JPS60130532A - Methanizing and methanizing catalyst - Google Patents

Methanizing and methanizing catalyst

Info

Publication number
JPS60130532A
JPS60130532A JP58238824A JP23882483A JPS60130532A JP S60130532 A JPS60130532 A JP S60130532A JP 58238824 A JP58238824 A JP 58238824A JP 23882483 A JP23882483 A JP 23882483A JP S60130532 A JPS60130532 A JP S60130532A
Authority
JP
Japan
Prior art keywords
catalyst
nickel oxide
nickel
reaction
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58238824A
Other languages
Japanese (ja)
Other versions
JPS632938B2 (en
Inventor
Tsunekichi Yamabe
山辺 常吉
Kenji Mori
憲二 森
Koichi Fujie
藤江 宏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP58238824A priority Critical patent/JPS60130532A/en
Publication of JPS60130532A publication Critical patent/JPS60130532A/en
Publication of JPS632938B2 publication Critical patent/JPS632938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To methanize a carbon monoxide-containing gas having high ceoncentration efficiently, by using a reactor of the external cooling type, making a catalytic layer in the reactor into a fixed bed, using the catalytic layer containing nickel oxide. CONSTITUTION:In methanizing a gas such as a gas obtained by gasifying coal or heavy oil, etc., containing highly concentrated carbon monoxide gas, the carbon monoxide-containing gas is introduced into a fixed catalytic bed of a reactor of the external cooling type and methanized. The fixed catalytic bed in the reactor is a catalytic layer containing nickel oxide, preferably a catalytic layer consisting of nickel oxide and reduced nickel or one consisting of nickel oxide and an element of platinum group. When nickel oxide is combined with reduced nickel and used, preferably a reduced nickel catalyst is laid in the upper layer part of the fixed catalytic bed, and a nickel oxide catalyst is preferably set in the low layer part of it. In the case of the catalyst of nickel oxide and an element of platinum group, preferably a catalyst of an element of platinum group is laid in the upper layer part of the fixed catalyst and nickel oxide is set in the lower layer part of it.

Description

【発明の詳細な説明】 本発明は一酸化炭素含有ガスのメタン化および該メタン
化に用いられるメタン化触媒に関し、更に詳しくは、高
濃度の一酸化炭素ガスを含有する石炭ガス化ガス、重質
油ガス化ガスを効率よくメタン化する固定触ts層とし
て、酸化ニッケルを含む触媒層を用いたメタン化法およ
び該メタン化法に用いられるメタン化触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to methanation of carbon monoxide-containing gas and a methanation catalyst used for the methanation. The present invention relates to a methanation method using a catalyst layer containing nickel oxide as a fixed contact layer for efficiently methanizing oil gasification gas, and a methanation catalyst used in the methanation method.

最近のエネルギー事情からみると、重質油や石炭をガス
化して得られる高濃度−酸化炭素ガスをメタン化し、代
替天然ガスを得る方法は非常に有望なプロセスである。
In view of the recent energy situation, a method of producing alternative natural gas by methanizing high concentration carbon oxide gas obtained by gasifying heavy oil or coal is a very promising process.

近年、石炭ガス化ガスからのメタン合成については多く
の報告が発表されている。特に米国においては本格的な
研究が行なわれCおり、日本でもサンシャイン計画の一
翼として高カロリーガス化を目的としたプロジェクトが
組まれている。
In recent years, many reports have been published on methane synthesis from coal gasification gas. Particularly in the United States, full-scale research is being conducted, and in Japan, a project aimed at producing high-calorie gas is being set up as part of the Sunshine Project.

このメタン合成反応は、大きな反応熱の発生を伴う反応
であり、その反応熱をエネルギー源として有効に利用す
ることは、メタン合成プロセスの経済性という点から非
常に重要である。この反応熱を有効に利用するには高温
で反応を行なわせるのが最も好ましいが、メタン合成反
応に通常用いられる触媒をこのような高濃度−酸化炭素
ガスで使用すると熱や雰囲気中のスチームによるシンタ
リングおよび炭素質の生成等の原因で触媒が著しく劣化
することが知られている。
This methane synthesis reaction is a reaction accompanied by the generation of a large amount of reaction heat, and it is very important from the economical point of view of the methane synthesis process to effectively utilize the reaction heat as an energy source. In order to make effective use of this reaction heat, it is most preferable to carry out the reaction at a high temperature, but if the catalyst normally used for methane synthesis reaction is used with such a high concentration of carbon oxide gas, it will be affected by the heat and steam in the atmosphere. It is known that the catalyst deteriorates significantly due to causes such as sintering and carbonaceous formation.

更に触媒上で炭素原子が結合して生成する炭素質は時に
は反応管の閉塞を引き起し、反応継続を物理的に不可能
としてしまう。
Furthermore, carbonaceous matter produced by bonding of carbon atoms on the catalyst sometimes causes clogging of the reaction tube, making it physically impossible to continue the reaction.

