor flow will undergo (positive i-distant scattering) and the angle of incidence of the vapor flow entering the substrate will be disturbed. If oxidizing scum is sprayed onto the substrate at the lowest or highest angle of incidence so as not to intersect with the vapor flow,
We have found that this problem can be resolved. and,
Furthermore, as a result of studying the magnetic properties of the ferromagnetic metal thin film layer and the distribution of oxygen atoms in the depth direction in the ferromagnetic metal thin film layer, we found that the oxygen atoms in the ferromagnetic metal thin film layer gradually decrease as the distance from the substrate increases. However, it is difficult to imagine that a large amount of oxygen atoms would be contained near the interface with the substrate, where the magnetic interaction is weak due to the wide particle spacing caused by the shading effect of obliquely incident evaporation. home,
After that, as the particles grow and the particle spacing becomes extremely narrow, only a small amount of oxygen atoms are contained in areas where the magnetic interaction is strong, that is, near the surface, so the effect of containing oxygen atoms is not exhibited much, and as a result, High coercive force cannot be obtained,
Although good magnetic properties cannot be obtained, when particle nuclei are formed at the highest incident angle, sufficient oxygen is supplied to increase the concentration of oxygen atoms in the interface layer between the ferromagnetic metal thin film layer and the substrate. If the content is appropriately adjusted, the particle size of the columnar particles constituting the ferromagnetic metal M film layer can be reduced, and the magnetic domain can be made smaller.Furthermore, the particles grow and the particle spacing becomes smaller. By supplying a large amount of oxygen to the area where the magnetic interaction is extremely narrow, that is, near the surface, the content of oxygen atoms in the surface layer of the ferromagnetic metal thin film layer is compared to the content in the intermediate layer. If the amount of oxygen atoms is increased as much as possible, a large amount of non-magnetic oxide will be formed on the surface layer, suppressing magnetic interaction, and the effect of introducing oxygen atoms will be fully exhibited.
This invention was made based on the discovery that the magnetic domains can be further refined and the coercive force can be further improved.

この発明は、かかる知見に基つくものであり、蒸発源か
ら蒸発せしめられた強磁性材料の蒸気流を円筒状キャン
の周側面に沿って為入射角部がら低入射角部へと移動す
る基体に斜めに入射して蒸着する際、円筒状キャンの下
方に配設した防着板の先端部寄り上側から、酸化性ガス
を少なくとも最低入射角部の基体に直射するように吹き
つげ、この最低入射角部に入射する酸化性ガスと強磁性
材料の芸気流との角度が最大30度を越えず、かつ酸化
性ガスの直射範囲が最低入射角部から高入射角の方向に
円筒状キャンの中心を基点とした角度で10度を越えな
いようにするが、あるいは、さらに最高入射角部の基体
の近傍より強磁性材料の蒸気流と交叉しない方向から酸
化性ガスを少なくとも最高入射角部の基体に直射するよ
うに吹きつけ、酸化性ガスの直射範囲が最高入射角部か
ら低入射角の方向に円筒状キャンの中心を基点とした角
度で20度を越えないようにしたことを特徴とするもの
で、かがる方法により強磁性金属薄膜層の表面層および
基体との界面層に中間層よりも多くの酸素原子を含有さ
せ、がっ表面層に含有される酸素原子を基体との界面層
に含有される酸素原子より多くして、磁区を極めて小さ
くするとともに保磁力を一段と向上させ、特に、斜め入
射蒸着の入射角度が60度以下で、蒸着速度が1000
人/sec以上の量産に適した蒸着条件下で充分に磁気
特性に優れた磁気記録媒体を製造するものである。なお
、ここでいう強磁性金属薄膜層の表面層は、有機物系の
酸素や空気中の酸素等が結合または付着したごく表面の
汚染層を除いて、酸化性ガスの供給によって強磁性金属
と結合した酸素原子が存在する表面の部分をいい、この
明細書中におLjる強磁性金属薄膜層の表面層は全てこ
の強磁性金属と結合した酸素原子が存在する表面層を意
味する。
The present invention is based on this knowledge, and provides a substrate that moves the vapor flow of the ferromagnetic material evaporated from the evaporation source along the circumferential surface of the cylindrical can from the incident angle area to the low incident angle area. When performing vapor deposition with oblique incidence on the oxidizing gas, the oxidizing gas is blown from the upper side near the tip of the deposition prevention plate placed below the cylindrical can so that it directly hits the substrate at least at the lowest angle of incidence. The angle between the oxidizing gas incident at the incident angle and the air flow of the ferromagnetic material does not exceed 30 degrees at maximum, and the direct incidence range of the oxidizing gas is a cylindrical can from the lowest incident angle to the high incident angle. The angle should not exceed 10 degrees with respect to the center, or alternatively, the oxidizing gas should be injected from a direction that does not intersect the vapor flow of the ferromagnetic material from near the base at the highest angle of incidence. The oxidizing gas is blown directly onto the substrate, and the range of direct irradiation of the oxidizing gas is such that it does not exceed 20 degrees with respect to the center of the cylindrical can in the direction from the highest incident angle to the lowest incident angle. In this method, the surface layer of the ferromagnetic metal thin film layer and the interface layer with the substrate contain more oxygen atoms than the intermediate layer, and the oxygen atoms contained in the surface layer are mixed with the substrate. The number of oxygen atoms contained in the interface layer is increased to make the magnetic domain extremely small and to further improve the coercive force. In particular, when the incident angle of oblique incidence evaporation is 60 degrees or less, the evaporation rate is 1000 degrees or less.
A magnetic recording medium with sufficiently excellent magnetic properties is manufactured under vapor deposition conditions suitable for mass production at a rate of at least 1 person/sec. Note that the surface layer of the ferromagnetic metal thin film layer referred to here is not bonded to the ferromagnetic metal by supplying an oxidizing gas, except for the very surface contamination layer where organic oxygen, oxygen in the air, etc. are bonded or attached. In this specification, all the surface layers of the ferromagnetic metal thin film layer referred to as Lj refer to the surface layer where oxygen atoms bonded to the ferromagnetic metal exist.

