JPH0456913B2 - - Google Patents

Info

Publication number
JPH0456913B2
JPH0456913B2 JP59163286A JP16328684A JPH0456913B2 JP H0456913 B2 JPH0456913 B2 JP H0456913B2 JP 59163286 A JP59163286 A JP 59163286A JP 16328684 A JP16328684 A JP 16328684A JP H0456913 B2 JPH0456913 B2 JP H0456913B2
Authority
JP
Japan
Prior art keywords
current
switching
solenoid valve
excitation current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59163286A
Other languages
Japanese (ja)
Other versions
JPS6141085A (en
Inventor
Nobuyoshi Hanyuda
Maki Iwano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP16328684A priority Critical patent/JPS6141085A/en
Publication of JPS6141085A publication Critical patent/JPS6141085A/en
Publication of JPH0456913B2 publication Critical patent/JPH0456913B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、各種流体駆動装置を精密かつ正確
に制御するために電磁弁を高速駆動するのに好適
な電磁弁駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solenoid valve drive device suitable for driving a solenoid valve at high speed in order to precisely and accurately control various fluid drive devices.

〔従来の技術〕[Conventional technology]

従来、電磁弁の応答性を改善するために、電磁
弁の電磁コイルへの通電電流の立上りを急峻にす
るなどの方法が採られている。その理由は流量特
性を第10図に示すaからbに変えることによ
り、変調周波数を高くすることができるからであ
る。
Conventionally, in order to improve the responsiveness of a solenoid valve, methods such as making the rise of the current applied to the solenoid coil of the solenoid valve steeper have been adopted. The reason for this is that by changing the flow rate characteristic from a to b shown in FIG. 10, the modulation frequency can be increased.

最近ではパルス技術を応用したPWM駆動が盛
んに行なわれており、これに関する提案もなされ
ている。
Recently, PWM drive using pulse technology has been actively used, and proposals related to this have also been made.

上記方式による電磁弁の駆動を大別すると、電
磁コイルへの通電電流を通電初期に高い印加電圧
で供給し、所定時間経過後に低い印加電圧に切換
えて供給するタイマによる2電源切換方式(前
者)と、電磁弁の切過えに必要な電流値で電磁コ
イルの励磁回路に負帰還をかけて、電磁弁が切換
つた以降において、そのときの電流を電磁弁の保
持電流として供給する電流フイードバツク方式
(後者)の2通りがある。
Driving a solenoid valve using the above method can be roughly divided into two power supply switching methods using a timer, in which current is supplied to the solenoid coil at a high applied voltage at the initial stage of energization, and then switched to a lower applied voltage after a predetermined period of time (the former). A current feedback method applies negative feedback to the excitation circuit of the electromagnetic coil with the current value required to switch the solenoid valve, and then supplies the current at that time as the holding current of the solenoid valve after the solenoid valve switches. There are two ways (the latter).

第5図は前者の一例を示すもので、電磁弁の電
磁コイルMCに電流検出用抵抗R8が直列接続さ
れ、これに駆動トランジスタPTr1を介して電源
VSOLが接続されている。この駆動トランジスタ
PTr1はパルス入力によつてオン・オフ制御され、
オンの開弁時間の間に電源電圧VSOLが印加され、
電磁コイルに電流が供給される。この電流は電磁
弁の応答性をよくするために大きく設定されてお
り、高い電圧の電源が使用される。
Figure 5 shows an example of the former, in which a current detection resistor R8 is connected in series with the solenoid coil MC of the solenoid valve, and a power supply is connected to this via the drive transistor PT r1 .
V SOL is connected. This drive transistor
PT r1 is controlled on/off by pulse input,
During the valve opening time of ON, the supply voltage V SOL is applied,
Current is supplied to the electromagnetic coil. This current is set large to improve the response of the solenoid valve, and a high voltage power source is used.

