JPS60143610A - Solenoid driving circuit - Google Patents

Solenoid driving circuit

Info

Publication number
JPS60143610A
JPS60143610A JP25153983A JP25153983A JPS60143610A JP S60143610 A JPS60143610 A JP S60143610A JP 25153983 A JP25153983 A JP 25153983A JP 25153983 A JP25153983 A JP 25153983A JP S60143610 A JPS60143610 A JP S60143610A
Authority
JP
Japan
Prior art keywords
solenoid
current
microcomputer
current value
excitation coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25153983A
Other languages
Japanese (ja)
Inventor
Tadashi Nose
能勢 忠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP25153983A priority Critical patent/JPS60143610A/en
Publication of JPS60143610A publication Critical patent/JPS60143610A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)

Abstract

PURPOSE:To obtain a solenoid driving circuit suitable for control using a microcomputer, and enabled to perform easily start-quickened driving by a method wherein when the microcomputer receives the output signal of a current detecting circuit, a solenoid driving transistor is controlled intermittently, and a current to flow in an exciting coil is changed over a holding current value from an excessive current value. CONSTITUTION:A solenoid driving transistor 4 is held in an ON condition, and it is awaited that a driving current Ic to reach the current value to satisfy sufficiently the high speed starting condition of a solenoid. When a current detecting circuit 12 detects the fact that an excessive current enabled to perform sufficiently high speed starting is flowed, a microcomputer 1 makes a solenoid driving signal A to ON and OFF at the prescribed period. The solenoid driving transistor 4 is also made to perform ON and OFF action corresponding thereto, and electric power to be applied to an exciting coil 2 from an electric power source +V is made to be intermittent. A current to flow in the exciting coil 2 is made to a current to pulsate at the part sufficiently lower than the excessive current value at initial action starting time, and the average value thereof is made so as to satisfy the holding current value of the solenoid.

Description

【発明の詳細な説明】 技術分野 本発明は、ソレノイドを駆動する駆動回路に関し、特に
高速で始動させるためのツレイド駆動回路に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a drive circuit for driving a solenoid, and more particularly to a treed drive circuit for high-speed starting.

背景技術 ソレノイドは、通電により発生される磁界により移動す
るマクチュエータを利用して被制御部分を駆動するもの
であり、電気制御信号を機械的な動きに変換する部分等
に多く用いられている。
BACKGROUND ART Solenoids drive controlled parts using a actuator that moves by a magnetic field generated by energization, and are often used in parts that convert electrical control signals into mechanical movements.

この場合、ソレノイドの始動を早めて迅速な制御を行な
うには、通電開始時に於ける発生磁界を急激に高める必
要がおる。このために、高速始動を必要とする場合に於
けるソレノイド駆動回路は、通電開始時に大電流を流す
様に構成されている。
In this case, in order to quickly start the solenoid and perform quick control, it is necessary to sharply increase the generated magnetic field at the start of energization. For this reason, when high-speed starting is required, the solenoid drive circuit is configured to allow a large current to flow at the start of energization.

しかし、この様な大電流を流し続けると、コイルが発熱
して焼損する可能性があるために、ソレノイドの始動完
了後に於いては通電電流をソレノイドの定格保持電流値
にまで下げる制御が必要となる。
However, if such a large current continues to flow, the coil may generate heat and burn out, so after the solenoid has started, it is necessary to control the current flowing to the solenoid's rated holding current value. Become.

一方、近年に於いては、電子技術の急速な発達に伴なっ
て、各種装置の制御部にマイクロコンピュータが取り入
れられる傾向にある。この場合、マイクロコンピュータ
によってソレノイドを制御するに際し、このソレノイド
の始動を早めようとすると、このマイクロコンピュータ
の出力信号によって上述したソレノイド駆動回路を駆動
することによって通電開始時のみ大電流を供給しなけれ
ばならず、これに伴なって回路構成が複雑で高価なもの
となってしまう。
On the other hand, in recent years, with the rapid development of electronic technology, there is a tendency for microcomputers to be incorporated into control units of various devices. In this case, when controlling the solenoid with a microcomputer, if you want to start the solenoid earlier, you must supply a large current only when energization starts by driving the above-mentioned solenoid drive circuit with the output signal of this microcomputer. Therefore, the circuit configuration becomes complicated and expensive.

