JPS62185246A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS62185246A
JPS62185246A JP2717586A JP2717586A JPS62185246A JP S62185246 A JPS62185246 A JP S62185246A JP 2717586 A JP2717586 A JP 2717586A JP 2717586 A JP2717586 A JP 2717586A JP S62185246 A JPS62185246 A JP S62185246A
Authority
JP
Japan
Prior art keywords
film
oxygen
durability
vapor deposition
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2717586A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2717586A priority Critical patent/JPS62185246A/en
Publication of JPS62185246A publication Critical patent/JPS62185246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve durability, to increase saturation flux density and to improve an electromagnetic conversion characteristic regardless of a vertical magnetized film and vapor deposited film by introducing oxygen to a vapor deposition completion side and an inert gas to an initial period side adjacently thereto in the stage of subjecting a high-molecular film to electron beam vapor deposition. CONSTITUTION:The device is so constituted that the oxygen (a) is introduced to the vapor deposition completion side and the inert gas (b) to the initial period side adjacently thereto in the stage of forming a thin ferromagnetic metallic film by the electron beam vapor deposition on the high-molecular film 29 moved along a rotary support 30. A distribution is thereby made in the way of spreading of the oxygen (a) in the thickness direction of the thin ferromagnetic metallic film and the surface oxide layer to improve practicable durability is formed. On the other hand, the inert gas (b) has the effect of shielding the oxygen (a) as against the effect of the oxygen to decrease the crystal orientability of Co-Cr and to deteriorate the performance and the effect of the oxygen to decrease the saturation flux density and therefore, both the practicable durability and the performance improvement are made compatible. The magnetic film having the large saturation flux density and excellent practicable durability is thus obtd. regardless of the vertically magnetized film and the vapor-deposited film for long-term recording.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度磁気記録に適する強磁性金属薄膜を磁気
記録層とする磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium having a magnetic recording layer made of a ferromagnetic metal thin film suitable for high-density magnetic recording.

従来の技術 短波長記録と狭トラツク記録による磁気記録の高密度化
の進歩は目覚しく、磁気記録層に対して垂直方向に磁化
する垂直磁気記録方式と、従来よシ広く実用に供されて
いるいわゆる長手記録方式のいずれも、強磁性金属薄膜
を磁気記録層とする磁気記録媒体の実用化が強く望まれ
ている。〔例えば、日本金属学会会報、第24巻、第8
号。
Conventional technology Progress in increasing the density of magnetic recording through short wavelength recording and narrow track recording has been remarkable. In any of the longitudinal recording methods, it is strongly desired to put into practical use magnetic recording media in which the magnetic recording layer is a ferromagnetic metal thin film. [For example, Bulletin of the Japan Institute of Metals, Vol. 24, No. 8
issue.

646〜662頁(1985)) 強磁性金属薄膜の形成は、特性上は垂直磁化膜ではスパ
ッタ法が一歩優れているが、製膜速度に難点があり、電
子ビーム蒸着を基板を昇温させて行う方法で、Go−C
r垂直磁化膜を得るだめの研究が盛んである。〔例えば
、特開昭69−201230号公報〕 一方、長手記録用としては、電子ビーム蒸着を斜め入射
で行う方法と、酸素ガス導入効果の利用が、磁気記録層
の実用化に最短距離にあって数多くの提案がなされてい
る。〔例えば1日本応用磁気学会誌、第7巻、第3号、
197〜201頁(1983)、特開昭68−4144
2号公報。
(pp. 646-662 (1985)) For forming ferromagnetic metal thin films, the sputtering method is one step superior in terms of characteristics for perpendicularly magnetized films, but it has a drawback in film formation speed, and electron beam evaporation is difficult to achieve by raising the temperature of the substrate. Go-C
There is active research into how to obtain r-perpendicularly magnetized films. [For example, JP-A No. 69-201230] On the other hand, for longitudinal recording, the method of performing electron beam evaporation with oblique incidence and the use of the oxygen gas introduction effect are the shortest path to practical use of magnetic recording layers. Many proposals have been made. [For example, 1 Journal of the Japan Society of Applied Magnetics, Vol. 7, No. 3,
pp. 197-201 (1983), JP-A-68-4144
Publication No. 2.