以下、図面を参照しながらこの発明について説明する。The present invention will be described below with reference to the drawings.

第1図は真空蒸着装置の断面図を示したものであり、■
は真空槽でこの真空槽1の内部は排気系2により真空に
保持される。3は真空槽1の中央部に配設された円筒状
キャンであり、プラスチックフィルム等の基体4は原反
ロール5よりガイトロール6を介してこの円筒状キャン
3の周側面に沿って移動し、ガイドロール7を介して巻
き取りロール8に巻き取られる。この間円筒状キャン3
の周側面に沿って移動する基体4に対向して真空槽1の
下部に配設された強磁性材料蒸発源9で強磁性材料10
が加熱蒸発され、この蒸気が円筒状キャン3の下方に配
置された防着板11の作用で基体4に斜め入射蒸着され
るが、このとき同時に円筒状キャン3と防着板11との
間に配設されたガス導入管12から、酸化性ガスが少な
(とも最低入射角部の基体4に直射するように吹きつけ
られる。このように少なくとも最低入射角部の基体4に
直射するように酸化性ガスを吹きつげるカス導入管12
は、第2図に示すように、ガス導入管12のガス吹き出
し口12aがら基体4の最低入射角部Aまでの距l1I
IDが15cm以内で、最低入射角θで差し向けられる
蒸気流Bとのなす角度αが30度以内となる位置に配設
し、ガス吹き出し口12aから少なくとも最低入射角部
Aに直射するように吹きつげられる酸化性ガスが、最低
入射角部Aから高入射角の方向に円筒状キャン3の中心
0を基点とした角度βで10度を越えない範囲E内に直
射して吹きつけられるようにするのが好ましく、このよ
うな条件下で酸化性ガスが少なくとも最低入射角部Aの
基体4に直射するように吹きつげられると、基体4の最
低入射角部Aの近傍で酸化性ガスが最も多くなり、同時
に基体4の最高入射角部Cの近傍では析出速度が遅いた
め酸化性ガスが多量にとりこまれ易くなる。その結果、
最高入射角部C近傍の基体4上で強磁性材粒子の核が生
成される際、酸素原子を比較的多量に含有したサイズが
充分に小さい粒子が生成され、また基体4の最低入射角
部A近傍の多量の酸化性カスによって粒子が良好に成長
し、粒子の成長とともに磁気的な相互作用が強くなる部
分でも粒子間隙に酸素原子が良好に含有されて、保磁力
か一段と高く、磁区が極めて小さい強磁性金属薄膜層が
形成される。またこのようにして形成される強磁性金属
薄膜層は、表面層および基体との界面層に多量の酸素原
子が含有されるため、これら表面層と界面層間での酸素
原子の含有量が多いほど垂直方向に向き易い磁化のバラ
ンスも良好に保たれ、酸素原子が表面層で最も多く、中
間層で少なく、基体との界面層で表面層より少なく中間
層より多いという最も理想的な形で強磁性金属薄膜層内
に含有されて磁気特性に優れた磁気記録媒体が得られる
。特に、この製造方法では少なくとも基体4の最低入射
角部Aに直射するように多量の酸化性ガスを吹きつけて
いるため、多量の酸素原子が高収量で強磁性金属薄膜層
内にとりこまれ、茎着速度が速くなるほど保磁力か高く
なり、蒸気流の最低入射角度が60度以下で、蒸着速度
か1000人/sec以上の量産に適した蒸着条件下で
、充分に磁気特性に優れた磁気記録媒体が得られる。さ
らに、この製造方法では従来の酸素ガスを強磁性材料の
蒸気流に向けて吹きつける場合のように、酸素ガスと蒸
気流との衝突散乱が生し、基体に入射する蒸気流の入射
角度が乱れることもないため、磁気特性が充分に向上さ
れる。
Figure 1 shows a cross-sectional view of the vacuum evaporation equipment.
is a vacuum chamber, and the inside of this vacuum chamber 1 is maintained in a vacuum by an exhaust system 2. Reference numeral 3 denotes a cylindrical can disposed in the center of the vacuum chamber 1, and a substrate 4 such as a plastic film is moved along the circumferential side of the cylindrical can 3 from a raw roll 5 via a guide roll 6. , and is wound onto a take-up roll 8 via a guide roll 7. During this time, cylindrical can 3
A ferromagnetic material 10 is evaporated by a ferromagnetic material evaporation source 9 disposed at the bottom of the vacuum chamber 1, facing the substrate 4 that moves along the circumferential side of the ferromagnetic material 10.
is heated and evaporated, and this vapor is obliquely incident and deposited on the substrate 4 by the action of the deposition prevention plate 11 disposed below the cylindrical can 3. From the gas introduction pipe 12 disposed in Waste introduction pipe 12 that blows out oxidizing gas
As shown in FIG.
The ID is within 15 cm, and the gas is placed at a position where the angle α with the vapor flow B directed at the minimum incident angle θ is within 30 degrees, so that the gas blows directly from the gas outlet 12a to at least the minimum incident angle portion A. The oxidizing gas that is blown out is blown directly from the lowest incident angle part A in the direction of the highest incident angle within a range E that does not exceed 10 degrees at an angle β based on the center 0 of the cylindrical can 3. Under such conditions, when the oxidizing gas is blown directly onto the base 4 at least at the lowest angle of incidence A, the oxidizing gas near the lowest angle of incidence A of the base 4 At the same time, near the highest incident angle portion C of the substrate 4, the deposition rate is slow, so a large amount of oxidizing gas is likely to be taken in. the result,
When nuclei of ferromagnetic material particles are generated on the substrate 4 near the highest incident angle C, particles containing a relatively large amount of oxygen atoms and sufficiently small in size are generated; The particles grow well due to the large amount of oxidizing scum near A, and even in the part where the magnetic interaction becomes stronger as the particles grow, oxygen atoms are well contained in the interparticle gaps, resulting in a higher coercive force and magnetic domains. A very small ferromagnetic metal thin film layer is formed. In addition, the ferromagnetic metal thin film layer formed in this way contains a large amount of oxygen atoms in the surface layer and the interface layer with the substrate. The balance of magnetization, which tends to be oriented in the perpendicular direction, is maintained in a good manner, with the most oxygen atoms in the surface layer, the least in the intermediate layer, and the interface layer with the substrate having less oxygen atoms than the surface layer and more than the intermediate layer. A magnetic recording medium with excellent magnetic properties can be obtained by being contained in the magnetic metal thin film layer. In particular, in this manufacturing method, since a large amount of oxidizing gas is blown directly onto at least the lowest incident angle portion A of the substrate 4, a large amount of oxygen atoms are incorporated into the ferromagnetic metal thin film layer in a high yield. The faster the stem deposition rate, the higher the coercive force. Under evaporation conditions suitable for mass production, where the minimum angle of incidence of the vapor flow is 60 degrees or less and the evaporation rate is 1000 people/sec or more, magnetic properties with sufficiently excellent magnetic properties are obtained. A recording medium is obtained. Furthermore, in this manufacturing method, collision scattering occurs between the oxygen gas and the vapor flow, as in the conventional case where oxygen gas is blown toward the vapor flow of a ferromagnetic material, and the incident angle of the vapor flow entering the substrate changes. Since there is no disturbance, the magnetic properties are sufficiently improved.