これに対して、マイクロコンピュータの出力信号によっ
てソレノイドに供給される駆動電流値をその始動開始時
に多くかつ始動完了後は定格電流となる様にアナログ的
に制御することも考えられるが、この場合にはマイクロ
コンピュータがソレノイドに専有されて他の制御が行な
えなくなるとともに、駆動電流制御部分が複雑なものと
なってしまう。
On the other hand, it is conceivable to control the drive current supplied to the solenoid in an analog manner using the output signal of the microcomputer so that it is large at the start of startup and reaches the rated current after completion of startup, but in this case, In this case, the microcomputer becomes exclusive to the solenoid and cannot perform other controls, and the drive current control part becomes complicated.

発明の開示 従って、本発明による目的は、マイクロコンピュータを
用いた制御に適しかつ始動を早めた駆動が容易に行なえ
るソレノイド駆動回路を提供することである。
DISCLOSURE OF THE INVENTION Accordingly, an object of the present invention is to provide a solenoid drive circuit that is suitable for control using a microcomputer and that can easily perform driving with early start-up.

この様な目的を達成するために本発明は、マイクロコン
ピュータの制御出方信号によりソレノイド駆動トランジ
スタをオンさせてソレノイドの励磁コイルに過大電流を
流すことにより作動を早めるとともに、この始動開始時
に於ける電流がソレノイドの高速作動を満す値に達した
ことを検出する電流検出回路の出力に応じてソレノイド
駆動トランジスタを所定周期の断続制御に切換えること
により、ソレノイドの励磁コイルに流れる平均電流を保
持電流に下げて励磁コイルの焼損を防止するものである
In order to achieve such an object, the present invention hastens the operation by turning on the solenoid drive transistor in response to a control output signal from a microcomputer and causing an excessive current to flow through the excitation coil of the solenoid. By switching the solenoid drive transistor to intermittent control at a predetermined cycle in response to the output of a current detection circuit that detects when the current has reached a value that satisfies the high-speed operation of the solenoid, the average current flowing through the solenoid's excitation coil is maintained as a current. This is to prevent the excitation coil from burning out.

よって、この様に構成されたソレノイド駆動回路に於い
ては、マイクロコンピュータの制御はオン・オフ制御の
みとなることがらマイクロコンピュータに適した制御に
なるとともに、電流値そのものを直接制御する従来の回
路に比較して、その回路構成が大幅に簡略化される等の
種々優れた効果を有する。
Therefore, in the solenoid drive circuit configured in this way, the control by the microcomputer is only on/off control, which makes the control suitable for the microcomputer, and it also has the advantage of controlling the current value itself directly It has various superior effects such as greatly simplifying the circuit configuration.

発明を実施するための最良な形態 第1図は本発明によるソレノイド駆動回路の一実施例を
示す回路図である。同図に於いて1はマイクロコンピュ
ータであって、入力端INに供給される制御入力信号に
応じて出力ボート01*01からソレノイド制御信号A
、Bを発生する。2,3はソレノイドの励磁コイル、4
はソレノイド駆動トランジスタであって、抵抗5を介し
て供給されるソレノイド制御信号人によりオンとなって
、励磁コイル2を電源+Vとアース間に電流検出用の抵
抗6を介して接続する。
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 is a circuit diagram showing one embodiment of a solenoid drive circuit according to the present invention. In the figure, 1 is a microcomputer, which outputs a solenoid control signal A from an output port 01*01 in response to a control input signal supplied to an input terminal IN.
,B are generated. 2 and 3 are solenoid excitation coils, 4
is a solenoid drive transistor which is turned on by a solenoid control signal supplied via a resistor 5, and connects the excitation coil 2 between the power supply +V and ground via a current detection resistor 6.