例えば、現在一般に汎用されている通常のニッケル系の
メタネーション触媒をこのようなプロセスに用いると、
初期活性が高ずきるため非常に高い発熱5よる触媒の活
性劣化や装置上の除熱が問題となる。そのため触媒を希
釈して充填したり原料ガスの供給量を少なくする等の操
作が必要となる。これらの方法は技術的、経済的に問題
がある。
For example, if an ordinary nickel-based methanation catalyst, which is currently widely used, is used in such a process,
Since the initial activity is too high, problems arise such as deterioration of catalyst activity due to extremely high heat generation 5 and heat removal from the equipment. Therefore, operations such as diluting the catalyst and filling it or reducing the amount of raw material gas supplied are required. These methods are technically and economically problematic.

また、数%から数10%の範囲で触媒に含有されている
ニッケル間を減じて初期活性を下げることも考えられる
が、ニッケル含有量をある量以下に低減させると、初期
活性の著しい低下を招き、触媒性能が低下してしまう。
It is also possible to reduce the initial activity by reducing the amount of nickel contained in the catalyst in the range of several percent to several tens of percent, but if the nickel content is reduced below a certain amount, the initial activity will be significantly reduced. This leads to a decrease in catalyst performance.

このような問題点を解決すべ〈従来より数多く提案され
ている方法は、高熱反応を回避すべく常に反応熱を除去
し、触媒層の温度制御を維持することにあった。しかし
この方法は、触媒層において反応熱の除去と反応速度が
平衡を保てないことから、触媒層に温度分布が生じ、触
媒層の低温部、特に約450℃以下の触媒層においては
、Ni (CO)4を生成し、触媒の活性が著しく劣化
するという欠点がある(ダブリュ エム ジエン(W。
To solve these problems, many conventional methods have been proposed to constantly remove reaction heat and maintain temperature control of the catalyst layer in order to avoid high-temperature reactions. However, in this method, the removal of reaction heat and the reaction rate cannot be balanced in the catalyst layer, so a temperature distribution occurs in the catalyst layer, and the Ni (CO)4 is produced and the activity of the catalyst is significantly deteriorated (W.

M、5HEN)、ジャーナル オブ カタリシス(Jo
urnal of Catalysis) 、68.1
52−165(1981) )。すなわち、触媒層の反
応器入口部分(上層部)でメタン化反応が行なわれる際
に、触媒層の下層部(下流部)は反応による温度上昇が
少ないので、ニッケルは一酸化炭素ガス瀧麿が低濃度で
もNi (Co)aを生成してしまい、触媒層の上層部
の触媒が劣化を起し、下層部でメタン化反応する際に、
下層部の二1ツケル触媒は既に劣化してしまっていると
いう欠点がある。
M, 5HEN), Journal of Catalysis (Jo
urnal of catalysis), 68.1
52-165 (1981)). In other words, when the methanation reaction is carried out at the reactor inlet part (upper part) of the catalyst layer, the temperature rise due to the reaction is small in the lower part (downstream part) of the catalyst layer, so nickel is Even at low concentrations, Ni (Co)a is generated, the catalyst in the upper layer of the catalyst layer deteriorates, and when the methanation reaction occurs in the lower layer,
The disadvantage is that the 21-ton catalyst in the lower layer has already deteriorated.

現在、上記した通常のニッケル触媒に加えて、−酸化炭
素からのメタン合成用の触媒として用いられているのは
、例えば、 a)Ru、Pt、Pd、Ir、Rh等の白金族触媒、 b)流動触W層に用いるRu/Ni触媒(0,5重量%
Ru−10重鑓%N1−AJ203 、1.0重量%R
u−10重岳%N 1−AJ 203 )(7ucci
、ER1ハイドロカーボン プロセスイング(1−1y
drocarbon Processing ) 10
7−112.1980−4)、 等の触媒である。
Currently, in addition to the above-mentioned ordinary nickel catalysts, catalysts used for methane synthesis from -carbon oxide are, for example, a) platinum group catalysts such as Ru, Pt, Pd, Ir, Rh, b) ) Ru/Ni catalyst used in the fluidized W layer (0.5% by weight)
Ru-10 weight% N1-AJ203, 1.0 weight% R
u-10 Judake%N 1-AJ 203) (7ucci
, ER1 Hydrocarbon Processing (1-1y
drocarbon Processing) 10
7-112.1980-4), etc.

これらの触媒も上記したニッケル触媒と同様に高m度の
一酸化炭素含有ガスをメタン化するメタン化触媒として
は種々の欠点を有している。
Like the nickel catalyst described above, these catalysts have various drawbacks as methanation catalysts for methanating gas containing high carbon monoxide.

すなわち、ルテニウム等の白金族元素は^価なので単独
で用いると経済性の面で非常に問題があり、また耐イオ
ウ性に劣る。
That is, since platinum group elements such as ruthenium are ^-valent, their use alone poses a serious problem in terms of economic efficiency, and they also have poor sulfur resistance.

本発明はこのような欠点を解決すべくなされたもので、
−酸化炭素含有ガスを効率良くメタン化覆るメタン化法
およびメタン化触媒を提供することを目的とする。
The present invention was made to solve these drawbacks,
- An object of the present invention is to provide a methanation method and a methanation catalyst that efficiently methanize a carbon oxide-containing gas.

