JPH10261223A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH10261223A
JPH10261223A JP9064090A JP6409097A JPH10261223A JP H10261223 A JPH10261223 A JP H10261223A JP 9064090 A JP9064090 A JP 9064090A JP 6409097 A JP6409097 A JP 6409097A JP H10261223 A JPH10261223 A JP H10261223A
Authority
JP
Japan
Prior art keywords
magnetic
chamber
vapor deposition
particles
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9064090A
Other languages
Japanese (ja)
Inventor
Shinya Yoshida
伸也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9064090A priority Critical patent/JPH10261223A/en
Publication of JPH10261223A publication Critical patent/JPH10261223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for production for manufacturing a diagonally vapor deposited medium having a higher density and higher crystal orientation property. SOLUTION: Only the deposition chamber 8 is separated in a vacuum chamber 1 in order to increase the energy of vapor deposition particles on a substrate film 2. This deposition chamber 8 is evacuated by another discharge system, by which a differential pressure is generated between the deposition chamber 8 and the inside of the chamber 1 and the energy is applied to the vapor deposition particles by the differential pressure. Further, the directivity of the vapor deposition particles is limited by limiting the width of the opening of the deposition chamber 8 to execute deposition with only the vapor deposition particles from the same direction, by which the structure to enhance the crystal orientability is obtd. The manufacture of the vapor deposited thin films having the denser structure and the higher crystallinity than those of the conventional media is made possible and the magnetic characteristics of the films are improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非磁性支持体上に
磁性薄膜よりなる磁性層が形成されてなる磁気記録媒体
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium in which a magnetic layer composed of a magnetic thin film is formed on a non-magnetic support.

【0002】[0002]

【従来の技術】磁気記録の分野においては、記録する情
報量の増大に伴って、年々高密度記録化が強く要求され
てきている。これに伴い磁気記録媒体としては、従来の
磁性粒子をバインダー中に分散させて塗布する、いわゆ
る塗布型媒体に代わって、強磁性金属をメッキや真空薄
膜形成手段(真空蒸着法、スパッタ法またはイオンプレ
ーティング法等)により成膜した、いわゆる薄膜型媒体
が主流になりつつある。この金属磁性薄膜型の磁気記録
媒体は保磁力や角形比等に優れ、塗布型媒体のように磁
性層中に非磁性材であるバインダーを混入する必要がな
いため磁性材料の充填密度(言い換えると、単位体積当
たりの磁化量)を高めることができ、塗布型媒体に比べ
磁性層厚を極めて薄くできる。そのため、金属磁性薄膜
型の磁気記録媒体は今後より多く使われるであろう短波
長領域における電磁変換特性に優れており、さらに、記
録減磁も著しく小さい。金属磁性薄膜型の磁気記録媒体
は、以上のような優れた性質があるため、今後高密度記
録用の磁気記録媒体として主流となるものと考えられ
る。
2. Description of the Related Art In the field of magnetic recording, with the increase in the amount of information to be recorded, there is a strong demand for higher density recording year by year. Along with this, as a magnetic recording medium, instead of the so-called coating type medium in which conventional magnetic particles are dispersed in a binder and applied, a ferromagnetic metal is plated or vacuum thin film forming means (vacuum deposition method, sputtering method or ion A so-called thin film type medium formed by a plating method or the like is becoming mainstream. This metal magnetic thin film type magnetic recording medium is excellent in coercive force, squareness ratio, etc., and it is not necessary to mix a binder which is a non-magnetic material in the magnetic layer unlike the coating type medium, so that the packing density of the magnetic material (in other words, , The amount of magnetization per unit volume) can be increased, and the thickness of the magnetic layer can be extremely reduced as compared with the coating type medium. Therefore, the magnetic recording medium of the metal magnetic thin film type has excellent electromagnetic conversion characteristics in a short wavelength region which will be used more often in the future, and further, recording demagnetization is remarkably small. Since the magnetic recording medium of the metal magnetic thin film type has such excellent properties as described above, it is considered that the magnetic recording medium will become the mainstream as a magnetic recording medium for high-density recording in the future.