7はソレノイド駆動トランジスタであって、抵抗8を介
して供給されるソレノイド制御信号Bによりオンとなっ
て、励磁コイル3を電源+■とアース間に電流検出用の
抵抗9を介して接続する。10.11は励磁コイル2.
3に対してそれぞれ並列にかつ電源+■に対して逆極性
となる様に接続されたダイオード、12.13は電流検
出用の抵抗6.9の両端電位を入力とすることにより、
励磁コイル2.3に流れる電流が設定値に達したことを
検出すると出力信号C1Dを発生してマイクロコンピュ
ータlの入カボ−−F p、 j p、にそれぞれ供給
する電流検出回路である。そして、この電流検出回路1
2.13は、抵抗12a 、12bをそれぞれ介して供
給される入力信号を基準値Vrと比較するコンパレータ
12b、13bと、負極性の入力信号を吸収するダイオ
ード12c、13Cとによって構成されている。
Reference numeral 7 denotes a solenoid drive transistor, which is turned on by a solenoid control signal B supplied via a resistor 8, and connects the excitation coil 3 between the power supply +■ and ground via a resistor 9 for current detection. 10.11 is the excitation coil 2.
Diodes 12.13 and 12.13 are connected in parallel with each other in parallel to 3 and have opposite polarity to the power supply +■.
This current detection circuit generates an output signal C1D when it detects that the current flowing through the excitation coil 2.3 has reached a set value, and supplies the output signal C1D to the input ports Fp, jp of the microcomputer 1, respectively. And this current detection circuit 1
2.13 is composed of comparators 12b and 13b that compare input signals supplied through resistors 12a and 12b, respectively, with a reference value Vr, and diodes 12c and 13C that absorb negative polarity input signals.

この様に構成されたソレノイド駆動回路に於いて、図示
しない外部からマイクロコンピュータ1の入力端INに
制御信号が供給されると、マイクロコンピュータ1はこ
の入力信号の内容を識別して制御対象を判別する。そし
て、例えば励磁コイル2のソレノイドを駆動すべき指示
を受けると、マイクロコンピュータ1は第3図にステッ
プSlで示す様に、出力ボートO1から発生されるソレ
ノイド駆動信号Aを第2図1alに示す様にH”にセッ
トする。ソレノイド駆動信号AがH”になると、ソレノ
イド駆動トランジスタ4がオンとなって励磁コイル2に
電源+■から供給される電流が流れる。この場合、励磁
コイル2はインダクタンスを有することから、ソレノイ
ド駆動トランジスタ4のオン抵抗をrTON 、電流検
出用に設けられている抵抗6の値をae、 、励磁コイ
ル2の内部抵抗なrL、励磁コイル2のインダクタンス
なLlとすると、駆動電流Icは、 なる条件に沿って第2図1alに示す様に増加する。
In the solenoid drive circuit configured in this way, when a control signal is supplied to the input terminal IN of the microcomputer 1 from the outside (not shown), the microcomputer 1 identifies the content of this input signal and determines the object to be controlled. do. For example, upon receiving an instruction to drive the solenoid of the excitation coil 2, the microcomputer 1, as shown in step Sl in FIG. 3, outputs a solenoid drive signal A generated from the output port O1 as shown in FIG. When the solenoid drive signal A becomes H", the solenoid drive transistor 4 is turned on and the current supplied from the power supply +■ flows into the exciting coil 2. In this case, since the excitation coil 2 has inductance, the on-resistance of the solenoid drive transistor 4 is rTON, the value of the resistor 6 provided for current detection is ae, the internal resistance of the excitation coil 2 is rL, and the excitation coil Assuming that the inductance Ll is 2, the drive current Ic increases as shown in FIG. 2 1al under the following condition.

