JPS60142566A - Insulated gate thin film transistor and manufacture thereof - Google Patents

Insulated gate thin film transistor and manufacture thereof

Info

Publication number
JPS60142566A
JPS60142566A JP25009083A JP25009083A JPS60142566A JP S60142566 A JPS60142566 A JP S60142566A JP 25009083 A JP25009083 A JP 25009083A JP 25009083 A JP25009083 A JP 25009083A JP S60142566 A JPS60142566 A JP S60142566A
Authority
JP
Japan
Prior art keywords
film
thin film
film transistor
layer
insulated gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25009083A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nasu
安宏 那須
Satoru Kawai
悟 川井
Kenichi Yanai
梁井 健一
Atsushi Inoue
淳 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25009083A priority Critical patent/JPS60142566A/en
Publication of JPS60142566A publication Critical patent/JPS60142566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • H01L29/78687Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys with a multilayer structure or superlattice structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To reduce OFF-current and to shorten exposure time during manufacture by a method wherein a semiconductur layer of a-Si film is partially or totally replaced with a-SiXC1-X:H. CONSTITUTION:An NiCr pattern that is to serve as a gate electrode 2 is formed on a glass substrate 1 that is transparent and insulating. By the plasma CVD method, a gate-insulating film 3, composed of Si3N4 or SiO2, an a-Si:H film 4, and then an a-SiXC1-X film 5 is formed. The a-Si:H film 4 and a-SiXC1-X film 5 constitute a semiconductor activation layer. An N<+>a-SiXC1-X film 7 doped with P is formed by using a photoresist 6. then source/drain electrodes 8 are formed of NiCr. A device provided with this thicker activation layer can be effectively exposed to light as easily as a device provided with a thinner semiconductor activation film made of a-Si:H only.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は、背面露光に好適し、素子の特性が向上した絶
縁ゲート薄膜トランジスタとその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an insulated gate thin film transistor that is suitable for back exposure and has improved device characteristics, and a method for manufacturing the same.

(2)発明の背景 絶縁ゲート薄膜トランジスタは、絶縁基板上にゲート電
極、絶縁ゲート層、半導体層、ソース・ドレイン電極を
債催して構成される。この絶縁ゲート薄膜トランジスタ
は1例えば液晶表示パネルの画素毎にスイッチング素子
として用いられるが。
(2) Background of the Invention An insulated gate thin film transistor is constructed by bonding a gate electrode, an insulated gate layer, a semiconductor layer, and source/drain electrodes on an insulating substrate. This insulated gate thin film transistor is used as a switching element for each pixel of a liquid crystal display panel, for example.

例えばA4サイズの液晶表示パネルを構成する場合、一
画素は200μ9程度となり、これに伴い1個の薄膜ト
ランジスタのサイズも小形化する必要がある。この薄膜
トランジスタは、液晶表示パネルに用いられる場合、透
過光のシールドとなる虞れがあるから小形化の要請は増
加する。
For example, when constructing an A4-sized liquid crystal display panel, one pixel is approximately 200 μ9, and accordingly, the size of one thin film transistor must also be reduced. When this thin film transistor is used in a liquid crystal display panel, there is a risk that it may become a shield for transmitted light, so there is an increasing demand for miniaturization.

(3)従来技術と問題点 従来の絶縁ゲート薄膜トランジスタには半導体層をa−
3i(アモルファスシリコン)によって形成するものが
あった。しかしながら、この種の薄膜トランジスタは画
素の面積が小となる領域ではオフ電流が十分に低くない
という欠点があった。
(3) Conventional technology and problems Conventional insulated gate thin film transistors have a semiconductor layer a-
There was one made of 3i (amorphous silicon). However, this type of thin film transistor has a drawback that its off-state current is not sufficiently low in regions where the pixel area is small.