【0003】図5に従来の連続巻取り式蒸着機の概略図
を示す。真空チャンバー1内において、非磁性支持体で
ある高分子フィルム2は巻取りロール3から冷却キャン
6およびガイドロール10、11に沿って通紙され、巻
取りロール4に巻取られる。Co粒子の蒸着は冷却キャ
ン6の下部に配置したルツボ5に充填したCoインゴッ
トを電子銃で同時に加熱溶解して行う。また、ルツボ5
の上方のCoの蒸着が行われる冷却キャン6の近くには
酸素導入管7から酸素ガスを流しながら蒸着し、膜中に
酸素を導入する。さらに、磁性層の磁化容易軸の膜面内
方向からの配向角度は、冷却キャン6の下部に設置した
高入射角側・低入射角側の遮蔽マスク9を動かし、蒸着
粒子の入射角度を変化させることにより制御する。
FIG. 5 is a schematic view of a conventional continuous winding type vapor deposition machine. In the vacuum chamber 1, the polymer film 2, which is a non-magnetic support, is passed from a take-up roll 3 along a cooling can 6 and guide rolls 10 and 11, and is taken up by a take-up roll 4. The Co particles are deposited by simultaneously heating and melting the Co ingot filled in the crucible 5 disposed below the cooling can 6 with an electron gun. In addition, crucible 5
In the vicinity of the cooling can 6 where Co is to be deposited, a vapor deposition is performed while flowing oxygen gas from the oxygen introducing pipe 7 to introduce oxygen into the film. Further, the orientation angle of the easy axis of the magnetic layer from the in-plane direction of the magnetic layer is changed by moving the high-incidence angle side / low-incidence angle side shielding mask 9 installed below the cooling can 6 to change the incident angle of the vapor deposition particles. It controls by making it do.

【0004】ビデオテープレコーダーの分野において
も、電磁変換特性を向上させ、より短波長での高出力化
を図るために、いわゆる斜方蒸着媒体が提案され、実用
化されている。
In the field of video tape recorders, so-called oblique deposition media have been proposed and put to practical use in order to improve the electromagnetic conversion characteristics and achieve higher output at shorter wavelengths.

【0005】この斜方蒸着媒体は、移動走行する非磁性
支持体(ポリエステルフィルムやポリアミド、ポリイミ
ドフィルム等の高分子フィルム)上に、斜め方向から真
空蒸着法により磁性金属を堆積させる、いわゆる斜方蒸
着法により磁性層を形成した金属薄膜型媒体である。斜
方蒸着法により作製された磁気テープでは、磁性粒子が
非磁性支持体の表面に対して斜めに配向しており、磁性
粒子を長手方向に配向させた従来の磁気テープに比べ高
密度な記録が可能となる。現在実用化されている磁性粒
子の斜めに配向した磁気テープ(以下、斜め配向磁気テ
ープ)の、磁性層における磁化容易軸の傾き角はおよそ
20度となっている。
[0005] This oblique deposition medium is a so-called oblique deposition method in which a magnetic metal is deposited on a moving and running nonmagnetic support (a polymer film such as a polyester film, a polyamide or a polyimide film) by a vacuum deposition method from an oblique direction. This is a metal thin film type medium in which a magnetic layer is formed by a vapor deposition method. In magnetic tapes manufactured by the oblique evaporation method, the magnetic particles are oriented obliquely to the surface of the non-magnetic support, and the recording density is higher than that of the conventional magnetic tape in which the magnetic particles are oriented in the longitudinal direction. Becomes possible. The tilt angle of the axis of easy magnetization in the magnetic layer of a magnetic tape which is currently in practical use and is obliquely oriented with magnetic particles (hereinafter, obliquely oriented magnetic tape) is about 20 degrees.