そして、この駆@電流■cが増加すると、抵抗6の両端
に発生される電圧もこれに応じて第2図1alに示す様
に増加するために電流検出回路12の入力信号も増加す
ることになる。ここで、駆動電流Icに対応する電流検
出回路12の入力信号レベルが、ソレノイドの高速始動
を満す過大電流値、つまり基準値Vrを越えると、コン
パレータ12bの出力信号0が第2図(c)に示す様に
L″からH”に反転する。マイクロコンピュータ1は入
力ポートP1に電流検出回路12から供給される出力信
゛号Cの状態を第3図に示すステップS2に於いて判別
しており、この出力信号0がH″になるとステップS3
に移行してソレノイド駆動信号Aを82図1alに示す
様にL″にセットする。次にマイクロコンピュータlは
、第3図にステップS4に示す様に、ソレノイド駆動信
号AのL”セット時点から11秒の計時を開始し%T1
秒に達するとステップS11に於いてソレノイド駆動信
号Aを′H”にセットしt後にスソツプS6に移行する
。ステップs6に於いては、ステップS6に於けるソレ
ノイド駆動信号人のH”セット時からの計時を開始し、
13秒に達するとステップS7に移行して制御信号の内
容識別を行なってステップS8に移行する。ステップs
8に於いては、ソレノイド駆動信号人に対する指示を判
別し、引続いて励磁コイル2を有するソレノイドの駆動
を指示している場合には、ステップSsからステップS
3に戻るループ処理を実行する。また、ステップSsに
於ける判別がイエス、つまり励磁コイル2を有するソレ
ノイドの駆動指示が解かれた場合には、ステップS。
When this driving current ■c increases, the voltage generated across the resistor 6 also increases as shown in FIG. 2 1al, so the input signal to the current detection circuit 12 also increases Become. Here, when the input signal level of the current detection circuit 12 corresponding to the drive current Ic exceeds the excessive current value that satisfies the high-speed starting of the solenoid, that is, the reference value Vr, the output signal 0 of the comparator 12b becomes ), it is reversed from L'' to H''. The microcomputer 1 determines the state of the output signal C supplied from the current detection circuit 12 to the input port P1 in step S2 shown in FIG.
Then, the microcomputer 1 sets the solenoid drive signal A to L'' as shown in FIG. Start counting 11 seconds and %T1
When the second is reached, the solenoid drive signal A is set to ``H'' in step S11, and after t, the process moves to step S6.In step s6, the solenoid drive signal A is set to ``H'' in step S6. Start timing the
When the time reaches 13 seconds, the process moves to step S7, the content of the control signal is identified, and the process moves to step S8. step s
In step 8, the solenoid drive signal determines the instruction to the person, and if the solenoid drive signal is instructing to drive the solenoid having the excitation coil 2, steps Ss to S
Execute loop processing returning to step 3. Further, if the determination in step Ss is YES, that is, the drive instruction for the solenoid having the excitation coil 2 has been released, step S is performed.

に於いてソレノイド駆動信号Aを”L″にセットする。At this point, set the solenoid drive signal A to "L".

つまり、目的とするソレノイドの駆動開始時には、ソレ
ノイド駆動トランジスタ4をオン状態に保持して、指数
開数的に増加する駆動電流Icがソレノイドの高速始動
条件を十分に満す電流値に達するのを待つ。そして、こ
のままの状態を続けると、高速始動を行なわせるための
大電流が励磁コイル2に流れ続けてコイルを焼損してし
まう。このために、高速始動が十分に行なわれる過大電
流が流れたことを電流検出回路12が検出してマイクロ
コンピュータ1に知らせると、このマイクロコンピュー
タ1はソレノイド駆動信号Aを所定周期でオン・オフさ
せる。ソレノイド駆動信号Aがオン・オフされると、こ
れに応じてソレノイド駆動トランジスタ4もオン・オフ
動作を行なうために、電源+■から励磁コイル2に加え
られる電源が断続される。そして、ソレノイド駆動トラ
ンジスタ4がオフされると、励磁コイル4に発生される
逆起電力が発生するために、励磁コイル2とダイオード
10からなる閉ループにフライホイール電流が流れるた
めに、励磁コイルそのものに流れる電流はソレノイド駆
動トランジスタ4がオフとなっても急激に零とはならず
、第2図(d)に示す様に徐々に減少する。そして、ソ
レノイド駆動トランジスタ4が再びオンされると、電源
+■が加えられることにより再び徐々に増加することに
なる。この様にして、励磁コイル2加えられる電源が断
続されると、励磁フィル2を流れる電流は、第2図1a
lに示す様に始動開始時に於ける過大電流値よりも十分
に低い部分に於いて脈動する電流となって、その平均電
流にソレノイドの保持電流値を満すものとなる。つまり
、マイクロコンピュータ1はソレノイド駆動トランジス
タ4を断続制御するのみで励磁:Cイルに流れる電流を
、始動時に於ける高速駆動用の過大電流値から保持電流
値への制御が行なえることになる。
In other words, when starting to drive the target solenoid, the solenoid drive transistor 4 is held in the on state, and the drive current Ic, which increases exponentially, reaches a current value that sufficiently satisfies the high-speed starting conditions of the solenoid. wait. If this state continues, a large current for high-speed starting will continue to flow through the excitation coil 2, causing the coil to burn out. For this purpose, when the current detection circuit 12 detects that an excessive current that is sufficient for high-speed starting has flowed and notifies the microcomputer 1, the microcomputer 1 turns on and off the solenoid drive signal A at predetermined intervals. . When the solenoid drive signal A is turned on and off, the solenoid drive transistor 4 is also turned on and off accordingly, so that the power applied to the excitation coil 2 from the power supply +■ is interrupted. When the solenoid drive transistor 4 is turned off, a back electromotive force is generated in the excitation coil 4, and a flywheel current flows through the closed loop consisting of the excitation coil 2 and the diode 10, causing the excitation coil itself to flow. The flowing current does not suddenly become zero even when the solenoid drive transistor 4 is turned off, but gradually decreases as shown in FIG. 2(d). Then, when the solenoid drive transistor 4 is turned on again, the power supply +■ is applied, so that the voltage gradually increases again. In this way, when the power applied to the excitation coil 2 is interrupted, the current flowing through the excitation filter 2 is reduced as shown in FIG.
As shown in 1, the current pulsates in a portion sufficiently lower than the excessive current value at the start of startup, and the average current satisfies the holding current value of the solenoid. In other words, the microcomputer 1 can control the current flowing through the excitation coil from an excessive current value for high-speed drive at startup to a holding current value by simply controlling the solenoid drive transistor 4 intermittently.