第3図はこの発明の製造方法の他の方法を実施するため
の真空蒸着装置の断面図を示したものであり、第1図に
示す真空蒸着装置に、さらに基体4の最高入射角部Cの
近くにガス導入管13を設け、酸化性ガスを少な(とも
最高入射角部Cの基体4に直射するように吹きつげるよ
うにした点が異なるだりで、他は全く同様である。ガス
導入管13は、第4図に示すようにガス吹き出し口13
aから基体4の最高入射角部Cまでの距離Hが50cm
以内の距離にあって、ガス吹き出し口13aから少なく
とも最高入射角部Cに直射するように吹きつけられる酸
化性ガスか、最高入射角部Cから低入射角の方向に円筒
状キャン3の中心Oを基点とした角度Tで20度を越え
ない範囲F内に直射して吹きつけられるように配設する
のが好ましく、このようにガス導入管13を配設したこ
の装置においては、最高入射角部Cの近くに配設したガ
ス導入管13から、少なくとも最高入射角部Cに直射す
るように酸化性ガスを吹きつけるようにしたため、強磁
性金属薄膜層を形成する際、核となる強磁性材粒子のサ
イズを小さく調整することが一段と容易に行え、強磁性
金属薄膜層の基体との界面層に酸素原子が含有され易く
、前記の方法と同様に、保磁力が一段と高く、磁区が充
分に小さくて、磁気特性に優れた磁気記録媒体が得られ
る。
FIG. 3 shows a sectional view of a vacuum evaporation apparatus for carrying out another method of the manufacturing method of the present invention, in which the vacuum evaporation apparatus shown in FIG. The other difference is that a gas introduction pipe 13 is provided near the oxidizing gas, and a small amount of oxidizing gas is blown so that it directly hits the substrate 4 at the highest angle of incidence C, but the other points are exactly the same.Gas introduction The pipe 13 has a gas outlet 13 as shown in FIG.
The distance H from a to the highest incident angle part C of the base 4 is 50 cm
At a distance within It is preferable to install the device so that the gas is directly blown within a range F that does not exceed 20 degrees at an angle T based on . Since the oxidizing gas is blown from the gas introduction pipe 13 disposed near the section C so as to be directly incident on at least the highest incident angle section C, the ferromagnetism that is the nucleus when forming the ferromagnetic metal thin film layer is It is easier to adjust the size of the material particles to a smaller size, oxygen atoms are more likely to be contained in the interface layer between the ferromagnetic metal thin film layer and the substrate, and as with the above method, the coercive force is higher and the magnetic domains are sufficient. A magnetic recording medium that is small in size and has excellent magnetic properties can be obtained.