【0006】上記斜め配向磁気テープにおいて、磁性層
を構成する磁性材料としては、一般的にCoまたはNi
を蒸着源とし、移動する非磁性支持体上に酸素ガスを吹
き付けながら行うのが通常である。これにより、磁性層
はα−Coの磁性粒子(またはCo−Ni)と非磁性の
Co−O(またはCo−Ni−O)が混在する構造とな
る。ここで、酸素を磁性層膜中に導入するのは、結晶粒
を微細化することにより媒体ノイズを低減するととも
に、磁性層を柱状構造とすることで斜め方向の形状異方
性を増大させるためである。
In the above obliquely oriented magnetic tape, the magnetic material constituting the magnetic layer is generally Co or Ni.
Is usually performed while blowing oxygen gas onto a moving nonmagnetic support. Thereby, the magnetic layer has a structure in which α-Co magnetic particles (or Co-Ni) and non-magnetic Co-O (or Co-Ni-O) are mixed. Here, oxygen is introduced into the magnetic layer film in order to reduce medium noise by making crystal grains fine, and to increase oblique shape anisotropy by making the magnetic layer a columnar structure. It is.

【0007】[0007]

【発明が解決しようとする課題】ところで、このような
斜め配向蒸着テープを用いるVTRの分野では、更なる
高密度記録の達成によりテープの大容量化、小型・軽量
化が望まれている。現行テープ以上の高密度記録を実現
するには、現行の記録波長よりもさらに短い波長を用い
て記録することが有効である。そうすることにより、同
じ長さのテープにより多くの情報を記録できることにな
る。
In the field of VTRs using such obliquely oriented vapor-deposited tapes, it is desired that the tapes have a larger capacity, smaller size and lighter weight in order to achieve higher density recording. In order to realize high-density recording higher than that of the current tape, it is effective to perform recording using a shorter wavelength than the current recording wavelength. By doing so, more information can be recorded on a tape of the same length.

【0008】しかし、記録波長が短くなればなるほど、
テープに記録された磁化は自己減磁しやすくなるので、
残留磁化が小さくなり、結果として再生出力が小さくな
ってしまう。これを防ぐには、磁性層の保磁力を向上さ
せることが有効であり、保磁力を高めることにより、自
己減磁界に対抗できる記録磁化を磁性層内に形成するこ
とができる。
However, as the recording wavelength becomes shorter,
Since the magnetization recorded on the tape tends to self-demagnetize,
The residual magnetization becomes small, and as a result, the reproduction output becomes small. To prevent this, it is effective to improve the coercive force of the magnetic layer. By increasing the coercive force, it is possible to form a recording magnetization in the magnetic layer that can counter the self-demagnetizing field.

【0009】磁性層の保磁力を向上させ、短波長での再
生出力を向上させるためには、磁性層中の磁性粒子の結
晶配向性を高めることが効果的である。そこで、本発明
は、従来よりもより高密度・高結晶配向性を有する斜方
蒸着媒体を作製するための製造方法を提供することを目
的とする。
In order to improve the coercive force of the magnetic layer and the reproduction output at a short wavelength, it is effective to increase the crystal orientation of the magnetic particles in the magnetic layer. Therefore, an object of the present invention is to provide a manufacturing method for manufacturing an oblique deposition medium having higher density and higher crystal orientation than before.

【0010】[0010]

【課題を解決するための手段】通常、斜方蒸着媒体を作
製するための蒸着装置は、図5のような真空チャンバー
1である。真空チャンバー1内のルツボ5内に充填され
た磁性材料を電子ブーム等で溶解して蒸気流にし、冷却
キャン6上を走行する非磁性支持体フィルム2に薄膜を
堆積する。
A vapor deposition apparatus for producing an oblique vapor deposition medium is usually a vacuum chamber 1 as shown in FIG. The magnetic material filled in the crucible 5 in the vacuum chamber 1 is dissolved by an electronic boom or the like into a vapor stream, and a thin film is deposited on the non-magnetic support film 2 running on the cooling can 6.