なお、上記実施例に於いては、励磁コイル2を有するソ
ノイドの駆動制御についてのみ説明したが、励磁コイル
3を有するソレノイドの駆動制御についても同様に行な
えることは言うまでもない。
In the above embodiment, only the drive control of the solenoid having the excitation coil 2 has been described, but it goes without saying that the drive control of the solenoid having the excitation coil 3 can be performed in the same manner.

以上説明した様に、本発明によるソレノイド駆動回路は
、マイクロコンピュータの制御出力信号によりソレノイ
ド駆動トランジスタをオンさせてソレノイドの励磁コイ
ルに過大電流を流すことにより作動を早めるとともに、
この始動開始時に於ける電流がソレノイドの高速作動を
満す値に達すると、ソレノイド駆動トランジスタを所定
周期で断続させて励磁コイルに流れる平均電流を下げて
保持電流とするものであるために、マイクロコンピュー
タによるソレノイド制御に適したものになるとともに、
構成も簡略化されて安価なものとなる等の種々優れた効
果を有する。
As explained above, the solenoid drive circuit according to the present invention speeds up the operation by turning on the solenoid drive transistor in response to a control output signal from a microcomputer and causing an excessive current to flow through the excitation coil of the solenoid.
When the current at the start of startup reaches a value that satisfies the high-speed operation of the solenoid, the solenoid drive transistor is turned on and off at predetermined intervals to lower the average current flowing through the excitation coil and use it as a holding current. It becomes suitable for solenoid control by computer, and
It has various excellent effects such as a simplified configuration and low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるソレノイド駆動回路の一実施例を
示す回路図、第2図tal〜ldlは第1図に示す回路
の各部動作波形図、第3図は第1図に示すマイクロコン
ピュータの動作を示すフローチャートを示す図である。 1・・・・・・マイクロコンピュータ、2.3・・・・
・・励磁コイル、4.7・・・・・・ソレノイド駆動ト
ランジスタ、5,6,8.9・・・・・・抵抗、12.
13・・・・・・電流検出回路。 出願人 日本電気ホームエレクトロニクス株式会社第2
図 第3図
FIG. 1 is a circuit diagram showing an embodiment of the solenoid drive circuit according to the present invention, FIG. 2 tal to ldl are operational waveform diagrams of each part of the circuit shown in FIG. 1, and FIG. It is a figure which shows the flowchart which shows operation|movement. 1...Microcomputer, 2.3...
... Excitation coil, 4.7 ... Solenoid drive transistor, 5, 6, 8.9 ... Resistor, 12.
13... Current detection circuit. Applicant: NEC Home Electronics Co., Ltd. No. 2
Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)外部入力信号に応じて出力ポートからソレノイド
制御信号を発生するマイクロコンピュータと、前記ソレ
ノイド制御信号によりオンとなってソレノイドの励磁コ
イルに電源を供給するソレノイド駆動トランジスタと、
前記ソレノイドの励磁コイルに対して並列にかつ電源に
対して逆極性となる様に接続されたダイオードと、前記
励磁コイルに流れる電流が高速作動条件を満す過大電流
値に達したことを検出して前記マイクロコンピュータに
出力信号を供給する電流検出回路とを設け、前記マイク
ロコンピュータは電流検出回路の出力信号を受けるとソ
レノイド駆動トランジスタを断続制御することにより励
磁コイルに流れる電流を過大電流値から保持電流値に切
換える制御を実行することを特徴とするソレノイド駆動
回路。
(1) a microcomputer that generates a solenoid control signal from an output port in response to an external input signal; a solenoid drive transistor that is turned on by the solenoid control signal and supplies power to the excitation coil of the solenoid;
A diode connected in parallel to the excitation coil of the solenoid and with opposite polarity to the power supply detects that the current flowing through the excitation coil has reached an excessive current value that satisfies high-speed operation conditions. and a current detection circuit that supplies an output signal to the microcomputer, and when the microcomputer receives the output signal of the current detection circuit, it controls the solenoid drive transistor intermittently to maintain the current flowing through the exciting coil from an excessive current value. A solenoid drive circuit characterized by executing control for switching to a current value.
JP25153983A 1983-12-29 1983-12-29 Solenoid driving circuit Pending JPS60143610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25153983A JPS60143610A (en) 1983-12-29 1983-12-29 Solenoid driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25153983A JPS60143610A (en) 1983-12-29 1983-12-29 Solenoid driving circuit