また、薄膜トランジスタを高精度かつ大面積にてバター
ニングするため、絶縁基板の背面からの露光によりセル
フアライメントによって薄膜トランジスタを製造する際
には、レジストの感光波長域(600nm以下)ではa
−3iの光吸収が大であるため、十分な露光を行なうた
めにはa−3iの半導体層を1000Å以下に薄くしな
ければならず。
In addition, in order to pattern thin film transistors with high precision and over a large area, when manufacturing thin film transistors by self-alignment using exposure from the back side of an insulating substrate, in the photosensitive wavelength range of the resist (600 nm or less),
Since light absorption of -3i is large, the semiconductor layer of a-3i must be thinned to 1000 Å or less in order to perform sufficient exposure.

このため薄膜トランジスタの闇値電圧が不安定になる等
のトランジスク特性の劣化を招き、さらにa−3iを介
して露光するためには、露光時間を通電の100倍程度
にしなければならないという問題があった。
This causes deterioration of the transistor characteristics such as the dark voltage of the thin film transistor becoming unstable, and furthermore, there is the problem that in order to expose through the a-3i, the exposure time has to be about 100 times the energization time. Ta.

(4)発明の目的 本発明は、半導体層のa−5i膜の一部または全部をa
−3ixC+−x:H(水素を含んだアモルファスシリ
コンと炭素の合金)におきかえることにより、オフ電流
を低減できるとともに、闇値電圧等の半導体の素子特性
が安定し、かつ製造時において露光時間を短縮できる絶
縁ゲート薄膜トランジスタとその製造方法を提供するこ
とを目的とする。
(4) Purpose of the Invention The present invention provides a method for converting part or all of the a-5i film of the semiconductor layer into a
By replacing -3ixC+-x:H (an alloy of amorphous silicon and carbon containing hydrogen), it is possible to reduce off-current, stabilize semiconductor device characteristics such as dark voltage, and reduce exposure time during manufacturing. An object of the present invention is to provide an insulated gate thin film transistor that can be shortened and a manufacturing method thereof.

(5)発明の構成 そして上記目的は本発明によれば、絶縁基板上にソース
、ドレイン電極、半導体層、ゲート絶縁層、ゲート電極
を積層してなり、前記半導体層がa−3ixC+−x:
Hよりなることを特徴とする絶縁ゲートF4?膜トラン
ジスタを提供することによって達成される。
(5) Structure of the invention and the above-mentioned object is that according to the present invention, a source, a drain electrode, a semiconductor layer, a gate insulating layer, and a gate electrode are stacked on an insulating substrate, and the semiconductor layer is a-3ixC+-x:
Insulated gate F4 characterized by consisting of H? This is achieved by providing a membrane transistor.

即ち5本発明の薄膜トランジスタは半導体層に用いられ
るa−3ixC+−x:Hはa−3iに比べて、導電率
が低いので、オフ電流を低減でき。
That is, in the thin film transistor of the present invention, the a-3ixC+-x:H used in the semiconductor layer has a lower conductivity than a-3i, so the off-state current can be reduced.

レジスト感光波長付近の光吸収が少ないので、半導体層
を厚くできるから素子特性が安定しかつ製造の露光時間
も短縮できるのである。。
Since there is little light absorption near the resist photosensitive wavelength, the semiconductor layer can be made thicker, resulting in stable device characteristics and shorter manufacturing exposure time. .

(6)発明の実施例 以下1図面を参照して1本発明の一実施例を説明する。(6) Examples of the invention An embodiment of the present invention will be described below with reference to the drawings.

第1図において2例えば、ガラス基板1よりなる透明な
絶縁基板上にゲート金属として1例えば。
In FIG. 1, a gate metal layer 1 is formed on a transparent insulating substrate made of, for example, a glass substrate 1.

NiCr にッケルクロム)パターンを700への厚さ
に形成し、ゲート電極2とする(a図)。
A NiCr (nickel chromium) pattern is formed to a thickness of about 700 nm to form the gate electrode 2 (Figure a).

次にプラズマCVD法によりゲート絶縁層となる3i3
N4 (窒化シリコン)膜3あるいは5i02(酸化シ
リコン)膜を3000人の厚さに形成し。
Next, 3i3 which becomes the gate insulating layer by plasma CVD method.
A N4 (silicon nitride) film 3 or a 5i02 (silicon oxide) film is formed to a thickness of 3000 nm.