【0011】一般的に、真空薄膜形成プロセスにおい
て、緻密で結晶性の高い薄膜を作製するには、成膜され
る粒子のエネルギーを高めることが重要である。例え
ば、スバッタ法と蒸着法を比較した場合、粒子のエネル
ギーの高いスバッタ法で作製する方が、一般的に結晶性
の高い膜を作製することができる。
In general, in a vacuum thin film forming process, it is important to increase the energy of particles to be formed in order to produce a dense and highly crystalline thin film. For example, when comparing the sbutter method and the vapor deposition method, a film having a high crystallinity can be generally manufactured by a sbutter method having a high energy of particles.

【0012】蒸着法では成膜する材料を融点以上まで加
熱溶解し、蒸気流にして基板上に堆積させる方法を用い
るが、蒸着粒子のエネルギーはそれほど高くない。そこ
で、本発明者らは、基板上での蒸着粒子のエネルギーを
高めるために、成膜室のみを真空チャンバー内で分離
し、成膜室を別の排気系で排気することにより成膜室と
チャンバー内との間に差圧を作り、その差圧によって蒸
着粒子にエネルギーを与えることを考案した(図1参
照)。さらに、本発明の方法では、蒸着粒子にエネルギ
ーを与えることができると同時に、蒸着レートも高まる
ので、残留ガス分子等が蒸着膜中に混入しにくくなり、
より高密度・高純度な膜となる効果も得ることができ
る。
In the vapor deposition method, a method is used in which a material to be formed is heated and melted to a temperature equal to or higher than its melting point and deposited on a substrate in a vapor stream. However, the energy of vapor deposited particles is not so high. Therefore, the present inventors separated the film formation chamber only in the vacuum chamber and increased the energy of the vapor deposition particles on the substrate, and evacuated the film formation chamber with a separate exhaust system. It was devised to create a pressure difference between the inside of the chamber and to give energy to the deposited particles by the pressure difference (see FIG. 1). Furthermore, in the method of the present invention, energy can be given to the deposited particles, and at the same time, the deposition rate is increased, so that residual gas molecules and the like are less likely to be mixed into the deposited film,
The effect of forming a film with higher density and higher purity can also be obtained.

【0013】これにより、従来媒体に比べより緻密な構
造および高い結晶性を有する蒸着薄膜を作製することが
可能となり、膜の磁気特性が向上する。配向性を示す角
形比はもとより、高密度・ハイパッキングとなることに
より飽和磁化が増大し、また配向性が向上することによ
り保磁力が増大する。こうして得られた磁気記録媒体の
再生出力は従来の媒体に比べ向上する。
As a result, it becomes possible to produce a vapor-deposited thin film having a denser structure and higher crystallinity than the conventional medium, and the magnetic properties of the film are improved. In addition to the squareness ratio indicating the orientation, the saturation magnetization is increased by high density and high packing, and the coercive force is increased by improving the orientation. The reproduction output of the magnetic recording medium thus obtained is improved as compared with the conventional medium.

【0014】さらに、これと同時に、図2に示す様に蒸
着粒子が成膜室に入る入口の開口幅を制限することによ
り、蒸着粒子の方向性を制限し、同一方向からの蒸着粒
子のみで成膜することで結晶配向性を高めるような構造
とした。また、成膜室の入口の開口部の内側または外側
に蒸着粒子を誘導するガイドを設けることによりより粒
子の蒸着方向性を高めることができる。
At the same time, as shown in FIG. 2, by limiting the width of the opening of the entrance where the vapor deposition particles enter the film forming chamber, the directionality of the vapor deposition particles is restricted, and only the vapor deposition particles from the same direction are used. The structure was such that crystal orientation was enhanced by forming a film. Further, by providing a guide for guiding the vapor deposition particles inside or outside the opening at the entrance of the film formation chamber, the vapor deposition direction of the particles can be further improved.