Publications (1)

Publication Number Publication Date
JPS60143610A true JPS60143610A (en) 1985-07-29

Family

ID=17224319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25153983A Pending JPS60143610A (en) 1983-12-29 1983-12-29 Solenoid driving circuit

Country Status (1)

Country Link
JP (1) JPS60143610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390812U (en) * 1986-12-04 1988-06-13
JPS63255716A (en) * 1987-04-13 1988-10-24 Canon Inc Ic for driving control
EP0603655A2 (en) * 1992-12-22 1994-06-29 Eaton Corporation Current limiting solenoid driver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126955A (en) * 1978-02-27 1979-10-02 Bendix Corp Current adjusting circuit for induction load

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126955A (en) * 1978-02-27 1979-10-02 Bendix Corp Current adjusting circuit for induction load

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390812U (en) * 1986-12-04 1988-06-13
JPH0429527Y2 (en) * 1986-12-04 1992-07-17
JPS63255716A (en) * 1987-04-13 1988-10-24 Canon Inc Ic for driving control
EP0603655A2 (en) * 1992-12-22 1994-06-29 Eaton Corporation Current limiting solenoid driver
EP0603655A3 (en) * 1992-12-22 1994-10-05 Eaton Corp Current limiting solenoid driver.

Similar Documents

Publication Publication Date Title
JP3665419B2 (en) Inductive load driving method and H-bridge circuit control device
US4878147A (en) Electromagnetic coil drive device
JPH09201065A (en) Power-supply circuit
TW201308874A (en) Motor diving and control circuit, and control method thereof
JP2002027798A (en) Voltage controller of alternator for vehicle
US8421390B2 (en) Fan motor control device
JP2003199348A (en) Drive unit for electromagnet apparatus
JPS60143610A (en) Solenoid driving circuit
JP2005147016A (en) Control device for internal combustion engine
RU2399147C1 (en) Electric drive
JP3792314B2 (en) Power supply circuit for electromagnet excitation coil
JPS6146187A (en) Speed controller of dc motor
RU218518U1 (en) SPEED STABILIZATION DEVICE OF SINGLE-PHASE COLLECTOR ELECTRIC MOTOR
JP2009225557A (en) Power generation controller for vehicle
TWI396379B (en) Fan control device and method
JPH04364398A (en) Current controller for inductive load
JP3288766B2 (en) Motor drive circuit
JP2685873B2 (en) Electromagnet coil drive
JPH03190588A (en) Brushless motor drive circuit
JPH0244627A (en) Direct current magnet control system for electromagnetic contactor
JP2576639B2 (en) Switch element drive circuit
JP2004022966A (en) Driver for electromagnet apparatus
JPH01236092A (en) Dewatering device for washer
JPH0456913B2 (en)
JPH06260333A (en) Electromagnetic device