本発明者らは、この目的に沿って検問の結果、−酸化炭
素含有ガスをメタン化する反応器を外部冷却型どし、こ
の反応器中の触媒層を固定層とし、かつ触媒層が酸化ニ
ッケルを含む触媒層、特に酸化ニッケルと白金族元素か
らなる触’1XFjを用いた場合に上記目的が充分達成
されることを見出し本発明に到達した。
In line with this objective, the present inventors conducted an investigation and found that - The reactor for methanating carbon oxide-containing gas is an externally cooled type, the catalyst layer in this reactor is a fixed bed, and the catalyst layer is oxidized. The inventors have discovered that the above object can be fully achieved by using a catalyst layer containing nickel, particularly a catalyst layer containing nickel oxide and a platinum group element, and have thus arrived at the present invention.

すなわち本発明のメタン化法とは、−酸化炭素含有ガス
をメタン化するに際し、外部冷却型反応器の固定触at
層が酸化ニッケルを含む触媒層であることを特徴とする
ものである。
That is, the methanation method of the present invention refers to the use of a fixed catalyst in an externally cooled reactor to methanize a carbon oxide-containing gas.
The layer is a catalyst layer containing nickel oxide.

本発明のメタン化法に用いられるガスとは、−酸化炭素
ガスを含有していれば特に制限されないが、好ましくは
一酸化炭素ガスを高濃度で含有する石灰ガス化ガス、重
質油ガス化ガスが用いられる。
The gas used in the methanation method of the present invention is not particularly limited as long as it contains carbon oxide gas, but preferably lime gasification gas containing carbon monoxide gas at a high concentration, heavy oil gasification gas, etc. Gas is used.

本発明においては、この−酸化炭素含有ガスを外部冷却
型反応器の固定触媒層に導入してメタン化を行なう。こ
のメタン化反応における反応器入口温度は、触媒の活性
を保持するといった観点から450℃以下、好ましくは
200〜420℃とすることが望ましい。
In the present invention, this carbon oxide-containing gas is introduced into a fixed catalyst bed of an externally cooled reactor to carry out methanation. The reactor inlet temperature in this methanation reaction is desirably 450°C or less, preferably 200 to 420°C, from the viewpoint of maintaining the activity of the catalyst.

反応器の固定触wc層は酸化ニッケルを含む触媒層であ
ることが必要であり、この酸化ニッケルは450″C以
下では還元しないように高温処理等の処理を行なって調
製される。この場合に酸化ニッケルは担体と反応して一
部がN!AJ20aを生成して難還元性となる。
The fixed catalyst layer of the reactor must be a catalyst layer containing nickel oxide, and this nickel oxide is prepared by performing a high temperature treatment or other treatment so that it will not be reduced below 450"C. In this case, Nickel oxide reacts with the carrier, and part of it generates N!AJ20a, making it difficult to reduce.

このような低温で難還元性の酸化ニッケルを含む触媒層
の好ましいものとしては、酸化ニッケルと還元ニッケル
とからなる触媒層または酸化ニッケルと白金族元素から
なる触媒層である。酸化ニッケルど還元ニッケルを組合
わせて用いる場合には、固定触媒層の上層部にニッケル
還元触媒を配置し、その下層部に酸化ニッケル触媒を配
置することが望ましい。また、酸化ニッケルと白金族元
素を組合わせて用いる場合には、固定触媒層の上層部に
白金族元素触媒を配置し、その下層部に酸化ニッケル触
媒を配置することが望ましい。また、酸化ニッケル触媒
と白金族元素触媒を併用する場合には、酸化ニッケル触
媒と白金族元素触媒の粉体を機械的に混合したものを充
填して触W層としたものを用い°Cもよい。本発明にお
いては、白金族元素とニッケルの化学的または物理的な
相互作用により、特別の特性を引き出すものではなく、
個々の特性を充分に発揮できれば良いので混合方法は特
に制限されない。
A preferable catalyst layer containing nickel oxide, which is difficult to reduce at low temperatures, is a catalyst layer made of nickel oxide and reduced nickel, or a catalyst layer made of nickel oxide and a platinum group element. When nickel oxide and reduced nickel are used in combination, it is desirable to arrange the nickel reduction catalyst in the upper layer of the fixed catalyst layer and the nickel oxide catalyst in the lower layer. Further, when using a combination of nickel oxide and a platinum group element, it is desirable to arrange the platinum group element catalyst in the upper layer of the fixed catalyst layer and the nickel oxide catalyst in the lower layer. In addition, when using a nickel oxide catalyst and a platinum group element catalyst together, a tactile W layer filled with a mechanical mixture of powders of a nickel oxide catalyst and a platinum group element catalyst may be used. good. In the present invention, special properties are not brought out through chemical or physical interaction between platinum group elements and nickel;
The mixing method is not particularly limited as long as the individual characteristics can be fully exhibited.