【0015】これらの手段により、成膜された蒸着薄膜
の結晶配向性が大きく向上し、それに伴って磁気特性の
向上により再生出力を従来の磁気記録媒体より向上させ
ることができる。
[0015] By these means, the crystal orientation of the deposited thin film is greatly improved, and the magnetic characteristics are thereby improved, so that the reproduction output can be improved as compared with the conventional magnetic recording medium.

【0016】[0016]

【作用】本発明では、基板上での蒸着粒子エネルギーを
高めるために、成膜室を真空チャンバー内で分離し、別
の排気系によって排気してチャンバー成膜室間に差圧を
発生させることにより蒸着流にエネルギーを与えた。さ
らに、成膜室の入口の開口部分の大きさを制限すること
により蒸着粒子の飛来方向を制限しまたは成膜室の入口
の開口部にガイドを設けて蒸着粒子の飛来方向性を一定
の方向に誘導して、結晶配向性を向上させた。
According to the present invention, in order to increase the deposition particle energy on a substrate, a film forming chamber is separated in a vacuum chamber and exhausted by another exhaust system to generate a differential pressure between the chamber film forming chambers. Energized the deposition stream. Furthermore, by restricting the size of the opening portion of the entrance of the film forming chamber, the flying direction of the vapor deposition particles is restricted, or a guide is provided at the opening of the entrance of the film forming chamber so that the flying direction of the vapor deposition particles is kept in a certain direction. To improve the crystal orientation.

【0017】遮蔽マスク9が冷却キャン6の下部に設置
した高入射角側・低入射角側の蒸着粒子の入射角度を制
御するのに対して、成膜室の入口の開口部の大きさを制
限することにより、蒸着粒子の飛来方向が制限され、蒸
着膜の配向配向性が高まる。ここで、成膜室の入口の開
口部分の大きさとは、例えば、図2の開口部の各辺の長
さa、bを制限することであるが、磁気テープの移動基
板の幅により前記長さaが規制されるので、実際には図
2の開口部の長さbの大きさを調節することになる。
While the shielding mask 9 controls the incident angle of the vapor deposition particles on the high incident angle side and the low incident angle side installed below the cooling can 6, the size of the opening at the entrance of the film forming chamber is reduced. By restricting, the flying direction of the deposited particles is restricted, and the orientation of the deposited film is enhanced. Here, the size of the opening at the entrance of the film forming chamber means, for example, that the lengths a and b of each side of the opening in FIG. 2 are limited, and the length depends on the width of the moving substrate of the magnetic tape. Since the length a is regulated, the length b of the opening in FIG. 2 is actually adjusted.

【0018】本発明の磁気記録媒体の製造方法によれ
ば、従来技術の媒体に比べ、より高密度または高結晶配
向性の磁気記録媒体が作製でき、磁気特性ひいては再生
出力(特に短波長出力)を向上させることができる。
According to the method of manufacturing a magnetic recording medium of the present invention, a magnetic recording medium having a higher density or a higher crystal orientation can be manufactured as compared with the medium of the prior art, and the magnetic characteristics and, consequently, the reproduction output (particularly, short wavelength output) can be obtained. Can be improved.

【0019】[0019]

【発明の実施の形態】以下、本発明を具体的な実施例に
より説明するが、本発明がこの実施例に限定されるもの
ではないことは言うまでもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to specific examples, but it goes without saying that the present invention is not limited to these examples.