酸化性ガスとしては、酸素ガスが良好なものとして使用
され、この他酸素ガスに他のガスを混合したものも好適
なものとして使用される。
Oxygen gas is preferably used as the oxidizing gas, and mixtures of oxygen gas and other gases are also preferably used.

また、強磁性材料を斜め入射蒸着する際の入射角θは、
60度より大きくすると、蒸着効率か悪くなり、量産に
適さないため60度以下にするのが好ましい。
In addition, the incident angle θ when depositing a ferromagnetic material with oblique incidence is
If the temperature is greater than 60 degrees, the vapor deposition efficiency will be poor, making it unsuitable for mass production, so it is preferable to keep it below 60 degrees.

基体としては、ポリエステル、ポリイミド、ポリアミド
等一般に使用されている高分子成形物からなるプラスチ
ックフィルムおよび銅などの非磁性金属からなる金属フ
ィルムが使用され、また、強磁性金属薄膜層を形成する
強磁性材料としては、Co、Ni、Feなどの強磁性金
属単体の他、これらの強磁性金属単体を少なくとも1種
含む合金あるいは酸化物、およびCo−P、Co =N
i−Pの如き強磁性金属との化合物など、一般に真空蒸
着に使用される強磁性材料がいずれも使用される。
As the substrate, a plastic film made of commonly used polymer moldings such as polyester, polyimide, polyamide, etc. and a metal film made of non-magnetic metal such as copper are used. Materials include ferromagnetic metals such as Co, Ni, and Fe, alloys or oxides containing at least one of these ferromagnetic metals, and Co-P and Co=N.
Any ferromagnetic material commonly used for vacuum deposition may be used, such as a compound with a ferromagnetic metal such as i-P.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 第1図に示す真空蒸着装置を使用し、約10μ厚のポリ
エステルベースフィルム4を、原反ロール5よりガイド
ロール6を介して直径60cmの円筒状回転キャン3の
周側面に沿って移動させ、ガイドロール7を介して巻き
取りロール8に巻き取るように七ノドするとともに、范
発源9内にコハルト−ニッケル合金(重量比8:2)1
0をセットした。次いで排気系2で真空槽1内を約5×
10−6トールにまで真空排気し、コバルト−ニッケル
合金IOを加熱蒸発させて最低入射角50度、蒸着速度
80Q人/secで斜め入射蒸着を開始すると同時に、
ガス導入管12から最低入射角部Aのポリエステルベー
スフィルム4に酸素ガスをガス圧を種々に変えて吹きつ
け、ポリエステルベースフィルム4上にコハルトーニソ
ケル合金からなる強磁性金属薄膜層を形成した。しかる
後、所定の幅に裁断して多数の磁気テープをつくった。
Example 1 Using the vacuum evaporation apparatus shown in FIG. 1, a polyester base film 4 with a thickness of about 10 μm was deposited from a raw roll 5 through a guide roll 6 along the circumferential side of a cylindrical rotating can 3 with a diameter of 60 cm. While moving it and winding it up on the take-up roll 8 via the guide roll 7, a cohalt-nickel alloy (weight ratio 8:2) 1 was placed in the fan source 9.
Set to 0. Next, the inside of the vacuum chamber 1 is pumped approximately 5× using the exhaust system 2.
The vacuum was evacuated to 10-6 Torr, the cobalt-nickel alloy IO was heated and evaporated, and at the same time, oblique incidence deposition was started at a minimum incidence angle of 50 degrees and a deposition rate of 80Q people/sec.
Oxygen gas was blown from the gas inlet pipe 12 onto the polyester base film 4 at the lowest incident angle portion A at various gas pressures to form a ferromagnetic metal thin film layer made of cohartonisokel alloy on the polyester base film 4. . After that, it was cut into a predetermined width to make a large number of magnetic tapes.

なお、ガス導入管12はそのガス吹き出し口12aの先
端から円筒状回転キャン3の周側面にセットしたポリエ
ステルベースフィルム4の最低入射角部Aまでの距離が
5cmとなるようにし、かつ最低入射角で差し向けられ
る蒸気流とのなす角度αが20度となるように配置した
。またガス導入管12のガス吹き出し口12aから吹き
出される酸素ガスは、最低入射角部Aから高入射角の方
向に円筒状回転キャンの中心0を基点とした角度βが1
0度で直射されるようにして用いた。
The gas introduction pipe 12 is arranged so that the distance from the tip of the gas outlet 12a to the lowest incident angle part A of the polyester base film 4 set on the circumferential side of the cylindrical rotating can 3 is 5 cm, and the lowest incident angle is 5 cm. It was arranged so that the angle α between the two and the steam flow directed at the center was 20 degrees. Further, the oxygen gas blown out from the gas outlet 12a of the gas introduction pipe 12 moves from the lowest incident angle part A to the high incident angle direction at an angle β of 1 with respect to the center 0 of the cylindrical rotating can.
It was used so that it was exposed to direct light at 0 degrees.