本発明において、さらに好ましい固定触Is筋としては
白金族元素0.005重量%以上、酸化ニッケル0.0
5〜30重量%および無機耐熱性担体とからなる触媒を
用いた触ts層である。ここに言う無機耐熱性担体とは
、無機質の耐熱性に優れた担体で、例えばシリカ、アル
ミナ等が例示され、このうち特に望ましい担体はγ−ア
ルミナである。このアルミナ等の担体は、白金族元素、
酸化ニッケルを担持前に予めアルカリ金属、アルカリ土
類金属を少足添加することが好ましく、このことにより
メタン化反応における触媒の耐熱性を向上させ、炭素析
出が抑制され゛る。本発明において、白金族元素の添加
量が0.005重■%以上と少量でも良いのは、この囚
でも一酸化炭素のメタン化反応が起こり、酸化ニッケル
が還元される程度の発熱があれば良いからである。
In the present invention, more preferable fixed contact Is bars include 0.005% by weight or more of platinum group elements and 0.0% by weight of nickel oxide.
This is a contact layer using a catalyst consisting of 5 to 30% by weight and an inorganic heat-resistant carrier. The inorganic heat-resistant carrier referred to herein refers to an inorganic carrier having excellent heat resistance, such as silica, alumina, etc. Among these, a particularly desirable carrier is γ-alumina. This carrier such as alumina is a platinum group element,
It is preferable to add a small amount of an alkali metal or alkaline earth metal before supporting nickel oxide, thereby improving the heat resistance of the catalyst in the methanation reaction and suppressing carbon precipitation. In the present invention, the addition amount of platinum group elements can be as small as 0.005% by weight or more, as long as the methanation reaction of carbon monoxide occurs even in this group and heat generation is generated to the extent that nickel oxide is reduced. Because it's good.

本発明において、担体に白金族元素と酸化ニッケルを担
持する方法は任意であり、浸漬、共沈、混練等の通常の
方法が採用される。また、白金族元素と酸化ニッケルを
担体に担持する順序も任意であり、担体に白金族元素を
担持した後、酸化ニッケルを担持しても、担体に酸化ニ
ッケルを担持した後、白金族元素を担持しても良い。ま
た、両者を同時に担体に担持させても良い。
In the present invention, any method can be used to support the platinum group element and nickel oxide on the carrier, and common methods such as dipping, coprecipitation, kneading, etc. can be employed. Furthermore, the order in which the platinum group element and nickel oxide are supported on the carrier is arbitrary. It may be carried. Further, both may be supported on the carrier at the same time.

次に本発明のメタン化法の反応を、固定触媒層として上
層部に白金族元素触媒、下層部に酸化ニッケル触媒を配
置した場合を例にとり説明する。
Next, the reaction of the methanation method of the present invention will be explained using an example in which a platinum group element catalyst is disposed in the upper layer and a nickel oxide catalyst is disposed in the lower layer as fixed catalyst layers.

外部冷却型反応器に450℃以下の潟痘で導入された一
酸化炭素含有ガスは、先ず触gjLe上B部でのみメタ
ン化反応する。この場合には触媒層下層部の低温部分で
は酸化ニッケルが未だ還元されないためにNi (Go
)4は生成せず、上層部の白金族元素触媒のみが活性種
となる。この白金族元素触媒は水素ガス、−酸化炭素ガ
スにより低温で還元され、ニッケルど比べるとカルボニ
ルを作りにくく、反応開始の役を果し、酸化ニッケルを
ニッケルに還元する温度まで反応湿度を上げれば良い。
The carbon monoxide-containing gas introduced into the externally cooled reactor at a temperature below 450° C. first undergoes a methanation reaction only in the upper part B of the contact gjLe. In this case, Ni (Go
) 4 is not produced, and only the platinum group element catalyst in the upper layer becomes an active species. This platinum group element catalyst is reduced by hydrogen gas and carbon oxide gas at low temperatures, and compared to nickel, it is difficult to form carbonyl, and it plays the role of starting the reaction. good.

従って、白金族元素触媒の充填量は、反応開始直接にガ
ス入口部の触媒層の酸化ニッケルが還元される程度の反
応熱を引き出す量で良い。触媒層ガス入口部の白金族元
素触媒によるメタン化反応によって温度がハnるに従い
、人口部の酸化ニッケルが還元されてニッケルとなり活
性化し、メタン反応に関与する。そしてカス入口部のニ
ッケル触媒の劣化に伴ない、下流側の酸化ニッケルが還
元されて活性化しメタン化反応に関与する。このように
本発明のメタン化法にa5いては、触媒層にJ5ける反
応が徐々に下方に移動し、すべての触媒が反応に関与し
、反応に関与する前に触媒が劣化するような不都合は生
じない。
Therefore, the filling amount of the platinum group element catalyst may be such that the reaction heat is drawn out to the extent that the nickel oxide in the catalyst layer at the gas inlet is reduced immediately after the reaction starts. As the temperature increases due to the methanation reaction by the platinum group element catalyst at the gas inlet of the catalyst layer, nickel oxide in the artificial part is reduced to become nickel and activated, participating in the methane reaction. As the nickel catalyst at the waste inlet deteriorates, nickel oxide on the downstream side is reduced and activated to participate in the methanation reaction. As described above, in the methanation method of the present invention, the reaction in the catalyst layer gradually moves downward, all the catalysts participate in the reaction, and the catalyst deteriorates before participating in the reaction. does not occur.

以下、本発明を実施例および比較例に基づき具体的に説
明する。
Hereinafter, the present invention will be specifically explained based on Examples and Comparative Examples.