特開昭513−41443号公報〕 第2図は、電子ビーム蒸着法で垂直磁化膜の形成を行う
だめの蒸着装置の一例で、第2図に於て、1はポリイミ
ド等の高分子フィルム12は巻出し軸、3は巻取り軸、
4は円筒キャンで高温(1o0°C〜200’C)の媒
体循環路を内蔵したものが通常用いられている。5は蒸
着材料で、Go−Grが通常用いられている。6は蒸発
源容器、7は電子ビーム発生器、8は電子ビーム、9は
蒸気流、10はスリット、11はマスク112は真空容
器。
JP-A-513-41443] Fig. 2 shows an example of a vapor deposition apparatus for forming a perpendicularly magnetized film by electron beam evaporation. is the unwinding shaft, 3 is the winding shaft,
Reference numeral 4 denotes a cylindrical can having a built-in high temperature (1o0°C to 200'C) medium circulation path, which is usually used. 5 is a vapor deposition material, and Go-Gr is usually used. 6 is an evaporation source container, 7 is an electron beam generator, 8 is an electron beam, 9 is a vapor flow, 10 is a slit, 11 is a mask 112 is a vacuum container.

13は真空排気系である。13 is a vacuum exhaust system.

第2図の装置で蒸気の入射角θS、θeと1キヤンの表
面温度をコントロールすることで、垂直方向の保磁力の
異なるGo−Cr膜を形成することが知られている。G
o−Cr垂直磁化膜の形成時には外部より真空容器内に
酸素ガスを導入することはないが、Go−0系垂直磁化
膜形成時には当然酸素が利用される。しかし現状ではG
o −0系垂直磁化膜は短波長特性が悪<tco−Cr
垂直磁化膜が中心に検討されているのが実状である。
It is known that Go--Cr films having different coercive forces in the vertical direction can be formed by controlling the incident angles θS and θe of the vapor and the surface temperature of one can using the apparatus shown in FIG. G
When forming an o-Cr perpendicular magnetization film, oxygen gas is not introduced into the vacuum chamber from the outside, but oxygen is of course used when forming a Go-0 perpendicular magnetization film. However, currently G
o -0 series perpendicular magnetization film has poor short wavelength characteristics<tco-Cr
The current situation is that perpendicular magnetization films are mainly being studied.

第3図は斜め蒸着に基礎を置いた長手記録用の磁気記録
媒体の製造装置の一例である。
FIG. 3 shows an example of an apparatus for manufacturing a magnetic recording medium for longitudinal recording based on oblique deposition.

第3図で、14はポリエチレンテレフタレートフィルム
等の高分子フィルムで、15は巻出し軸。
In Fig. 3, 14 is a polymer film such as polyethylene terephthalate film, and 15 is an unwinding shaft.

16は巻取り軸、17は円筒キャン、18はGo−Fe
等の蒸着材料、19は蒸発源容器、20は電子ビーム発
生器、21は電子ビーム122は蒸気流、23.24は
遮へい板125は放電電極、26は絶縁導入端子127
は真空容器、28は真空排気系で、26はガス導入パイ
プも兼ねている。
16 is a winding shaft, 17 is a cylindrical can, 18 is Go-Fe
19 is an evaporation source container, 20 is an electron beam generator, 21 is an electron beam 122 is a vapor flow, 23 and 24 is a shield plate 125 is a discharge electrode, 26 is an insulation introduction terminal 127
28 is a vacuum vessel, 28 is a vacuum exhaust system, and 26 also serves as a gas introduction pipe.

第3図の場合、θ8は90度でθ。は酸素ガスの導入条
件、キャン温度、蒸着材料との関係で、必要な保磁力を
得るのに最適な条件に設定され、保磁力1000 (O
e) (7)co系金合金膜厚み0,1〜0.2μm 
)を得るには通常、30度から45度ぐらいに設定され
ているのが実状である。
In the case of Figure 3, θ8 is 90 degrees. is set to the optimum condition to obtain the necessary coercive force depending on the oxygen gas introduction conditions, can temperature, and vapor deposition material, and the coercive force is 1000 (O
e) (7) Co-based gold alloy film thickness 0.1 to 0.2 μm
) is usually set at about 30 to 45 degrees.

斜め蒸着膜では現状1酸素を利用せずに、実用的な水準
の膜は知られていない。
Currently, there is no known obliquely deposited film that does not utilize oxygen and is of a practical level.

熱処理と組み合わせて1窒素ガスを利用する例も報告さ
れているが、熱処理温度が400°C以上と極めて高く
、高分子フィルムには用いられない。
An example of using nitrogen gas in combination with heat treatment has also been reported, but the heat treatment temperature is extremely high at 400°C or higher, and it cannot be used for polymer films.

発明が解決しようとする問題点 上記した構成では、垂直磁化膜では、磁気ヘッドとの高
速摺接時の実用耐久性が不満足で、保護膜を必要とし、
周知のように、厚い保護膜(100八〜200人)は短
波長記録再生時のスペース損失が深酷である。一方長手
記録用では1全体を酸化雰囲気にしてGo−Fe等の部
分酸化膜を形成するので、実用耐久性はGo−cr垂直
磁化膜より優れているが、部分酸化による飽和磁束密度
が低下するので、短波出力の点ではGo−Cr垂直磁化
膜を上回ることができないというのが現状である。
Problems to be Solved by the Invention In the above configuration, the perpendicular magnetization film has unsatisfactory practical durability during high-speed sliding contact with the magnetic head, and requires a protective film.
As is well known, a thick protective film (1008 to 200 thick) causes severe space loss during short wavelength recording and reproduction. On the other hand, for longitudinal recording, a partially oxidized film such as Go-Fe is formed in an oxidizing atmosphere over the whole 1, so the practical durability is superior to a Go-cr perpendicular magnetization film, but the saturation magnetic flux density due to partial oxidation decreases. Therefore, the current situation is that it cannot exceed the Go-Cr perpendicular magnetization film in terms of short wave output.

本発明は上記事情に鑑みなされたもので、垂直磁化膜、
長手記録用蒸着膜のいずれを問わす1飽和磁束密度の大
きい1かつ実用耐久性の優れた磁性膜を得ることの出来
る製法を提供するものである。
The present invention was made in view of the above circumstances, and includes a perpendicularly magnetized film,
The object of the present invention is to provide a manufacturing method capable of obtaining a magnetic film having a high saturation magnetic flux density and excellent practical durability, regardless of whether it is a vapor-deposited film for longitudinal recording.

問題点を解決するだめの手段 上記した問題点を解決するだめに本発明の磁気記録媒体
の製造方法は1回転支持体に沿わせて移動させる高分子
フィルムに強磁性金属薄膜を電子ビーム蒸着する際、蒸
着完了側に酸素、初期側に不活性ガスを隣接させて導入
するように構成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a magnetic recording medium of the present invention involves electron beam evaporation of a ferromagnetic metal thin film onto a polymer film that is moved along a support that rotates once. At this time, oxygen is introduced adjacently to the vapor deposition completion side, and inert gas is introduced adjacent to the initial vapor deposition side.

作用 本発明の磁気記録媒体の製造方法は上記した構成により
、強磁性金属薄膜の厚み方向に酸素の行き渡υ方に分布
ができて、実用耐久性を向上させる表面酸化層ができる
一方、Co−0rの結晶配向性を低下させ性能を劣す酸
素の作用や、飽和磁束密度を低下させる酸素の作用に対
し、不活性ガスが酸素に対する遮へい効果を有するため
、実用耐久性と性能向上の双方を両立させることができ
ることになるのである。
Function: The method for producing a magnetic recording medium of the present invention has the above-described structure, so that oxygen is distributed in the υ direction in the thickness direction of the ferromagnetic metal thin film, forming a surface oxidation layer that improves practical durability. The inert gas has a shielding effect against oxygen, which reduces the crystal orientation of 0r and deteriorates performance, and the effect of oxygen which reduces the saturation magnetic flux density, so it improves both practical durability and performance. This means that both can be achieved.

実施例 以下、図面を参照しながら本発明の実施例について説明
する。第1図は1本発明の製造方法の概念説明図である
。第1図で29は厚み12μmのポリエチレンナフタレ
ートフィルム、 3o1d回に支持体、31は形成され
たGo−Cr垂直磁化膜で1フイルムは矢印人の方向に
移動し、Go−Or蒸気流32に先ず8点で接し、結晶
成長がはじまり、厚み方向に成長を続け、E点で完了す
る。33はGo−Cr蒸着材料、34は蒸発源容器13
6はスリットを有するマスクである。36はガス導入ノ
ズルで、酸素へと、例えばAr b等の不活性ガスを分
配し1かつ、E側に酸素1 S側にArが噴射されるよ
う隣接させて、導入するよう構成する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual explanatory diagram of the manufacturing method of the present invention. In Figure 1, 29 is a polyethylene naphthalate film with a thickness of 12 μm, 3 o 1d is a support, 31 is a formed Go-Cr perpendicular magnetization film, and 1 film moves in the direction of the arrow, and is connected to the Go-Or vapor flow 32. First, they touch at eight points, and crystal growth begins, continues to grow in the thickness direction, and completes at point E. 33 is a Go-Cr vapor deposition material, 34 is an evaporation source container 13
6 is a mask having slits. Reference numeral 36 denotes a gas introduction nozzle, which is configured to distribute an inert gas, such as Arb, to oxygen and introduce it adjacently so that oxygen 1 is injected on the E side and Ar is injected on the S side.

37は酸素が放出され拡散する様子を模式的に示したも
ので38はArガスが放出され拡散する様子を同じく模
式的に示したもので、ノズル先端部の構成により、37
側にAr、3S側に酸素が拡散するのを無視し得るよう
にすることができる。
37 schematically shows how oxygen is released and diffuses, and 38 schematically shows how Ar gas is released and diffuses.
The diffusion of Ar on the side and oxygen on the 3S side can be made negligible.

尚第1図は、垂直磁化膜の形成を模式的に示したもので
あるが、ガス導入の斜め蒸着への応用も同じ考え方で実
施できるのは勿論である。
Although FIG. 1 schematically shows the formation of a perpendicularly magnetized film, it goes without saying that the same concept can also be applied to oblique vapor deposition using gas introduction.

第1図の構成で、Go−Cr (Or  : 1s、s
wt%)を66KWの電子ビームで加熱蒸発させ、入射
角11度以内で蒸着を行い、Go−Cr膜を0.16μ
mポリエチレンナフタレートフィルム上に形成した。そ
の時回転支持体は120’C一定とした。
With the configuration shown in Figure 1, Go-Cr (Or: 1s, s
wt%) was heated and evaporated with a 66KW electron beam, and vapor deposition was performed at an incident angle of 11 degrees or less to form a Go-Cr film with a thickness of 0.16μ.
It was formed on a polyethylene naphthalate film. At that time, the rotating support was kept constant at 120'C.

酸素ノズルの孔とアルゴンノズルの孔は90μmφで孔
の中心間距離は0.8酊として、孔の真上がE点となる
ようにし、Eまでの距離を37*wに設定した。
The hole of the oxygen nozzle and the hole of the argon nozzle had a diameter of 90 μm, and the distance between the centers of the holes was set to 0.8 mm, so that point E was directly above the hole, and the distance to E was set to 37*w.

酸素を0.76N −(1/min 、アルゴンを0.
88N−e/min導入してCro−Cr垂直磁化膜を
形成したものを8酊幅にスリットし、8朋ビデオの走行
系、シリンダ、ヘッドを利用して、記録波長0.3μm
の記録再生を行った。
Oxygen at 0.76N-(1/min), Argon at 0.76N-(1/min).
A Cro-Cr perpendicularly magnetized film was formed by introducing 88 N-e/min, which was then slit into 8-inch widths, and was recorded at a recording wavelength of 0.3 μm using the running system, cylinder, and head of an 8-hour video.
was recorded and played back.

又、比較例として、ガスを導入しない従来法で形成した
Go−Cr垂直磁化膜を採用した。
Further, as a comparative example, a Go--Cr perpendicular magnetization film formed by a conventional method without introducing gas was used.

尚、保護膜として、平均厚み3Q入のパーフルオロオク
タン酸の真空蒸着膜を夫々に配した。
As a protective film, a vacuum-deposited film of perfluorooctanoic acid having an average thickness of 3Q was disposed on each of the test pieces.

尚、Go−Cr厚みは0.16μmでほぼ同じ保磁力(
eoooe〜e120e)で比較した。
In addition, the Go-Cr thickness is 0.16 μm and has almost the same coercive force (
eooooe~e120e).

本発明品による磁気記録媒体では、主としてCooとC
r2O3の酸化層がち密に表面をおおっていてその厚み
はオージェ電子分光法で解析したところ8o入あり1そ
のために、従来例との比較で耐久性に差が認められたと
考えられる。
In the magnetic recording medium according to the present invention, mainly Coo and C
An oxidized layer of r2O3 densely covers the surface, and its thickness was analyzed by Auger electron spectroscopy and was found to be 80m1. This is probably why there was a difference in durability compared to the conventional example.

即ち耐久性の差Fi1 出力変動が3dB以上になるく
り返し走行回数で比較じたものであるが、本発明の実施
例が、10’C10%RHで406バスであったのに、
比較例では12パスであ−)た点からその差は顕著であ
る。尚初期出力には差が見られなかったことから、本発
明の価値がわかる。
That is, the difference in durability Fi1 was compared based on the number of repeated runs where the output fluctuation was 3 dB or more, and although the example of the present invention was 406 buses at 10'C 10% RH,
The difference is remarkable since the comparative example required 12 passes. The value of the present invention can be seen from the fact that no difference was observed in the initial output.

斜め蒸着の場合は、同じ保磁力を得るのに、飽和磁束密
度が20%から60%高くできるので、短波長出力を2
〜4dB高くしても同じ耐久性の膜が得られる利点があ
る。
In the case of oblique deposition, the saturation magnetic flux density can be increased by 20% to 60% to obtain the same coercive force, so the short wavelength output can be increased by 20%.
There is an advantage that a film with the same durability can be obtained even if it is increased by ~4 dB.

本発明の実施例では、不活性ガスをムrとしたが、He
、Kr、Xe等の単−又は混合でもよい。
In the embodiments of the present invention, the inert gas was used as a gas, but He
, Kr, Xe, etc., or a mixture thereof may be used.

又回転支持体として円筒キャンを用いたが、回転ベルト
等であっても良い。
Further, although a cylindrical can was used as the rotating support, a rotating belt or the like may also be used.

又、ガスの導入は、イオンとして導入してもよいし5分
子流として導入するなどの工夫も本発明の範囲で行える
ことができる。
Further, the gas may be introduced in the form of ions or in a flow of five molecules, etc., within the scope of the present invention.

発明の効果 以上のように本発明によれば1垂直磁化膜の形成時は電
磁変換特性を低下させずに耐久性を改良でき、斜め蒸着
膜の形成時は、耐久性を保った状態で、飽和磁束密度を
大きくできるので、電磁変換特性を向上させることがで
きるといったすぐれた効果がある。
Effects of the Invention As described above, according to the present invention, when forming a perpendicularly magnetized film, the durability can be improved without deteriorating the electromagnetic conversion characteristics, and when forming an obliquely deposited film, the durability can be improved while maintaining the durability. Since the saturation magnetic flux density can be increased, the electromagnetic conversion characteristics can be improved, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記録媒体の製法を実施するための
蒸着機の要部説明図、第2図は従来の重着磁気記録用磁
気記録媒体の製造に用いられる蒸着装置の一例の内部構
成図1第3図は従来の斜め蒸着装置の一例の内部構成図
である。 29・・・・・・高分子フィルム、30・・・・・・回
転支持体、33・・・・・・蒸着材料、36・・・・・
・ガス導入ノズル(a:酸素、b;不活性気体)。
Fig. 1 is an explanatory diagram of the main parts of a vapor deposition machine for carrying out the method for producing a magnetic recording medium of the present invention, and Fig. 2 is an interior view of an example of a vapor deposition machine used for producing a conventional magnetic recording medium for superimposed magnetic recording. Configuration Diagram 1 FIG. 3 is an internal configuration diagram of an example of a conventional oblique evaporation apparatus. 29... Polymer film, 30... Rotating support, 33... Vapor deposition material, 36...
- Gas introduction nozzle (a: oxygen, b: inert gas).

Claims (1)

【特許請求の範囲】[Claims] 回転支持体に沿わせて移動させる高分子フィルムに強磁
性金属薄膜を電子ビーム蒸着する際、蒸着完了側に酸素
、初期側に不活性ガスを隣接させて導入することを特徴
とする磁気記録媒体の製造方法。
A magnetic recording medium characterized in that when a ferromagnetic metal thin film is deposited by electron beam on a polymer film that is moved along a rotating support, oxygen is introduced adjacent to the deposition completion side and an inert gas is introduced to the initial deposition side. manufacturing method.
JP2717586A 1986-02-10 1986-02-10 Production of magnetic recording medium Pending JPS62185246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2717586A JPS62185246A (en) 1986-02-10 1986-02-10 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2717586A JPS62185246A (en) 1986-02-10 1986-02-10 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62185246A true JPS62185246A (en) 1987-08-13

Family

ID=12213729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2717586A Pending JPS62185246A (en) 1986-02-10 1986-02-10 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62185246A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285725A (en) * 1987-05-16 1988-11-22 Sony Corp Production of perpendicular magnetic recording medium
JP2006271811A (en) * 2005-03-30 2006-10-12 Duskin Co Ltd Container and tool for aromatic substance
JP2008018977A (en) * 2006-07-13 2008-01-31 Taisei Kako Co Ltd Cap closure guiding device in container with cap
JP2008259817A (en) * 1994-10-11 2008-10-30 Ian Marshall Moore Single use syringe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158030A (en) * 1982-03-15 1983-09-20 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158030A (en) * 1982-03-15 1983-09-20 Matsushita Electric Ind Co Ltd Magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285725A (en) * 1987-05-16 1988-11-22 Sony Corp Production of perpendicular magnetic recording medium
JP2008259817A (en) * 1994-10-11 2008-10-30 Ian Marshall Moore Single use syringe
JP2006271811A (en) * 2005-03-30 2006-10-12 Duskin Co Ltd Container and tool for aromatic substance
JP2008018977A (en) * 2006-07-13 2008-01-31 Taisei Kako Co Ltd Cap closure guiding device in container with cap

Similar Documents

Publication Publication Date Title
JPH061551B2 (en) Method of manufacturing magnetic recording medium
JP2563425B2 (en) Method of manufacturing magnetic recording medium
JPS62185246A (en) Production of magnetic recording medium
KR960013372B1 (en) Method for making a magnetic recording medium
JPH06150289A (en) Magnetic recording medium and its manufacture
JPH0687306B2 (en) Method of manufacturing magnetic recording medium
JP2951892B2 (en) Magnetic recording media
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS60214426A (en) Manufacture of magnetic recording medium
JPH1064035A (en) Magnetic recording medium and its production
JPH06333225A (en) Thin film magnetic recording medium
JPH0226294B2 (en)
JPH0451888B2 (en)
JPH0518179B2 (en)
JPH01107319A (en) Production of magnetic recording medium
JPS6378341A (en) Production of magnetic recording medium
JPH0512657A (en) Thin-film magnetic tape and method and apparatus for producing the tape
JPH1064061A (en) Production of magnetic recording medium
JPH0727635B2 (en) Method of manufacturing magnetic recording medium
JPH06116729A (en) Production of magnetic recording medium
JPH061541B2 (en) Magnetic recording medium
JPH08325718A (en) Film formation
JPS63152018A (en) Magnetic recording medium
JPS62236138A (en) Production of magnetic recording medium
JPH11144246A (en) Production of magnetic recording medium