実施例2 実施例1で使用した真空蒸着装置に代えて第3図に示す
真空蒸着装置を使用し、ガス導入管13から、さらに、
少なくとも最高入射角部Cのポリエステルヘ−スフイル
ム4に直射するように、酸素ガスをカス圧を種々に変え
て吹きつけた以外は実施例1と同様にして強磁性金属薄
膜層を形成し、多数の磁気テープをつくった。なお、ガ
ス導入管13ばそのガス吹き出し口13aの先端から円
筒状回転キャン3の周側面にセントしたポリエステルベ
ースフィルム4の最高入射角部Cまでの距離が15cm
となるように配置した。またガス導入管13のガス吹き
出し口13aから吹き出される酸素ガスは、最高入射角
部から低入射角の方向に円筒状回転キャンの中心Oを基
点とした角度γが20度で直射されるようにして用いた
Example 2 A vacuum evaporator shown in FIG. 3 was used in place of the vacuum evaporator used in Example 1, and further, from the gas introduction pipe 13,
A ferromagnetic metal thin film layer was formed in the same manner as in Example 1, except that oxygen gas was blown at various gas pressures so as to directly hit the polyester heat film 4 at least at the highest incident angle part C. created magnetic tape. Note that the distance from the tip of the gas outlet 13a of the gas inlet pipe 13 to the highest incident angle C of the polyester base film 4 centered on the circumferential side of the cylindrical rotating can 3 is 15 cm.
It was arranged so that In addition, the oxygen gas blown out from the gas outlet 13a of the gas introduction pipe 13 is directed from the highest incident angle to the lowest incident angle at an angle γ of 20 degrees with respect to the center O of the cylindrical rotating can. It was used as

比較例1 第1図に示す真空蒸着装置に代えて、第5図に示すよう
に、ガス導入管14をガス吹き出し口か強磁性材料の蒸
気流Bに向くように防着板11と円筒状回転キャン3と
の間に取り゛つけて、酸素ガスが基体4上に直接には吹
きつけられないようにし、他は第1図に示す装置と同様
にした真空蒸着装置を使用して、酸素ガスを矢印で示す
ように強磁性材料の蒸気流Bに向かって実施例1と同様
にガス圧を種々に変えて吹きつけた以外は実施例1と同
様にして強磁性金属薄膜層を形成し、多数の磁気テープ
をつくった。
Comparative Example 1 Instead of using the vacuum evaporation apparatus shown in FIG. 1, as shown in FIG. A vacuum evaporator is installed between the rotary can 3 and the substrate 4 so that oxygen gas is not blown directly onto the substrate 4, and is otherwise similar to the apparatus shown in FIG. A ferromagnetic metal thin film layer was formed in the same manner as in Example 1 except that the gas was blown toward the vapor flow B of the ferromagnetic material as shown by the arrow at various gas pressures as in Example 1. , produced a large number of magnetic tapes.

比較例2 第1図に示す真空蒸着装置に代えて、第6図に示すよう
に、酸素ガス導入管15をガス吹き出し口が強磁性材料
の蒸気流Bに向くように最高入射角部の近くに配置して
、酸素ガスが基体4上に直接には吹きつけられないよう
にし、他は第1図に示す装置と同様にした真空蒸着装置
を使用して、酸素ガスを矢印で示すように強磁性材料の
蒸気流Bに向かって実施例1と同様にガス圧を種々に変
えて吹きつけた以外は実施例1と同様にして強磁性金属
薄膜層を形成し、多数の磁気テープをつくった。
Comparative Example 2 Instead of using the vacuum evaporation apparatus shown in FIG. 1, as shown in FIG. Using a vacuum evaporation apparatus similar to the apparatus shown in FIG. 1 except that the oxygen gas is not blown directly onto the substrate 4, the oxygen gas is applied in the direction shown by the arrow. A ferromagnetic metal thin film layer was formed in the same manner as in Example 1, except that the gas was blown toward the vapor flow B of the ferromagnetic material at various pressures as in Example 1, and a large number of magnetic tapes were manufactured. Ta.