比 較 例 1 アルミナ担体にニッケルを担持した触!IiAにッケル
含有量10wt%) 20ccを内径16mmのステン
レス性反応管に充填し、水素ガス気流中、500℃、3
時間遅元処理を行なった。触媒層には3ml1lφのサ
ーモウェルが入っており触媒層各部の温度を測定できる
ようにした。還元処理後250℃に温度を下げ、圧力1
0t(9/ cri−G s水素カス流fi60J/l
+r、−酸化炭素カス流量20)/ hr、 G HS
 V 40001+r−’で反応を行なった時の00転
化率と経時変化の関係を第1図に示した。また、この場
合の触媒層の温度プロフィールを第2図に示した。さら
に140時間経過後の00転化率を第1表に示した。
Comparison Example 1 A tactile material with nickel supported on an alumina carrier! 20 cc of IiA with 10 wt% nickel content was packed into a stainless steel reaction tube with an inner diameter of 16 mm, and heated at 500°C in a hydrogen gas stream for 3 hours.
Performed time delay processing. The catalyst layer contained a thermowell of 3 ml, 1 l diameter, so that the temperature of each part of the catalyst layer could be measured. After reduction treatment, the temperature was lowered to 250℃ and the pressure was 1
0t (9/cri-Gs hydrogen sludge flow fi60J/l
+r, -carbon oxide scum flow rate 20)/hr, G HS
FIG. 1 shows the relationship between the 00 conversion rate and the change over time when the reaction was carried out with V 40001+r-'. Moreover, the temperature profile of the catalyst layer in this case is shown in FIG. Furthermore, Table 1 shows the 00 conversion rate after 140 hours.

この比較例1はニッケル触媒の予備還元処理を行ない、
全触ts層を還元状態にした後に、メタン化反応さゼた
低温におけるニッケル触媒の活性を示すものであるが、
第1図から予備処理Jると劣化が著しく速いことがわか
った。この劣化は主にN! (Go>4またはN! 3
 Cの生成によるものと思われる。
In Comparative Example 1, the nickel catalyst was subjected to preliminary reduction treatment,
This shows the activity of the nickel catalyst at a low temperature where the methanation reaction takes place after the entire ts layer is reduced to a reduced state.
From FIG. 1, it was found that the pretreatment J resulted in significantly faster deterioration. This deterioration is mainly caused by N! (Go > 4 or N! 3
This seems to be due to the generation of C.

比 較 例 2 0.5wt%の市販のルテニウム−アルミナ触媒をアル
ミナで粉砕、混合、希釈して調製したルテニウム0.0
25111t%の触W)3を比較例1と同様に20cc
反応管に充填した。
Comparison Example 2 Ruthenium 0.0% prepared by grinding, mixing and diluting 0.5wt% commercially available ruthenium-alumina catalyst with alumina
20cc of 25111t% W) 3 in the same manner as Comparative Example 1
The reaction tube was filled.

ぞの後、温度250℃、圧力10Kg/cIi・Gで水
素カス流量60J/hr、−酸化炭素カス流量20J/
hr、G l−1S V 4000br−’ テ)(タ
ン化反応c t ’/:: De (1) C0転化率
と経時変化の関係を@1図に示した。さらに140時間
経過後のco転化率を第1表に示した。
After that, the temperature was 250℃, the pressure was 10Kg/cIi・G, the hydrogen gas flow rate was 60J/hr, and the carbon oxide gas flow rate was 20J/hr.
hr, G l-1S V 4000br-' te) (tanification reaction c t '/:: De (1) The relationship between the C0 conversion rate and the change over time is shown in Figure @1. Furthermore, the co conversion after 140 hours has elapsed The rates are shown in Table 1.

なd5、この場合には比較例1のように反応前に予め還
元処理は行なわなかった。
d5, in this case, no reduction treatment was performed before the reaction as in Comparative Example 1.

この比較例2はルテニウム0.025wt%含有触媒を
用いて反応させた時の活性を示したものであるが、第1
図からルテニウム単独では活性劣化が速いことがわかっ
た。つまり、ルテニウムO,025vt%含有触媒では
反応開始するのには十分であるが、長時間の反応に対し
、では量的に不十分であり、比較例1のごとぎ還元ニッ
ケルを用いた場合とは異なった劣化が生じるものと思わ
れる。
Comparative Example 2 shows the activity when the reaction was carried out using a catalyst containing 0.025 wt% ruthenium.
The figure shows that the activity of ruthenium alone deteriorates quickly. In other words, although a catalyst containing 25 vt% of ruthenium O is sufficient to start the reaction, it is quantitatively insufficient for a long-term reaction, and when reduced nickel is used as in Comparative Example 1, It is thought that different types of deterioration occur.

実 施 例 1 比較例1で用いた触媒Aと比較例2で触媒Bの調製に用
いた0、5wt%の市販のルテニウム−アルミナ触媒を
粉砕後混合し−C、ルテニウム含有量0.025wt%
、ニッケル含有量9.Fwt%に調製した触媒Cを比較
例1と同様に20CO反応管に充填した。
Example 1 Catalyst A used in Comparative Example 1 and 0.5 wt% of the commercially available ruthenium-alumina catalyst used in the preparation of Catalyst B in Comparative Example 2 were ground and mixed to obtain -C with a ruthenium content of 0.025 wt%.
, nickel content 9. Catalyst C prepared to Fwt% was filled into a 20CO reaction tube in the same manner as in Comparative Example 1.

その後、温度250℃、圧力10Kfl / cri−
G ′c水素ガス流160ノ/11r、 −p12化炭
素ガス流缶20J / tlr。
After that, temperature 250℃, pressure 10Kfl/cri-
G'c hydrogen gas flow 160 no/11r, -p12 carbon gas flow can 20J/tlr.