【0020】本発明の連続巻取り式蒸着機の基本的な構
成を表す概略図を図1に示す。真空チャンバー1内にお
いて、非磁性支持体である高分子フィルム2は巻取りロ
ール3から冷却キャン6およびガイドロール10、11
に沿って通紙され、巻取りロール4に巻取られる。Co
の蒸着は冷却キャンの下部に配置したルツボ5に充填し
たCoインゴットをそれぞれ電子銃で同時に加熱溶解す
ることにより行う。また、ルツボ5の上方のCoの蒸着
が行われる冷却キャン6の下方部分には成膜室8を設け
る。成膜室8内の冷却キャン6近くには酸素導入管7か
ら酸素ガスを流しながら蒸着し、膜中に酸素を導入す
る。
FIG. 1 is a schematic diagram showing the basic structure of the continuous winding type vapor deposition machine of the present invention. In the vacuum chamber 1, the polymer film 2, which is a nonmagnetic support, is moved from a winding roll 3 to a cooling can 6 and guide rolls 10 and 11.
And is wound up by the take-up roll 4. Co
Is deposited by simultaneously heating and dissolving the Co ingots filled in the crucible 5 arranged below the cooling can with an electron gun. A film forming chamber 8 is provided below the crucible 5 and below the cooling can 6 where Co is deposited. Vapor deposition is performed near the cooling can 6 in the film forming chamber 8 while flowing oxygen gas from the oxygen introducing pipe 7 to introduce oxygen into the film.

【0021】さらに、磁性層の磁化容易軸の膜面内方向
からの配向角度は、冷却キャン6の下部に設置した高入
射角側・低入射角側の遮蔽マスク9を動かし、蒸着粒子
の入射角度を変化させることにより制御する。
Further, the orientation angle of the axis of easy magnetization of the magnetic layer from the in-plane direction of the magnetic layer is adjusted by moving the high-incidence angle side and low-incidence angle side shielding masks 9 installed below the cooling can 6 so that the vapor deposition particles are incident. It is controlled by changing the angle.

【0022】成膜室8はステンレス製として、単独で真
空チャンバー1とは別の真空ポンプで排気されている。
この成膜室8の開口8aのある蒸着部側を拡大したのが
図2であり、このように成膜室8の開口8aの幅を制限
することにより蒸着粒子の方向性を制限する。ルツボ5
で蒸発した粒子は、成膜室8内と真空チャンバー1内と
の差圧によりこの開口8a部分から成膜室8中に引き込
まれ、ベースフィルム2上に成膜される。
The film forming chamber 8 is made of stainless steel, and is independently evacuated by a vacuum pump separate from the vacuum chamber 1.
FIG. 2 is an enlarged view of the side of the vapor deposition section where the opening 8a of the film forming chamber 8 is provided. Thus, by limiting the width of the opening 8a of the film forming chamber 8, the directionality of vapor deposited particles is restricted. Crucible 5
The particles evaporated in the step are drawn into the film forming chamber 8 from the opening 8 a by the pressure difference between the film forming chamber 8 and the vacuum chamber 1, and are formed on the base film 2.

【0023】実施例1 図1に示す蒸着装置を用いて、斜方蒸着媒体を作製し
た。作製条件は以下のとおりである。
Example 1 An oblique evaporation medium was manufactured using the evaporation apparatus shown in FIG. The fabrication conditions are as follows.

【0024】成膜条件 蒸着前到達真空度:2×10-3 Pa インゴット:Co100 ベースフィルム:ポリエチレンテレフタレート(PE
T) 入射角度:45°〜90° 酸素導入量:0.55 1/min 蒸着時真空度:2×10−2 Pa トータル磁性層厚:180nm 成膜室8の開口8aの大きさ:a=120mm、b=6
0mm 成膜室8内部の到達真空度:5.0×10-5Pa
Film forming conditions Ultimate vacuum before vapor deposition: 2 × 10 −3 Pa Ingot: Co 100 base film: polyethylene terephthalate (PE
T) Incident angle: 45 ° to 90 ° Oxygen introduction amount: 0.55 1 / min Vacuum degree during evaporation: 2 × 10 −2 Pa Total magnetic layer thickness: 180 nm Size of opening 8a of film forming chamber 8: a = 120 mm, b = 6
0 mm Ultimate vacuum inside the film forming chamber 8: 5.0 × 10 −5 Pa

【0025】図4のように、非磁性支持体11上に磁性
層12が形成されたテープ原反上に、カーボンよりなる
保護膜13を8(nm)形成し、さらにのバックコート
層15およびトップコート層14を形成し、最後に所定
のテープ幅に裁断し、磁気テープとして完成させた。
As shown in FIG. 4, a protective film 13 made of carbon is formed on the original tape having the magnetic layer 12 formed on the non-magnetic support 11 by 8 (nm). The top coat layer 14 was formed and finally cut into a predetermined tape width to complete a magnetic tape.