これに接してその上にa−3t:H(水素を含んだアモ
ルファスシリコン)膜4を100人程度の厚さに形成し
、その上に、a−3ixC+−x:H11央5を300
0〜5000人の厚さに順次真空中にて成膜する(b図
)。ここでa −S i : I−1膜4及びa−3i
 x C+ −x : H膜5ば半導体活性層を構成す
る。次に、ポジ型のフォトレジスト6を1.5μm厚に
塗布し、ガラス基板1の背面より、〜6000人(2e
 v)以下の波長の光にて露光する(0図)。
In contact with this, an a-3t:H (amorphous silicon containing hydrogen) film 4 is formed to a thickness of about 100 mm, and a-3ixC+-x:H11 center 5 is formed on it to a thickness of 300 mm.
Films are sequentially formed in a vacuum to a thickness of 0 to 5000 mm (Figure b). where a-S i : I-1 film 4 and a-3i
xC+-x: H film 5 constitutes a semiconductor active layer. Next, a positive type photoresist 6 is applied to a thickness of 1.5 μm, and ~6000 people (2e
v) Expose with light of the following wavelengths (Figure 0).

次にフォトレジストを現像し、セルフアライメントプロ
セスによって、ゲート電極2に対応するフォトレジスト
6のみを残し、他の部分のレジストを除去する。表面に
リンがドープされたn a −3ixC+−xlQ7を
100〜500人厚に形成し。
Next, the photoresist is developed, and by a self-alignment process, only the photoresist 6 corresponding to the gate electrode 2 is left, and the other portions of the resist are removed. A layer of na-3ixC+-xlQ7 doped with phosphorus on the surface is formed to a thickness of 100 to 500 layers.

その上にNiCrよりなるソース・ドレイン電極8を成
膜する(d図)。そして、リフトオフ工程によって例え
ばアセI・ンによりフォトレジスト6を除去し、ソース
・ドレイン電極8のパターニングを行なって、絶縁ゲー
ト薄膜トランジスタを形成する(e図)。
A source/drain electrode 8 made of NiCr is formed thereon (Fig. d). Then, the photoresist 6 is removed by a lift-off process, for example, by acetic acid, and the source/drain electrodes 8 are patterned to form an insulated gate thin film transistor (see figure e).

上述の工程によって製造された本発明の絶縁ゲート薄膜
トランジスタでは、a−3i:H膜4の上にa−3i 
xC’+−x : H賎5を形成し、a−3ixC+−
x:H膜の組成比をx=oからO〈Xく1の範囲へと階
段状に変化させているのでオプチイ力ルギャソプE6P
が1.6eVから2゜5eVへと高エネルギー側にシフ
トする。 このため、a−3i :H膜だけで半導体活
性層を形成した場合に比べて半導体活性層を厚くしても
容易に露光が行なえる。即ち光透過率が悪いa−8i:
H膜4を薄<シ、光透過率の良いa−3ixC+−x;
H膜5を厚く形成したからである。半導体活性層の膜厚
が厚いので闇値電圧等の素子特性を安定化し。
In the insulated gate thin film transistor of the present invention manufactured by the above-mentioned process, a-3i is formed on the a-3i:H film 4.
xC'+-x: Forms H-5, a-3ixC+-
The composition ratio of the x:H film is changed stepwise from x = o to O <
shifts from 1.6 eV to 2°5 eV toward higher energy. Therefore, even if the semiconductor active layer is made thicker, exposure can be performed more easily than when the semiconductor active layer is formed using only the a-3i:H film. That is, a-8i with poor light transmittance:
H film 4 is thin and has good light transmittance a-3ixC+-x;
This is because the H film 5 is formed thick. The thick semiconductor active layer stabilizes device characteristics such as dark voltage.

a−Si:H膜4が薄いのでガラス基板lの背面から半
導体活性層を介してレジストを露光することに適し、か
つ導電率の低いa−3ixC+−x:H膜5が素子の表
面近くに厚く形成されているので9表面の電荷が薄膜ト
ランジスタ素子内部に移動しオフ電流を流すことをブロ
ックできる。
Since the a-Si:H film 4 is thin, it is suitable for exposing the resist from the back side of the glass substrate l through the semiconductor active layer, and the a-3ixC+-x:H film 5 with low conductivity is placed near the surface of the element. Since it is formed thickly, it is possible to block the charge on the surface from moving into the thin film transistor element and causing an off-state current to flow.