G HS V 4000hr=’ テ反応さセタFR(
7) G O転化率ト経時変化の関係を第1図に示した
。また、この時の触媒層の温度プロフィールを第3図に
示した。
G HS V 4000hr=' Te reaction seta FR (
7) The relationship between the G O conversion rate and the change over time is shown in Figure 1. Moreover, the temperature profile of the catalyst layer at this time is shown in FIG.

ざらに 140時間経過後のCO転化率を第1表に示し
た。なお、比較例2と同様に反応前に予め還元処理は行
なわなかった。
Table 1 shows the CO conversion rate after 140 hours. Note that, as in Comparative Example 2, no reduction treatment was performed before the reaction.

第1図に示されるように、140時間経過し′Cも活性
劣化は認められず、触!I!!A、触媒Bのような単独
で反応させた場合に比べ非常に安定していることがわか
る。また、第3図から、反応開始後の1時間では反応熱
によって触媒層入口部(上層部)のみ発熱が起ぎており
入口部の酸化ニッケルはこの発熱によって還元される。
As shown in Figure 1, after 140 hours, no deterioration in the activity of 'C was observed; I! ! It can be seen that the reaction is much more stable than when catalyst A and catalyst B are reacted alone. Moreover, from FIG. 3, heat is generated only at the inlet portion (upper layer portion) of the catalyst layer due to reaction heat during one hour after the start of the reaction, and the nickel oxide at the inlet portion is reduced by this heat generation.

触媒層下層部の低温部の酸化ニッケルは還元されておら
ず比較例1のにうな劣化は起きない。400時間後では
、ピークがそのまま平行移動しており、発熱は層の中央
部で生じていることがわかる。
The nickel oxide in the lower temperature part of the catalyst layer was not reduced, and the deterioration as in Comparative Example 1 did not occur. After 400 hours, the peak continues to shift in parallel, indicating that heat generation occurs in the center of the layer.

実 施 例 2 触媒Aにッケル含右Q10wt%) 4ccを水素ガス
気流中500℃、3時間)玉元処理を行なった後、窒素
ガス気流中で温湿まで冷lJJ L、た。
Example 2 4 cc of Catalyst A (10 wt%) was treated in a hydrogen gas stream at 500°C for 3 hours, and then cooled to a temperature and humidity in a nitrogen gas stream.

その後、発熱に注意しながら微量の空気を窒素ガス中に
入れて数時間安定化処理した。この還元安定化処理した
触媒4ccと還元処理をしない酸化物状態の触媒A 1
6cc(!−混合して20ccとし、比較例1と同様に
反応管に充填し比較例2と同様に反応前の予備還元処理
をしないひ反応した。この反応の140時間後のCO転
化率を第1表に示した。
Thereafter, a small amount of air was introduced into the nitrogen gas to stabilize the material for several hours while being careful not to generate heat. 4 cc of this catalyst subjected to reduction stabilization treatment and catalyst A in an oxide state without reduction treatment 1
6 cc (!-) was mixed to make 20 cc, filled into a reaction tube in the same manner as in Comparative Example 1, and reacted in the same manner as in Comparative Example 2 without performing preliminary reduction treatment before the reaction.The CO conversion rate after 140 hours of this reaction was It is shown in Table 1.

実 施 例 3 実施例2と同様に予め還元安定化した触媒A1CCをガ
ス入口部に充填し、その下層部に酸化物状態の触媒A1
9CCを充填した。実施例2と同様に反応前の予備還元
をしないで反応した。この反応の140時間後の00転
化率を第1表に示した。
Example 3 As in Example 2, the gas inlet was filled with the catalyst A1CC, which had been reduced and stabilized in advance, and the catalyst A1 in the oxide state was placed in the lower layer.
Filled with 9CC. The reaction was carried out in the same manner as in Example 2 without performing preliminary reduction before the reaction. The 00 conversion rate after 140 hours of this reaction is shown in Table 1.

友−7Ai i’lJ 4 比較例2で用いた0、025wt%のルテニウム触媒B
をiceだけガス入口部に充填し、その下層部に酸化物
状態の触媒A19ccを充填した。実施例2と同様に反
応前の予備還元をしないで反応しl〔。
Friend-7Ai i'lJ 4 0.025wt% ruthenium catalyst B used in Comparative Example 2
Ice was filled into the gas inlet section, and 19 cc of catalyst A in an oxide state was filled in the lower layer. The reaction was carried out in the same manner as in Example 2 without pre-reduction before the reaction.

この反応の140時間後のCO転化率を第1表に示した
The CO conversion after 140 hours of this reaction is shown in Table 1.

実 施 例 5 触媒Aにッケル含Nff110wt%)にルテニウムを
含浸法で0.02wt%担持して触媒りを得た。
Example 5 A catalyst was obtained by supporting 0.02 wt% of ruthenium on Catalyst A (containing Nff of 110 wt%) by an impregnation method.

この触6 D 20ccを比較例1と同様に反応管に充
填して実施例2と同様に反応前の予備還元をしないで反
応した。この反応の140時間後のCO転化率を第1表
に示した。
20 cc of this catalyst 6D was charged into a reaction tube in the same manner as in Comparative Example 1, and the reaction was carried out in the same manner as in Example 2 without performing preliminary reduction before the reaction. The CO conversion after 140 hours of this reaction is shown in Table 1.