各実施例および各比較例において、酸素ガスのガス圧を
2 X 10−’ I−−ルと一定にして得られた磁気
テープについて、強磁性金属薄膜層中における酸素原子
の濃度分布をオージェ電子分光計によって調べた。第7
図はその結果をグラフで表したもので、グラフAは実施
例1で得られた磁気テープ、グラフBは実施例2で得ら
れた磁気テープ、グラフCは比較例1で得られた磁気テ
ープ、グラフDは比較例2で得られた磁気テープの強磁
性金属薄膜層中における酸素原子の濃度分布を示したも
のである。これらのグラフから明らかなように、比較例
1および2で得られた磁気テープの強磁性金属薄膜層中
における酸素原子の濃度分布は基体から遠さかるにつれ
て漸減するように含有されているのに対し、この発明で
得られた磁気テープ(実施例1および2)の強磁性金属
薄膜層中におりる酸素原子の濃度分布は、表面層で最も
多く、中間層で最も少な(、基体との界面層で中間層よ
り多く表面層より少なく含有されていることがわかる。
In each Example and each Comparative Example, the concentration distribution of oxygen atoms in the ferromagnetic metal thin film layer was measured using Auger electron Checked by spectrometer. 7th
The figure shows the results in graph form. Graph A is the magnetic tape obtained in Example 1, graph B is the magnetic tape obtained in Example 2, and graph C is the magnetic tape obtained in Comparative Example 1. , graph D shows the concentration distribution of oxygen atoms in the ferromagnetic metal thin film layer of the magnetic tape obtained in Comparative Example 2. As is clear from these graphs, the concentration distribution of oxygen atoms in the ferromagnetic metal thin film layer of the magnetic tapes obtained in Comparative Examples 1 and 2 gradually decreases as the distance from the substrate increases. On the other hand, the concentration distribution of oxygen atoms in the ferromagnetic metal thin film layer of the magnetic tapes obtained by this invention (Examples 1 and 2) is the highest in the surface layer and the lowest in the intermediate layer (i.e., It can be seen that the content in the interface layer is higher than in the intermediate layer and lower than in the surface layer.

また、各実施例および各比較例で得られた多数の磁気テ
ープについて、保磁力および磁区サイズを測定した。第
8図はこのようにして測定して得られた保磁力と強磁性
金属薄膜層の表面層から界面層に至る全体の平均酸素含
有量との関係をグラフで表したものであり、グラフAは
実施例1で得られた磁気テープ、グラフBは実施例2で
得られた磁気テープ、グラフCは比較例1で得られた磁
気テープ、グラフDば比較例2で得られた磁気テープを
示す。また第9図は磁区サイズと強磁性金属薄膜層の表
面層から界面層に至る全体の平均酸素含有量との関係を
グラフで表したものであり、グラフAは実施例1で得ら
れた磁気テープ、グラフBは実施例2で得られた磁気テ
ープ、グラフCは比較例1で(ηられた磁気テープ、グ
ラフDは1ヒ較例2で得られた磁気テープを示す。
In addition, coercive force and magnetic domain size were measured for a large number of magnetic tapes obtained in each Example and each Comparative Example. Figure 8 is a graph showing the relationship between the coercive force measured in this way and the average oxygen content of the entire ferromagnetic metal thin film layer from the surface layer to the interface layer. Graph B represents the magnetic tape obtained in Example 1, Graph C represents the magnetic tape obtained in Comparative Example 1, and Graph D represents the magnetic tape obtained in Comparative Example 2. show. Furthermore, FIG. 9 is a graph showing the relationship between the magnetic domain size and the average oxygen content of the entire ferromagnetic metal thin film layer from the surface layer to the interface layer. Graph B shows the magnetic tape obtained in Example 2, graph C shows the magnetic tape obtained in Comparative Example 1, and graph D shows the magnetic tape obtained in Comparative Example 2.