駆動トランジスタPTr1はそのベースにトラン
ジスタTr1によつて制御されるトランジスタTr3
Tr4が接続されている。トランジスタTr1は、第
6図のパルス信号が入力によつて導通し、これ
に伴つてTr1のコレクタに接続されているTr3
Tr4はVSOL→R4→Tr3のベース→Tr3のエミツタ→
Tr4のエミツタ→Tr4のベース→R5→Tr1のコレク
タ→Tr1のエミツタを介して電流が流れることに
よつて導通する。続いて、駆動トランジスタ
PTr1はそのベースに電源VSOL→Tr3→Tr4→R6
介してパルス電流が供給されて導通し、電磁コイ
ルには、第6図に示す電源電圧VSOLが印加され
る。
The drive transistor PT r1 has at its base a transistor T r3 controlled by the transistor T r1 ,
T r4 is connected. The transistor T r1 becomes conductive when the pulse signal shown in FIG. 6 is input, and accordingly, T r3 , which is connected to the collector of T r1
T r4 is V SOL → R 4 → Base of T r3 → Emitter of T r3
Conduction occurs when current flows through the emitter of T r4 → the base of T r4 → R 5 → the collector of T r1 → the emitter of T r1 . Next, the drive transistor
A pulse current is supplied to the base of PT r1 via the power supply V SOL →T r3 →T r4 →R 6 to make it conductive, and the power supply voltage V SOL shown in FIG. 6 is applied to the electromagnetic coil.

この電磁弁駆動装置には、電磁弁の切換えが行
なわれた後にその切換状態を保持するための最小
電流を供給するのに必要な低電圧V0を電磁コイ
ルに印加する回路が付加されている。前記低電圧
印加回路はトランジスタTr3のベース電位を変化
させてTr3のコレクタ電流を制御し、Tr4を介し
てPTr1のベース電流を小さくすることによつて
電磁コイルに最小保持電流を流すようにしてい
る。すなわち、トランジスタTr3のベースにはス
イツチング素子IC20を介して可変抵抗VR2が接続
され、この可変抵抗VR2に接続された制御用電源
VCを分圧してTr3のベース電圧VBを得ている。こ
のベース電圧VBは電磁コイルの最小保持電流IE
(<V0/RS+R8、但しRS…電磁コイルの直流抵抗) を供給するのに必要な電圧V0(<VSOL)を得るた
めのPTr1のベース電流を規定する。前記IC20
導通時期は電磁コイルに高電圧を印加した後、電
磁弁が動き始めて切換動作が完了した時点に設定
される。IC20はフオトカプラが用いられており、
この動作回路は単安定マルチバイブレータIC10
フオトカプラの発光ダイオードを通電制御するト
ランジスタTr2とで構成されている。前記IC10
入力端子Aには第6図のパルス信号が入力さ
れ、クロツク端子T1,T2にはタイマ回路が接続
されている。タイマ回路は可変抵抗VR1とコンデ
ンサC1を直列接続したもので、タイムt0を直列回
路の時定数(VR1×C1)によつて得ている。し
たがつて、IC10にパルス信号が入力されると、
所要時間t0経過後に端子Qからパルス信号が出
力され、Tr2を導通する。そしてTr2のコレクタ
回路に挿入されたフオトカプラIC20の発光ダイオ
ードを励磁発光せしめてIC20を導通し、Tr3のベ
ース電圧を低下させる。これによつて、Tr3
Tr4に流れる電流が減少し、PTr1のコレクタ電流
は電磁コイルの最小保持電流IEに減少する。すな
わち、第6図,の波形図が示すように、通電
初期に高い電圧VSOLが印加されて電磁弁の応答性
を良くし、切換完了時点以降の保持段階で低い電
圧V0が印加されて無駄な電力消費をなくしてい
る。
This electromagnetic valve drive device is equipped with a circuit that applies a low voltage V 0 to the electromagnetic coil, which is necessary to supply the minimum current to maintain the switching state of the electromagnetic valve after it has been switched. . The low voltage application circuit changes the base potential of transistor T r3 to control the collector current of T r3 , and reduces the base current of PT r1 through T r4 , thereby causing a minimum holding current to flow through the electromagnetic coil. That's what I do. That is, a variable resistor VR 2 is connected to the base of the transistor T r3 via a switching element IC 20 , and a control power supply connected to this variable resistor VR 2 .
The base voltage V B of T r3 is obtained by dividing V C. This base voltage V B is the minimum holding current I E of the electromagnetic coil
(<V 0 /R S +R 8 , where R S ...DC resistance of the electromagnetic coil) The base current of PT r1 is specified to obtain the voltage V 0 (<V SOL ) necessary to supply the voltage V 0 (<V SOL ). The conduction timing of the IC 20 is set at the time when the electromagnetic valve starts moving and the switching operation is completed after applying a high voltage to the electromagnetic coil. IC 20 uses a photocoupler,
This operating circuit is composed of a monostable multivibrator IC 10 and a transistor T r2 that controls energization of the light emitting diode of the photocoupler. The pulse signal shown in FIG. 6 is input to the input terminal A of the IC 10 , and a timer circuit is connected to the clock terminals T1 and T2 . The timer circuit has a variable resistor VR 1 and a capacitor C 1 connected in series, and the time t 0 is obtained by the time constant (VR 1 ×C 1 ) of the series circuit. Therefore, when a pulse signal is input to IC 10 ,
After the required time t 0 has elapsed, a pulse signal is output from the terminal Q, making T r2 conductive. Then, the light emitting diode of photocoupler IC 20 inserted into the collector circuit of T r2 is excited to emit light, making IC 20 conductive and lowering the base voltage of T r3 . By this, T r3 ,
The current flowing through T r4 decreases, and the collector current of PT r1 decreases to the minimum holding current I E of the electromagnetic coil. That is, as shown in the waveform diagram in Figure 6, a high voltage V SOL is applied at the beginning of energization to improve the response of the solenoid valve, and a low voltage V 0 is applied in the holding stage after the switching is completed. Eliminates unnecessary power consumption.