1−ミー」−6 アルミナ担体に予めバリウムを酸化バIJ rンムとし
て3wt%担持した竣、ニッケルをニッケル含有量とし
て10wt%担持した。更にルテニウムを含浸法で0.
02wt%担持しC触WEを得た。
1-6 Barium was previously supported on an alumina carrier in an amount of 3 wt% as barium oxide, and then nickel was supported in an amount of 10 wt% as a nickel content. Furthermore, 0.0% ruthenium is added by impregnation method.
A C-treated WE was obtained by carrying 0.02 wt%.

この触媒E 2occを比較例1と同様に反応管に充填
して実施例2と同様に反応前の予備還元をしないで反応
した。この反応の140時間後のCO娠化率を第1表に
示した。
This catalyst E 2occ was charged into a reaction tube in the same manner as in Comparative Example 1, and the reaction was carried out in the same manner as in Example 2 without performing preliminary reduction before the reaction. The CO precipitation rate after 140 hours of this reaction is shown in Table 1.

第1表 以上説明したごとく本発明のメタン化法およびメタン化
触媒にあっては下記のごとき効果を奏する。
As explained above in Table 1, the methanation method and methanation catalyst of the present invention have the following effects.

■:煩雑なニッケル触媒の還元が不要となる上に、還元
に必要な水素ガス、熱エネルギー等が不要になり、経済
的利点が大ぎい。
■: Not only does the complicated reduction of nickel catalyst become unnecessary, but also the hydrogen gas, thermal energy, etc. necessary for the reduction are no longer required, resulting in great economic advantages.

■:触媒の寿命が大幅に延長されるため、こtしまで実
用化できなかった高温度−酸化炭素含有ガスのメタン合
成プロセスの実現化が可能となる。
(2): Since the life of the catalyst is significantly extended, it becomes possible to realize a high-temperature methane synthesis process using carbon oxide-containing gas, which has not been put to practical use until now.

■:白金族元素触媒単独では価格が高くなるのと、耐イ
オウ性が小さい等の欠点を有するが、本発明では白金族
元素の添加mは非常に少量ですみ、しかも単独の時と比
べて多量のニッケルと共存させることによって耐イオウ
性も大きくすることができる。
■: Platinum group element catalysts alone have drawbacks such as high price and low sulfur resistance, but in the present invention, the addition of platinum group elements can be done in a very small amount, and compared to when using only a single platinum group element, Sulfur resistance can also be increased by coexisting with a large amount of nickel.

■:ニッケル触媒のみでは不可能な低温でも運転できる
ため、運転費が安くなり、反応器の材質も特殊なものを
必要とせず、装置も安価に建設できる。
■: It can be operated at low temperatures, which is not possible with nickel catalysts alone, so operating costs are low, no special reactor materials are required, and the equipment can be constructed at low cost.

■:低温で反応させることができるために平衡上メタン
リッチな高カロリーガスを得るのに有利で、仕上げのメ
タネーターを必要としない。
■: Since the reaction can be carried out at a low temperature, it is advantageous in obtaining a high-calorie gas rich in methane in terms of equilibrium, and a finishing methanator is not required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較例1〜2および実施例1における反応時間
(hr)とOO転化率(%)との関係を示すグラフ、 第2図は1J:、較例1における反応開始後1時間およ
び20時間接触媒層の温度プロフィールを示すグラフ、
おJ:び 第3図は実施例1にお(プる反応開始後1時間および4
00時間後触W層の温度プロフィールを示すグラフ。 特許出願人 日揮株式会社 代理人 弁理士 伊東辰雄 代JI!人 弁理士 伊東哲也 () OOg o 酋 o 。 10 曽 PQ N o 0 () 0 8 o o o 。 ψ 唖 ! h 〜
Figure 1 is a graph showing the relationship between reaction time (hr) and OO conversion rate (%) in Comparative Examples 1 to 2 and Example 1. a graph showing the temperature profile of the couplant layer for 20 hours;
Figure 3 shows Example 1 (1 hour and 4 hours after the start of the reaction).
Graph showing the temperature profile of the W layer after 00 hours. Patent applicant JGC Corporation agent Patent attorney Tatsuoyo Ito JI! Person Patent Attorney Tetsuya Ito () OOog o 鋋o. 10 Zeng PQ N o 0 () 0 8 o o o. ψ dumb! h ~

Claims (1)