〔発明の効果〕〔Effect of the invention〕

第8図および第9図のグラフから明らかなように、この
発明の製造方法で得られた磁気テープ(グラフAおよび
B)は、いずれも従来の磁気テープ(グラフCおよびD
)に比し、保磁力が高くて磁区サイズが小さく、このこ
とがらこの発明の製造方法で得られる磁気記録媒体は、
磁気特性に優れていることがわかる。また従来の磁気テ
ープでは保磁力が高くても700エルステツド以下であ
り、磁区サイズは小さくても0.5μ以上であるが、こ
の発明の製造方法では保磁力が800エルステ・7Fを
超え1000エルステツドにまで達するものが得られ、
磁区サイズが0.3μ以下のものが容易に得られること
がわかる。
As is clear from the graphs in FIG. 8 and FIG.
), the magnetic recording medium obtained by the manufacturing method of the present invention has a higher coercive force and a smaller magnetic domain size.
It can be seen that it has excellent magnetic properties. Furthermore, in conventional magnetic tapes, the coercive force is at most 700 oersted or less, and the magnetic domain size is at least 0.5μ, but in the manufacturing method of the present invention, the coercive force exceeds 800 oersted/7F and reaches 1000 oersted. You can get something that reaches up to
It can be seen that a magnetic domain size of 0.3μ or less can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の製造方法を実施するために使用する
真空蒸着装置の概略断面図、第2図は同要部拡大断面図
、第3図は同地の真空蒸着装置の概略断面図、第4図は
同要部拡大断面図、第5図および第6図は従来の製造方
法を実施するために使用する真空蒸着装置の概略断面図
、第7図はこの発明および比較例1および2で得られた
磁気テープの強磁性金属薄膜層中における酸素原子の分
布を示す説明図、第8図はこの発明および比較例1およ
び2で得られた磁気テープの保磁力と平均酸素含有量と
の関係図、第9図はこの発明および比較例1および2で
得られた磁気テープの磁区サイズと平均酸素含有量との
関係図である。 ■・・・真空槽、3・・・円筒状キャン、4・・・基体
、9・・・強磁性材料蒸発源、10・・・強磁性材料、
11・・・防着板、12.13・・・ガス導入管、A・
・・最低入射角部、B・・・蒸気流、C・・・最高入射
角部、E、F・・・酸化性ガスの直射範囲、0・・・円
筒状キャンの中心、θ・・・最低入射角、α・・・酸化
性ガスと蒸気流との角度、β、γ・・・酸化性ガスの直
射範囲を示す角度特許出願人 日立マクセル株式会社 代理人 高岡−春゛“:4・g7(、:、iと・−団 第1図 第2図 第5図 第6図 第7図 第8図 平均酸素含有用(原子%)
FIG. 1 is a schematic sectional view of a vacuum evaporation apparatus used to carry out the manufacturing method of the present invention, FIG. 2 is an enlarged sectional view of the same essential parts, and FIG. 3 is a schematic sectional view of the vacuum evaporation apparatus in the same location. FIG. 4 is an enlarged sectional view of the same essential parts, FIGS. 5 and 6 are schematic sectional views of a vacuum evaporation apparatus used to carry out the conventional manufacturing method, and FIG. 7 is a schematic sectional view of the present invention and comparative examples 1 and 2. Fig. 8 is an explanatory diagram showing the distribution of oxygen atoms in the ferromagnetic metal thin film layer of the magnetic tape obtained in the present invention, and Fig. 8 shows the coercive force and average oxygen content of the magnetic tape obtained in the present invention and Comparative Examples 1 and 2. FIG. 9 is a diagram showing the relationship between the magnetic domain size and the average oxygen content of the magnetic tapes obtained in the present invention and Comparative Examples 1 and 2. ■...Vacuum chamber, 3...Cylindrical can, 4...Substrate, 9...Ferromagnetic material evaporation source, 10...Ferromagnetic material,
11... Adhesion prevention plate, 12.13... Gas introduction pipe, A.
...Lowest incident angle part, B...vapor flow, C...highest incidence angle part, E, F...direct range of oxidizing gas, 0...center of cylindrical can, θ... Minimum incident angle, α... Angle between oxidizing gas and vapor flow, β, γ... Angle indicating the direct radiation range of oxidizing gas Patent applicant Hitachi Maxell Co., Ltd. Agent Haru Takaoka ": 4. g7(,:,i and... group Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 Figure 8 Average oxygen content (atomic %)

Claims (1)

【特許請求の範囲】 1、蒸発源から蒸発せしめられた強磁性材料の蒸気流を
円筒状キャンの周側面に沿って高入射角部から低入射角
部へと移動する基体に斜めに入射して蒸着する磁気記録
媒体の製造方法において、円筒状キャンの下方に配設し
た防着板の先端部寄り上側から、酸化性ガスを少なくと
も最低入射角部の基体に直射するように吹きつけ、この
最低入射角部に入射する酸化性ガスと強磁性材料の蒸気
流との角度が最大30度を越えず、かつ酸化性ガスの直
射範囲が最低入射角部から高入射角の方向に円筒状キャ
ンの中心を基点とした角度で10度を越えないようにし
たことを特徴とする磁気記録媒体の製造方法 2、蒸発源から蒸発せしめられた強磁性材料の蒸気流を
円筒状キャンの周側面に沿って高入射角部から低入射角
部へと移動する基体に斜めに入射して蒸着する磁気記録
媒体の製造方法におい一乙円筒状キャンの下方に配設し
た防着板の先端部寄り上側から、酸化性ガスを少なくと
も最低入射角部の基体に直射するように吹きつけると同
時に、最高入射角部の基体の近傍より強磁性材料の蒸気
流と交叉しない方向から、酸化性ガスを少なくとも最高
入射角部の基体に直射するように吹きつげ、最低入射角
部に入射する酸化性ガスと強磁性材料の茎気流との角度
が最大30度を越えず、かつ酸化性ガスの直射範囲が最
低入射角部から高入射角の方向に円筒状キャンの中心を
基点とした角度で10度を越えないようにするとともに
、最高入射角部に吹きつける酸化性ガスの直射範囲が、
最高入射角部から低入射角の方向に円筒状キャンの中心
を基点とした角度で20度を越えないようにしたことを
特徴とする磁気記録媒体の製造方法
[Claims] 1. A vapor flow of a ferromagnetic material evaporated from an evaporation source is obliquely incident on a substrate moving from a high incidence angle part to a low incidence angle part along the circumferential side of a cylindrical can. In a method of manufacturing a magnetic recording medium by vapor deposition, an oxidizing gas is blown from the upper side near the tip of an adhesion prevention plate disposed below a cylindrical can so that it directly hits the substrate at least at the lowest angle of incidence. The angle between the oxidizing gas incident at the lowest incident angle and the vapor flow of the ferromagnetic material does not exceed 30 degrees at most, and the direct incidence range of the oxidizing gas is a cylindrical can from the lowest incident angle toward the high incident angle. 2, a method for manufacturing a magnetic recording medium characterized in that the angle is not more than 10 degrees with respect to the center of A method for producing a magnetic recording medium in which deposition is performed by obliquely incident on a substrate moving from a high incidence angle part to a low incidence angle part along the cylindrical can. At the same time, the oxidizing gas is blown directly onto the substrate at the lowest angle of incidence, and at the same time, the oxidizing gas is blown directly onto the substrate at the highest angle of incidence from a direction that does not intersect with the vapor flow of the ferromagnetic material. The oxidizing gas should be blown so that it directly hits the substrate at the angle of incidence, the angle between the oxidizing gas entering the lowest angle of incidence and the stem airflow of the ferromagnetic material should not exceed 30 degrees at most, and the range of direct irradiation of the oxidizing gas should be at its minimum. The angle from the angle of incidence to the high incidence angle should not exceed 10 degrees with the center of the cylindrical can as the starting point, and the direct range of the oxidizing gas blown to the highest angle of incidence should be
A method for manufacturing a magnetic recording medium, characterized in that the angle from the highest incident angle to the lowest incident angle does not exceed 20 degrees with respect to the center of the cylindrical can.
JP1275484A 1984-01-26 1984-01-26 Production of magnetic recording medium Pending JPS60157728A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1275484A JPS60157728A (en) 1984-01-26 1984-01-26 Production of magnetic recording medium
DE8585100803T DE3573672D1 (en) 1984-01-26 1985-01-26 Magnetic recording medium and production thereof
EP85100803A EP0151445B2 (en) 1984-01-26 1985-01-26 Production of magnetic recording medium
US07/145,599 US4855175A (en) 1984-01-26 1988-01-19 Magnetic recording medium and production thereof
US07/352,256 US5000984A (en) 1984-01-26 1989-05-16 Method of making a magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275484A JPS60157728A (en) 1984-01-26 1984-01-26 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60157728A true JPS60157728A (en) 1985-08-19