第2図は1本発明の薄膜トランジスタの他の製造プロセ
スを示すもので、このプロセスでは各層を成膜してい(
順序が、第1図の実施例と逆となるだけで、各層を形成
する材質及び厚さ等の形成条件は同様であるから対応す
る層には第1の実施例と同一番号を付し詳細な説明は省
略する。 まず、ガラス基板1上にソース・ドレイン電
極8を形成し、その上にn” a−3ixC+−x:H
膜7を形成し、(a図)、−その上にa−3txC+−
x : H膜5.a−3ix:H膜4.ゲート絶縁1*
3の順に形成する(b図)。 次にポジレジスト6を塗
布し、ガラス基板1の背面より露光しく0図)、ソース
・ドレイン電極8においてゲート電極2に応対して切欠
かれ部分に関してセルフアライメントによって現像し、
ゲート電極2を形成しくd図)、そのゲート電極2以外
の部分のレジスト6をリーフトオフして2本発明の薄膜
トランジスタを形成する(e図)。 第2図に示した実
施例も、第1図に示した実施例と同様に動作する。
Figure 2 shows another manufacturing process for the thin film transistor of the present invention, in which each layer is formed (
The order is just reversed from the embodiment shown in Fig. 1, but the forming conditions such as the material and thickness for forming each layer are the same, so the corresponding layers are given the same numbers as in the first embodiment, and the details are explained below. Further explanation will be omitted. First, source/drain electrodes 8 are formed on a glass substrate 1, and n''a-3ixC+-x:H
Form a film 7, (Figure a), -a-3txC+- on it.
x: H film5. a-3ix: H film 4. Gate insulation 1*
3 (Figure b). Next, a positive resist 6 is applied, exposed to light from the back side of the glass substrate 1 (Fig. 0), and developed by self-alignment at the notch portion corresponding to the gate electrode 2 in the source/drain electrode 8.
A gate electrode 2 is formed (Fig. d), and a portion of the resist 6 other than the gate electrode 2 is leafed off to form a thin film transistor of the present invention (Fig. e). The embodiment shown in FIG. 2 operates similarly to the embodiment shown in FIG.

上記第1.第2の実施例において、a−3ixCI−x
:H膜5の膜抵抗がa−3t:H膜4よりも高いため、
ソース・ドレイン電極8付近の膜厚方向の抵抗のため薄
膜トランジスタのオン電流も低下してしまうことがある
。この場合には、a−3i’xc + −x : H膜
5にリンやポロンの如き不純物を適量ドープすれば、か
かるオン電流の低下を防止できる。この際、a−3ix
C+−x:■(膜5のオプティカルギャップがa−3t
膜4よりも大きいという本発明の特徴は、失われないか
ら、第1.第2の実施例と同様の効果を奏することがで
きる。
Above 1st. In a second embodiment, a-3ixCI-x
:H film 5 has a higher film resistance than a-3t:H film 4, so
Due to the resistance in the film thickness direction near the source/drain electrodes 8, the on-current of the thin film transistor may also decrease. In this case, if the a-3i'xc + -x :H film 5 is doped with an appropriate amount of impurity such as phosphorus or poron, such a decrease in on-current can be prevented. At this time, a-3ix
C+-x:■(Optical gap of film 5 is a-3t
The feature of the present invention that it is larger than the membrane 4 is not lost, so the first. The same effects as the second embodiment can be achieved.