第7図は後者の一例を示すもので、電磁コイル
MCに抵抗R8が直列接続され、これに駆動トラン
ジスタPTr1を介して電源VSOLが接続されている。
駆動トランジスタPTr1はベース回路に接続され
たトランジスタTr1によつて制御される。前記ト
ランジスタTr1のベース回路に接続された差動増
幅器10には、電磁コイルに流れる電流を電圧変
換して負帰還する一方、第8図に示すパルス電圧
を入力する。そして差動増幅器10は前記パル
ス入力に応じたパルスを出力し、Tr1のベース電
流を制御する。したがつて、電磁コイルMCには
差動増幅器10の入力パルスの大きさに見合つた
電流が供給され、電磁弁の切換に必要な電流が所
定値に達すると、電流フイードバツクがかかつて
飽和する。(第8図参照) 〔発明が解決しようとする問題点〕 このように、前者の方式では、第9図に示すよ
うに、電源電圧VSOLが変動しても切換が行なわれ
るように切換時期に余裕をもたせている。通常、
許容変動の最悪条件において切換ができる時間t0
が設定されるため、電源電圧が高くなると第9図
○
Figure 7 shows an example of the latter, where the electromagnetic coil
A resistor R8 is connected in series to MC, and a power supply V SOL is connected to this via a drive transistor PT r1 .
The drive transistor PT r1 is controlled by the transistor T r1 connected to the base circuit. A differential amplifier 10 connected to the base circuit of the transistor T r1 converts the current flowing through the electromagnetic coil into a voltage and provides negative feedback, while inputting the pulse voltage shown in FIG. 8. The differential amplifier 10 then outputs a pulse according to the pulse input to control the base current of T r1 . Therefore, a current commensurate with the magnitude of the input pulse to the differential amplifier 10 is supplied to the electromagnetic coil MC, and when the current necessary for switching the electromagnetic valve reaches a predetermined value, the current feedback becomes saturated for a while. (See Figure 8) [Problem to be solved by the invention] In this way, in the former method, as shown in Figure 9, the switching timing is adjusted so that switching is performed even if the power supply voltage V SOL fluctuates. There is plenty of room for this. usually,
Time for switching under worst-case conditions of permissible fluctuation t 0
is set, so when the power supply voltage increases, the figure 9 ○

Claims (1)

【特許請求の範囲】 1 電磁弁のコイルを負荷とする能動素子と、該
電磁弁を作動させる作動信号と該コイルの励磁電
流の検出値をゲート素子を介して入力し偏差信号
を前記能動素子に出力する演算素子とを有する励
磁回路と、 前記励磁電流の検出値と前記励磁電流を切り替
える電流に相当する基準値を入力して切り替えを
指令する判定信号を出力する判定回路と、 該判定信号と前記作動信号とを入力して前記ゲ
ート素子をオンにして前記励磁電流の検出値を前
記演算素子に入力する励磁電流切り替え信号を前
記ゲート素子に出力する切替回路とを備えたこと
を特徴とする電磁弁駆動装置。
[Scope of Claims] 1. An active element whose load is the coil of a solenoid valve, an actuation signal for operating the solenoid valve, and a detected value of the excitation current of the coil are inputted via a gate element, and a deviation signal is sent to the active element. an excitation circuit having an arithmetic element that outputs an output to the excitation current; a determination circuit that inputs the detected value of the excitation current and a reference value corresponding to a current for switching the excitation current and outputs a determination signal instructing switching; and the determination signal and a switching circuit that outputs an excitation current switching signal to the gate element, which inputs the and the activation signal to turn on the gate element and inputs the detected value of the excitation current to the arithmetic element. Solenoid valve drive device.
JP16328684A 1984-08-01 1984-08-01 Driving apparatus for solenoid valve Granted JPS6141085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16328684A JPS6141085A (en) 1984-08-01 1984-08-01 Driving apparatus for solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16328684A JPS6141085A (en) 1984-08-01 1984-08-01 Driving apparatus for solenoid valve

Publications (2)

Publication Number Publication Date
JPS6141085A JPS6141085A (en) 1986-02-27
JPH0456913B2 true JPH0456913B2 (en) 1992-09-09

Family

ID=15770928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16328684A Granted JPS6141085A (en) 1984-08-01 1984-08-01 Driving apparatus for solenoid valve

Country Status (1)

Country Link
JP (1) JPS6141085A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425597Y2 (en) * 1987-07-02 1992-06-18
JP2005294304A (en) * 2004-03-31 2005-10-20 Taiko Device Techno & Co Ltd Drive control circuit of electromagnetic device
JP4222413B2 (en) * 2006-11-28 2009-02-12 ダイキン工業株式会社 Thermal valve control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50107458A (en) * 1974-01-31 1975-08-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50107458A (en) * 1974-01-31 1975-08-23

Also Published As

Publication number Publication date
JPS6141085A (en) 1986-02-27

Similar Documents

Publication Publication Date Title
US4399483A (en) Solenoid current control
EP0187224B1 (en) Current controlled motor drive circuit
US4546403A (en) Solenoid switching driver with solenoid current proportional to an analog voltage
JPH0379809B2 (en)
JPH0456913B2 (en)
US5077487A (en) Driver circuit for a large capacity switching element
JPS61187304A (en) Direct current electromagnet device
JPS6127146Y2 (en)
JPS5830108A (en) Plunger driving circuit
JPS5942961B2 (en) Magnet drive circuit
JPH0470755B2 (en)
JPS6283570A (en) Control device for opening of electromagnetic valve
JPS6161409A (en) Driving circuit for solenoid
JP2575165B2 (en) Drive control device for DC motor
JPH0526948Y2 (en)
JPH0661042A (en) Driver circuit for inductive load
JPH0479449B2 (en)
JPS63106484A (en) Driving device for solenoid valve
JPS5937476U (en) Proportional solenoid valve drive circuit
JPS63214584A (en) Control circuit for solenoid valve
JPS60234462A (en) Controller for switching power source
JPH02223683A (en) Drive device for solenoid pump
JPS61243995A (en) Bubble memory device
JPH07122424A (en) Drive circuit of electromagnet device
JPS61210900A (en) Power generation controller