Family

ID=11814192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275484A Pending JPS60157728A (en) 1984-01-26 1984-01-26 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60157728A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102427A (en) * 1985-10-28 1987-05-12 Sony Corp Manufacture of magnetic recording medium
JPS62287426A (en) * 1986-06-06 1987-12-14 Hitachi Maxell Ltd Production of magnetic recording medium
JPH03201217A (en) * 1989-12-27 1991-09-03 Fuji Photo Film Co Ltd Production of magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832234A (en) * 1981-08-20 1983-02-25 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPS5841439A (en) * 1981-09-01 1983-03-10 Matsushita Electric Ind Co Ltd Magnetic recording medium and its manufacture
JPS5841442A (en) * 1981-09-03 1983-03-10 Fuji Photo Film Co Ltd Manufacture of magnetic recording medium
JPS5841443A (en) * 1981-09-04 1983-03-10 Fuji Photo Film Co Ltd Manufacture of magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832234A (en) * 1981-08-20 1983-02-25 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPS5841439A (en) * 1981-09-01 1983-03-10 Matsushita Electric Ind Co Ltd Magnetic recording medium and its manufacture
JPS5841442A (en) * 1981-09-03 1983-03-10 Fuji Photo Film Co Ltd Manufacture of magnetic recording medium
JPS5841443A (en) * 1981-09-04 1983-03-10 Fuji Photo Film Co Ltd Manufacture of magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102427A (en) * 1985-10-28 1987-05-12 Sony Corp Manufacture of magnetic recording medium
JPS62287426A (en) * 1986-06-06 1987-12-14 Hitachi Maxell Ltd Production of magnetic recording medium
JPH03201217A (en) * 1989-12-27 1991-09-03 Fuji Photo Film Co Ltd Production of magnetic recording medium

Similar Documents

Publication Publication Date Title
US4855175A (en) Magnetic recording medium and production thereof
JPS60157728A (en) Production of magnetic recording medium
JPH06150289A (en) Magnetic recording medium and its manufacture
JPS61236025A (en) Production of magnetic recording medium
JPS5837843A (en) Production of magnetic recording medium
JPH0475577B2 (en)
US6251496B1 (en) Magnetic recording medium method and apparatus for producing the same
JPH053052B2 (en)
JPS62185246A (en) Production of magnetic recording medium
JPS5860432A (en) Manufacture of magnetic recording medium
JPS60157717A (en) Magnetic recording medium
JPH06195672A (en) Magnetic recording medium and its production
KR900002610B1 (en) Magnetic recording carrier having high anticorrosion magnetic layer and its producing method
JPH05255840A (en) Vacuum deposition device
JPH057766B2 (en)
JPH04328325A (en) Manufacture of magnetic recording medium
JPH033118A (en) Production of magnetic recording medium
JPH04238109A (en) Magnetic recording medium
JPS6154040A (en) Manufacture of magnetic recording medium
JPH0467433A (en) Production of magnetic recording medium
JPH0226294B2 (en)
JPH10261223A (en) Production of magnetic recording medium
JPH01303623A (en) Magnetic recording medium
JPH08102418A (en) Magnetic recording medium and manufacturing method thereof
JPS592232A (en) Production of magnetic recording medium