(7)発明の効果 本発明によれば、オフ電流を低減できかつ、裏面露光の
際半導体層を透過してフォトレジストに到達する光量を
増加でき、従って露光時間を1/20〜1/30に短縮
でき、さらに、半導体層を厚く形成して闇値電圧等の素
子の特性の安定化した絶縁ゲートトランジスタを提供で
きる。
(7) Effects of the Invention According to the present invention, it is possible to reduce the off-state current, and increase the amount of light that passes through the semiconductor layer and reaches the photoresist during backside exposure, thus reducing the exposure time by 1/20 to 1/30. Furthermore, by forming a thick semiconductor layer, it is possible to provide an insulated gate transistor in which device characteristics such as dark value voltage are stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の絶縁デーl−薄膜トランジスタの製造
工程の一実施例を示す断面図、第2図は本発明の製造工
程の他の実施例を示す断面図である。 1・・・ガラス基板 2・・・ゲート電極 3・・・ゲ
ート絶縁膜 4・−a−3t:H膜 5・−・a−3txC+−x:H膜 6・・・フォトレジスト 7・・・ n”a−3ixC+−x:H膜 8・・・ソース・l”レイン電極 第1図 i 光 第2因 露 光
FIG. 1 is a cross-sectional view showing one embodiment of the manufacturing process of an insulated thin film transistor of the present invention, and FIG. 2 is a cross-sectional view showing another example of the manufacturing process of the present invention. 1...Glass substrate 2...Gate electrode 3...Gate insulating film 4.-a-3t:H film 5.-.a-3txC+-x:H film 6...Photoresist 7... n"a-3ixC+-x:H film 8...source/l"rain electrode Figure 1i Light second factor exposure

Claims (4)

【特許請求の範囲】[Claims] (1) 絶縁基板上にソース、ドレイン電極、半導体層
、ゲート絶縁層、ゲート電極を積層してなり、前記半導
体層がa−3ixC+−x:Hよりなることを特徴とす
る絶縁ゲート薄膜トランジスタ。
(1) An insulated gate thin film transistor comprising a source, a drain electrode, a semiconductor layer, a gate insulating layer, and a gate electrode stacked on an insulating substrate, the semiconductor layer comprising a-3ixC+-x:H.
(2) 前記半導体層を構成するa−3ix、C+−x
 : IIのうちデーl−絶縁層に接する部分のXの値
をX=1とし、ゲート絶縁層から離れた部分を0<X<
1の範囲とすることによりXの値を階段状に変化させた
ことを特徴とする特許請求の範囲第1項記載の絶縁ゲー
ト薄膜トランジスタ。
(2) a-3ix, C+-x constituting the semiconductor layer
: The value of X in the portion of II that is in contact with the dielectric layer is set to X=1, and the portion away from the gate insulating layer is set to 0<X<
2. The insulated gate thin film transistor according to claim 1, wherein the value of
(3) 前記半導体層に不純物をドープしたことを特徴
とする特許請求の範囲第1項記載の絶縁ゲート薄膜トラ
ンジスタ。
(3) The insulated gate thin film transistor according to claim 1, wherein the semiconductor layer is doped with an impurity.
(4) 絶縁基板上にソース、ドレイン電極、a−3i
xC+−x:IIからなる半導体層、ゲート絶縁層、ゲ
ート電極を、前記絶縁基板の裏面より露光してセルフア
ライメントによって形成することを特徴とする絶縁ゲー
ト薄膜トランジスタの製造方法。
(4) Source and drain electrodes, a-3i, on the insulating substrate
A method for manufacturing an insulated gate thin film transistor, characterized in that a semiconductor layer, a gate insulating layer, and a gate electrode made of xC+-x:II are formed by self-alignment by exposure from the back surface of the insulating substrate.
JP25009083A 1983-12-28 1983-12-28 Insulated gate thin film transistor and manufacture thereof Pending JPS60142566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25009083A JPS60142566A (en) 1983-12-28 1983-12-28 Insulated gate thin film transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25009083A JPS60142566A (en) 1983-12-28 1983-12-28 Insulated gate thin film transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60142566A true JPS60142566A (en) 1985-07-27