【0026】比較例1 比較のために、従来の蒸着装置(図5)を用いて磁気テ
ープを作製した。作製条件は、すべて実施例1と同じで
ある。磁性層厚みも、180nmと同じにした。表1
は、実施例1の製造方法で作製した斜方蒸着媒体と、従
来の装置で作製した比較例1の媒体について、それぞれ
の磁気特性・再生出力を示したものである。ただし、再
生出力については、記録波長0.5μmおよび0.3μ
mとし、比較例1の値を0[dB]とした。
Comparative Example 1 For comparison, a magnetic tape was manufactured using a conventional vapor deposition apparatus (FIG. 5). The manufacturing conditions are all the same as in Example 1. The thickness of the magnetic layer was the same as 180 nm. Table 1
9 shows the magnetic characteristics and the reproduction output of the oblique deposition medium manufactured by the manufacturing method of Example 1 and the medium of Comparative Example 1 manufactured by the conventional apparatus. However, for the reproduction output, the recording wavelengths of 0.5 μm and 0.3 μm were used.
m, and the value of Comparative Example 1 was set to 0 [dB].

【0027】[0027]

【表1】 表1から分かるように、実施例1の製造方法により、媒
体の飽和磁化、保磁力、角形比及び保磁力角形比等の磁
気特性が向上していることが分かり、またそれに伴って
再生出力が向上する。特に、本実施例により媒体の保磁
力の増大により、短波長の出力がより向上する。
[Table 1] As can be seen from Table 1, the magnetic properties such as saturation magnetization, coercive force, squareness ratio and coercive force squareness ratio of the medium are improved by the manufacturing method of Example 1, and the reproduction output is accordingly reduced. improves. In particular, according to the present embodiment, the output of the short wavelength is further improved by increasing the coercive force of the medium.

【0028】[0028]

【発明の効果】本発明によれば、従来斜方蒸着媒体と比
較して、より高密度・高結晶配向性の磁性層を形成する
ことが可能であり、これにより媒体の磁気特性および電
磁変換特性が向上する。
According to the present invention, it is possible to form a magnetic layer having a higher density and a higher crystallographic orientation as compared with the conventional oblique deposition medium. The characteristics are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の連続巻取り式蒸着機の概略図であ
る。
FIG. 1 is a schematic view of a continuous winding type vapor deposition machine of the present invention.

【図2】 本発明の連続巻取り式蒸着機の成膜室部分の
拡大図である。
FIG. 2 is an enlarged view of a film forming chamber portion of the continuous winding type vapor deposition machine of the present invention.

【図3】 本発明の連続巻取り式蒸着機の成膜室部分の
拡大図である。
FIG. 3 is an enlarged view of a film forming chamber portion of the continuous winding type vapor deposition machine of the present invention.

【図4】 本発明の製造方法で作製した磁気テープの断
面図である。
FIG. 4 is a cross-sectional view of a magnetic tape manufactured by the manufacturing method of the present invention.

【図5】 従来の連続巻取り式蒸着機の概略図である。FIG. 5 is a schematic view of a conventional continuous winding type vapor deposition machine.