【特許請求の範囲】 1、−酸化FA素金含有ガスメタン化するに際し、外部
冷却型反応器の固定触媒層が酸化ニッケルを含む触媒層
であることを特徴とするメタン化法。 2、前記触媒層が酸化ニッケルと還元ニッケルとからな
る触媒層である特許請求の範囲第1項記載のメタン化法
。 3、前記固定触媒層の反応ガス人口部がニッケル還元触
媒、その下H部が酸化ニッケル触媒である時fNF 請
求の範囲第2項記載のメタン化法。 4、前記固定触媒層が酸化ニッケルと白金族元素とから
なる触媒層である特許請求の範囲第1項記載のメタン化
法。 5、前記固定触媒層が白金族元素触媒−と酸化ニッケル
触媒の粉体を機械的に混合した触媒層である特許請求の
範囲第4項記載のメタン化法。 6、前記固定触媒層の反応ガス入口部が白金族元素触媒
、その下層部が酸化ニッケル触媒である特許請求の範囲
第4項記載のメタン化法。 7、前記固定触媒層が白金族元素0.005重四%以上
、酸化ニッケル0.05〜30重量%および無機耐熱性
担体からなる触媒を用いた触媒層である特許請求の範囲
第4項記載のメタン化法。 8、白金族元素0.005重量%以上、酸化ニッケルO
,05〜30重に%および無機耐熱性担体とからなるメ
タン化触媒。 9、前記無機耐熱性担体がアルミナである特許請求の範
囲第8項記載のメタン化触媒。
[Claims] 1. A methanation method for methanating an oxidized FA elemental gold-containing gas, characterized in that the fixed catalyst layer of the externally cooled reactor is a catalyst layer containing nickel oxide. 2. The methanation method according to claim 1, wherein the catalyst layer is a catalyst layer consisting of nickel oxide and reduced nickel. 3. fNF when the reactive gas population part of the fixed catalyst layer is a nickel reduction catalyst and the lower H part is a nickel oxide catalyst. The methanation method according to claim 2. 4. The methanation method according to claim 1, wherein the fixed catalyst layer is a catalyst layer consisting of nickel oxide and a platinum group element. 5. The methanation method according to claim 4, wherein the fixed catalyst layer is a catalyst layer in which powders of a platinum group element catalyst and a nickel oxide catalyst are mechanically mixed. 6. The methanation method according to claim 4, wherein the reaction gas inlet portion of the fixed catalyst layer is a platinum group element catalyst, and the lower layer thereof is a nickel oxide catalyst. 7. Claim 4, wherein the fixed catalyst layer is a catalyst layer using a catalyst consisting of 0.005% by weight or more of a platinum group element, 0.05 to 30% by weight of nickel oxide, and an inorganic heat-resistant carrier. Methanation method. 8. 0.005% by weight or more of platinum group elements, nickel oxide O
,05-30% by weight and an inorganic heat-resistant carrier. 9. The methanation catalyst according to claim 8, wherein the inorganic heat-resistant carrier is alumina.
JP58238824A 1983-12-20 1983-12-20 Methanizing and methanizing catalyst Granted JPS60130532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58238824A JPS60130532A (en) 1983-12-20 1983-12-20 Methanizing and methanizing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58238824A JPS60130532A (en) 1983-12-20 1983-12-20 Methanizing and methanizing catalyst

Publications (2)

Publication Number Publication Date
JPS60130532A true JPS60130532A (en) 1985-07-12
JPS632938B2 JPS632938B2 (en) 1988-01-21

Family

ID=17035813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58238824A Granted JPS60130532A (en) 1983-12-20 1983-12-20 Methanizing and methanizing catalyst

Country Status (1)

Country Link
JP (1) JPS60130532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399491A (en) * 2014-12-04 2015-03-11 广州博能能源科技有限公司 High-temperature-resistant methanation catalyst as well as preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125493A (en) * 1974-07-03 1976-03-02 Haldor Topsoe As

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125493A (en) * 1974-07-03 1976-03-02 Haldor Topsoe As

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399491A (en) * 2014-12-04 2015-03-11 广州博能能源科技有限公司 High-temperature-resistant methanation catalyst as well as preparation method thereof

Also Published As

Publication number Publication date
JPS632938B2 (en) 1988-01-21

Similar Documents

Publication Publication Date Title
Choudhary et al. CO-free fuel processing for fuel cell applications
KR100596286B1 (en) Catalyst and process for reforming hydrocarbon
JP5191888B2 (en) Syngas production method and conversion method
JP5592250B2 (en) Catalytic hydrogenation of carbon dioxide to synthesis gas.
EA010025B1 (en) Process for the removal of cos from a synthesis gas stream comprising hs and cos
JP4330846B2 (en) Process for preparing low sulfur reformate gas for use in fuel cell systems
JP2012520819A (en) Process for preparing a gas mixture rich in hydrogen
US3429680A (en) Steam reforming of hydrocarbons
KR100732538B1 (en) Method for directly producing a hydrogen from hydrocarbon utilizing catalyst
JP2000143209A (en) Method for converting carbon monoxide, and catalyst
JP3975271B2 (en) Biomass gasification method and catalyst used therefor
JPS60130532A (en) Methanizing and methanizing catalyst
JPH04331704A (en) Production of synthetic gas containing both carbon monoxide and hydrogen
JP2004261771A (en) Unsupported catalyst for directly decomposing hydrocarbon, production method thereof and production method of hydrogen and carbon by directly decomposing hydrocarbon
BG109348A (en) Method for the processing of natural gas into fuels
JP2005193110A (en) Synthetic gas producing catalyst and method for producing synthetic gas by using the same
JPS6150640A (en) Catalyst for preparing methane-containing gas
JPS5811591A (en) Preparation of high calorie gas from coal gas as raw material
JP2006082996A (en) Ethanol reforming method
JPH0211306B2 (en)
JPS62294442A (en) Reducing catalyst
CN100528739C (en) Method of preparing synthetic gas by partly oxygenating of natural gas under large airspeed
JPH07187605A (en) Method for reforming lower hydrocarbon fuel
US20050169835A1 (en) Process for the treatment of methane/carbon dioxide mixtures
JPH08176557A (en) Reforming of heavy oil