Family

ID=17202661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25009083A Pending JPS60142566A (en) 1983-12-28 1983-12-28 Insulated gate thin film transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60142566A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230376A (en) * 1985-07-31 1987-02-09 Fujitsu Ltd Manufacture of thin film transistor
FR2601801A1 (en) * 1986-07-16 1988-01-22 Morin Francois ACTIVE MATRIX DISPLAY SCREEN USING HYDROGENIC AMORPHOUS SILICON CARBIDE AND METHOD OF MANUFACTURING THE SAME
JPS6341077A (en) * 1986-08-06 1988-02-22 Nippon Sheet Glass Co Ltd Manufacture of thin-film transistor
EP0276002A2 (en) * 1987-01-23 1988-07-27 Hosiden Corporation Thin film transistor
JPH01115162A (en) * 1987-10-29 1989-05-08 Matsushita Electric Ind Co Ltd Thin film transistor and manufacture thereof
EP0322590A2 (en) * 1988-01-04 1989-07-05 International Business Machines Corporation Thin film semiconductor device
JPH02275672A (en) * 1989-03-30 1990-11-09 Nippon Steel Corp Thin film transistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230376A (en) * 1985-07-31 1987-02-09 Fujitsu Ltd Manufacture of thin film transistor
FR2601801A1 (en) * 1986-07-16 1988-01-22 Morin Francois ACTIVE MATRIX DISPLAY SCREEN USING HYDROGENIC AMORPHOUS SILICON CARBIDE AND METHOD OF MANUFACTURING THE SAME
JPS6341077A (en) * 1986-08-06 1988-02-22 Nippon Sheet Glass Co Ltd Manufacture of thin-film transistor
EP0276002A2 (en) * 1987-01-23 1988-07-27 Hosiden Corporation Thin film transistor
JPH01115162A (en) * 1987-10-29 1989-05-08 Matsushita Electric Ind Co Ltd Thin film transistor and manufacture thereof
EP0322590A2 (en) * 1988-01-04 1989-07-05 International Business Machines Corporation Thin film semiconductor device
JPH02275672A (en) * 1989-03-30 1990-11-09 Nippon Steel Corp Thin film transistor

Similar Documents

Publication Publication Date Title
US5920772A (en) Method of fabricating a hybrid polysilicon/amorphous silicon TFT
US6537843B2 (en) Thin film transistor and method of manufacturing the same
US5061648A (en) Method of fabricating a thin-film transistor
JP2656495B2 (en) Method for manufacturing thin film transistor
JPH06148685A (en) Liquid crystal display device
JP2739642B2 (en) Thin film transistor and method of manufacturing the same
JPH08172202A (en) Thin film transistor and manufacture thereof
US6124153A (en) Method for manufacturing a polysilicon TFT with a variable thickness gate oxide
CN112086561A (en) Light sensing device, manufacturing method thereof and display panel
CN109300841B (en) The manufacturing method of array substrate
US10629834B2 (en) Thin film transistor, method for preparing the same, and display device
KR0171648B1 (en) Thin film device and method of producing the same
JPS60142566A (en) Insulated gate thin film transistor and manufacture thereof
US20040086807A1 (en) Method of fabricating thin film transistor
JPH023308B2 (en)
JP3163844B2 (en) Method of manufacturing inverted staggered thin film field effect transistor
JP3093314B2 (en) Thin film transistor and method of manufacturing the same
JP2000036603A (en) Manufacture of thin-film transistor
JP2862737B2 (en) Thin film transistor and method of manufacturing the same
JP2630195B2 (en) Thin film field effect transistor and method of manufacturing the same
JPH0534837B2 (en)
JP3179160B2 (en) Semiconductor device and manufacturing method thereof
JPH07142737A (en) Manufacture of thin-film transistor
JPH01115162A (en) Thin film transistor and manufacture thereof
JPH05343690A (en) Thin film transistor and manufacture thereof