【符号の説明】[Explanation of symbols]

1 真空チャンバー 2 高分子フィル
ム 3 巻取りロール 4 巻取りロール 5 ルツボ 6 冷却キャン 7 酸素導入管 8 成膜室 8 成膜室 9 遮蔽マスク
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Polymer film 3 Take-up roll 4 Take-up roll 5 Crucible 6 Cooling can 7 Oxygen introduction pipe 8 Film formation room 8 Film formation room 9 Shield mask

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバー内で蒸着源を非磁性支持
体表面に蒸着し、非磁性支持体表面に対して斜め方向に
傾いた磁化容易軸を有する磁性薄膜よりなる磁性層が磁
性層を形成する磁気記録媒体の製造方法において、 非磁性支持体表面蒸着粒子の蒸気流が高エネルギーで流
れ込むようにしたことを特徴とする磁気記録媒体の製造
方法。
An evaporation source is deposited on a surface of a nonmagnetic support in a vacuum chamber, and a magnetic layer formed of a magnetic thin film having an easy axis of magnetization inclined obliquely to the surface of the nonmagnetic support forms a magnetic layer. The method for producing a magnetic recording medium according to claim 1, wherein a vapor flow of the particles deposited on the surface of the non-magnetic support is introduced at a high energy.
【請求項2】 非磁性支持体表面の蒸着部に蒸着粒子の
飛来する開口部を有する成膜室を設け、該成膜室の蒸煮
源側の開口部の大きさを制限して、蒸着粒子の飛来方向
を規制したことを特徴とする請求項1記載の磁気記録媒
体の製造方法。
2. A deposition chamber having an opening through which vapor deposition particles fly is provided in a vapor deposition section on the surface of a nonmagnetic support, and the size of the opening of the film deposition chamber on the steaming source side is limited. 2. The method for manufacturing a magnetic recording medium according to claim 1, wherein the flying direction of the magnetic recording medium is restricted.
【請求項3】 成膜室内と真空チャンバー内との真空度
に差圧を設けたことを特徴とする請求項1または2記載
の磁気記録媒体の製造方法。
3. The method for manufacturing a magnetic recording medium according to claim 1, wherein a pressure difference is provided between the film forming chamber and the vacuum chamber.
JP9064090A 1997-03-18 1997-03-18 Production of magnetic recording medium Pending JPH10261223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9064090A JPH10261223A (en) 1997-03-18 1997-03-18 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9064090A JPH10261223A (en) 1997-03-18 1997-03-18 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH10261223A true JPH10261223A (en) 1998-09-29

Family

ID=13248040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9064090A Pending JPH10261223A (en) 1997-03-18 1997-03-18 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH10261223A (en)

Similar Documents

Publication Publication Date Title
JP2003059040A (en) Manufacturing method for magnetic recording medium
KR0185237B1 (en) Method for producing a magnetic recording medium
US4990361A (en) Method for producing magnetic recording medium
US5569523A (en) Magnetic recording medium having a ferromagnetic thin film in which 70% to 90% of the total magnetic particles have residual magnetization vectors within ±10° of the easy axis direction
US5472506A (en) Method and apparatus for producing magnetic recording medium
JP4042103B2 (en) Magnetic recording medium
JPH0721560A (en) Production of magnetic recording medium
JPH10261223A (en) Production of magnetic recording medium
US6251496B1 (en) Magnetic recording medium method and apparatus for producing the same
EP0650159B1 (en) Manufacturing method of magnetic recording medium
JP3139181B2 (en) Manufacturing method of magnetic recording medium
JPS61276124A (en) Production of vertical magnetic recording medium
JPH07240019A (en) Magnetic recording medium and its production and apparatus for production
JP2894253B2 (en) Manufacturing method of highly functional thin film
JP4371881B2 (en) Magnetic recording medium manufacturing apparatus and manufacturing method
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH033118A (en) Production of magnetic recording medium
JP2729544B2 (en) Magnetic recording medium and method of manufacturing the same
JPH1131317A (en) Magnetic recording medium
JPH06116729A (en) Production of magnetic recording medium
JP2003196823A (en) Thin-film magnetic recording medium
JP2002083420A (en) Method for manufacturing thin film magnetic tape and thin film magnetic tape
JPH0798832A (en) Magnetic recording medium, its production and producing device
JPH0963053A (en) Production of magnetic recording medium
JPH0995777A (en) Vacuum deposition device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees