JPS60129119A - Gas separating membrane - Google Patents

Gas separating membrane

Info

Publication number
JPS60129119A
JPS60129119A JP58236666A JP23666683A JPS60129119A JP S60129119 A JPS60129119 A JP S60129119A JP 58236666 A JP58236666 A JP 58236666A JP 23666683 A JP23666683 A JP 23666683A JP S60129119 A JPS60129119 A JP S60129119A
Authority
JP
Japan
Prior art keywords
zeolite
membrane
pores
carrier
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58236666A
Other languages
Japanese (ja)
Inventor
Kimimasa Miyazaki
仁誠 宮崎
Tadayasu Mitsumata
光亦 忠泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58236666A priority Critical patent/JPS60129119A/en
Publication of JPS60129119A publication Critical patent/JPS60129119A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a gas separating membrane having high separation factor, large rate of gas permeation, high mechanical strength, and sufficient stability for heat and light by filling up pores on the surface of porous carrier with fine zeolite powder. CONSTITUTION:A thin zeolite membrane is obtd. by filling up the pores on a porous carrier surface such as ceramics with fine zeolite powder, pref. together with binder, to fix the powder in the pores, or crystals of zeolite are deposited on the surface of the carrier and fixed by synthesizing zeolite on the flat surface of a porous plate prepd. by sintering an inorg. material. A superior zeolite membrane may be also obtd. by using a carrier comprising sintered body of alumina, treating it with alkali such as NaOH to transform a part of alumina to sodium aluminate, allowing the sodium aluminate to react with sodium silicate or NaOH to form sol on the surface, and allowing to cause hydrothermal reaction finally.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は混合気体から任意の気体を連続的に分離するだ
めの気体分離膜に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas separation membrane for continuously separating any gas from a gas mixture.

従来例の構成とその問題点 従来気体分離膜はけい素樹脂や弗化炭素樹脂などを代表
として、高分子有機化合物の薄膜で構成されている。こ
れらの有機高分子による気体分離膜はいずれも分離系数
が低く、気体透過速度が遅い、かつ機械的に弱く、また
熱・光に対して不安定であるなどの問題を有している。
Conventional Structures and Problems Conventional gas separation membranes are composed of thin films of high-molecular organic compounds, typically silicone resins and fluorocarbon resins. All of these gas separation membranes made of organic polymers have problems such as a low separation number, a slow gas permeation rate, mechanical weakness, and instability with respect to heat and light.

発明の目的 本発明は従来の気体分離膜が有していた前述の問題点を
全て克服した高性能の気体分離膜を提供することを目的
とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a high-performance gas separation membrane that overcomes all of the above-mentioned problems that conventional gas separation membranes had.

発明の構成 本発明は無機質であるゼオライトで薄膜を気体分離膜と
して使用するものである。この膜の片面から混合気体を
加圧すると膜の反対側の血から特定の気体成分のみが優
先的に透過して出て来る。
Structure of the Invention The present invention uses a thin film made of inorganic zeolite as a gas separation membrane. When a mixed gas is pressurized from one side of this membrane, only specific gas components will preferentially permeate and come out from the blood on the other side of the membrane.

この様なゼオライト薄膜は、セラミックスなどの多孔質
担体の面上の細孔にゼオライトの微粉を望ましくはバイ
ンダーと共に埋め込み、固定することでも得られるが、
よシ望ましくは無機物を焼結して得た平板状の多孔体の
面上でゼオライトの合成反応を行ない担体上にゼオライ
ト結晶を析出、固定することによって得ることができる
。さらにこの様な担体にアルミナの焼結多孔体を用い、
水酸化ナトリウムなどでアルカリ処理を行ない、一部を
アルミン酸ナトリウムとした上で、これにけい酸ナトリ
ウム(水ガラス)、水酸化ナトリウムを反応させて、表
面をゾル化し、その後水熱反応を行なうことにより良好
なゼオライト膜が得られる。
Such a zeolite thin film can also be obtained by embedding and fixing fine zeolite powder, preferably together with a binder, into the pores on the surface of a porous carrier such as ceramics.
More preferably, it can be obtained by carrying out a zeolite synthesis reaction on the surface of a flat porous body obtained by sintering an inorganic substance, and precipitating and fixing zeolite crystals on a carrier. Furthermore, using a sintered porous alumina material as such a carrier,
After performing alkali treatment with sodium hydroxide etc., a portion is made into sodium aluminate, which is then reacted with sodium silicate (water glass) and sodium hydroxide to form a sol on the surface, followed by a hydrothermal reaction. As a result, a good zeolite membrane can be obtained.

実施例の説明 アルミナ微粉(直径約10μm)を成型・焼結して厚さ
0.5mm、直径60祁の薄板を得た。この薄板を以下
の2種の方法で処理してゼオライト薄膜を得た。
Description of Examples Fine alumina powder (about 10 μm in diameter) was molded and sintered to obtain a thin plate with a thickness of 0.5 mm and a diameter of 60 μm. This thin plate was treated by the following two methods to obtain a zeolite thin film.

ゼオライ1−4A微粉末(直径10μm以下)にベント
ナイト10%を加えた後、混合粉末と同電量の水を加え
て練合し、薄板に塗布し、10Kq/c1nの圧力でプ
レスした後600℃で1時間焼結した。
After adding 10% bentonite to zeolite 1-4A fine powder (diameter 10 μm or less), knead with the same amount of water as the mixed powder, apply on a thin plate, press at a pressure of 10 Kq/c1n, and then heat at 600°C. It was sintered for 1 hour.

薄板を1ONの水酸化ナトリウム溶液に60℃で1時間
浸透させた後水ガラス10C1,水酸化ナトリウム5グ
、水3009を混合した溶液に浸した後ゆっくりと引き
上げ゛、オートクレーブ中で120℃、6時間加熱する
と、ゼオライトがアルミナ表面に一様に析出した。
The thin plate was immersed in a 1ON sodium hydroxide solution at 60°C for 1 hour, then immersed in a solution containing 10C1 of water glass, 5 g of sodium hydroxide, and 3009 water, and then slowly pulled up. When heated for a period of time, zeolite was uniformly precipitated on the alumina surface.

これとは別にチタニア微粉(直径約10μm)を用いて
上記と同様な薄板を作り、アルミン酸ナトリウム1Q2
.水ガラス30f、水酸化ナトリウム27.水70?を
混合した溶液に浸し溶液と共にオートフレニブ中で12
0℃、6時間加熱してゼオライト薄膜を得た。
Separately, a thin plate similar to the above was made using titania fine powder (about 10 μm in diameter), and sodium aluminate 1Q2
.. Water glass 30f, sodium hydroxide 27. Water 70? Soaked in a mixed solution and placed in an autoflenib with the solution for 12
A zeolite thin film was obtained by heating at 0° C. for 6 hours.

以上の3種の方法で得だゼオライト薄膜をそれぞれ試料
へ〜試料Cと呼ぶことにする。比較のため、従来例とし
て通気性セルロース膜(ミリポアフィルタ−3Mタイプ
)にシリコンRT V :l”ムを塗布し、1oKy/
caの圧力でプレスした後固化したものを試料りとしだ
The zeolite thin films obtained using the above three methods were each used as a sample. These will be referred to as sample C. For comparison, as a conventional example, a silicone RT V:1" membrane was applied to a breathable cellulose membrane (Millipore filter - 3M type), and the film was 1oKy/
After pressing at a pressure of ca, take a sample of the solidified material.

計4種の試料について、酸素と窒素の透過係数を測定し
た結果を禾に示して・)る。第1表から本発明は3種(
試料A、B、C)とも従来例よりも圧 □倒的に気体透
過係数が優れているといえる。また分離係数も全て従来
より向上したが特に試料Bは顕著であった。この2つの
条件を考えると、試料Bが気体分離膜として最も優れて
いると結論できる。またゼオライトは111℃機質であ
り、本質的な長所として、化学的・熱的に安定で機械強
度も優れている。
I will show you the results of measuring the oxygen and nitrogen permeability coefficients for a total of four types of samples. From Table 1, the present invention has three types (
It can be said that samples A, B, and C) all have far superior gas permeability coefficients than the conventional example. In addition, the separation coefficients were all improved compared to the conventional ones, but sample B was particularly remarkable. Considering these two conditions, it can be concluded that sample B is the most excellent as a gas separation membrane. In addition, zeolite has a temperature of 111°C, and its essential advantages are that it is chemically and thermally stable and has excellent mechanical strength.

発明の効果 以上のように、本発明により飛躍的に大きな透過係数を
有し、さらに分離係数も優れ、化学的・熱的に安定で機
械強度も大きい気体分$ r+Gsが?4jられる。
As described above, the present invention provides a gas component $r+Gs that has a dramatically large permeability coefficient, an excellent separation coefficient, is chemically and thermally stable, and has high mechanical strength. 4j is received.

Claims (3)

【特許請求の範囲】[Claims] (1)ゼオライト膜を構成要素とする気体分離膜。(1) Gas separation membrane containing a zeolite membrane as a component. (2)ゼオライト膜が多孔質の担体の面上に固定された
ことを特徴とする特許請求の範囲第1項記載の気体分離
膜。
(2) The gas separation membrane according to claim 1, wherein the zeolite membrane is fixed on the surface of a porous carrier.
(3)多孔質担体の細孔にゼオライトの粉末を埋め込む
ことによって得たゼオライト膜を構成要素とする特許請
求の範囲第2項または第9項記載の気体分離膜。
(3) The gas separation membrane according to claim 2 or 9, which comprises a zeolite membrane obtained by embedding zeolite powder in the pores of a porous carrier.
JP58236666A 1983-12-15 1983-12-15 Gas separating membrane Pending JPS60129119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236666A JPS60129119A (en) 1983-12-15 1983-12-15 Gas separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236666A JPS60129119A (en) 1983-12-15 1983-12-15 Gas separating membrane

Publications (1)

Publication Number Publication Date
JPS60129119A true JPS60129119A (en) 1985-07-10

Family

ID=17003986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236666A Pending JPS60129119A (en) 1983-12-15 1983-12-15 Gas separating membrane

Country Status (1)

Country Link
JP (1) JPS60129119A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258339A (en) * 1992-03-12 1993-11-02 Worcester Polytechnic Institute Formation of zeolite membranes from sols
US5429743A (en) * 1991-02-07 1995-07-04 Technische Universiteit Delft Inorganic composite membrane comprising molecular sieve crystals
EP0778075A1 (en) 1995-12-08 1997-06-11 Institut Francais Du Petrole Process for the preparation of porous glass supported zeolite membranes and zeolite membranes obtained thereby
US5672388A (en) * 1994-07-08 1997-09-30 Exxon Research & Engineering Company Membrane reparation and poer size reduction using interfacial ozone assisted chemical vapor deposition
US5824617A (en) * 1994-07-08 1998-10-20 Exxon Research & Engineering Company Low alkaline inverted in-situ crystallized zeolite membrane
US5871650A (en) * 1994-07-08 1999-02-16 Exxon Research And Engineering Company Supported zeolite membranes with controlled crystal width and preferred orientation grown on a growth enhancing layer
US5972079A (en) * 1996-06-28 1999-10-26 University Of Delaware Supported carbogenic molecular sieve membrane and method of producing the same
US6471745B1 (en) * 1996-06-28 2002-10-29 University Of Delaware Nanoporous carbon catalytic membranes and method for making the same
US6472016B1 (en) * 1998-12-04 2002-10-29 Societe Des Ceramiques Techniques Membrane comprising a porous carrier and a layer of a molecular sieve and its preparation
US7811359B2 (en) 2007-01-18 2010-10-12 General Electric Company Composite membrane for separation of carbon dioxide
US8168129B2 (en) 2005-04-29 2012-05-01 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Apparatus and method for purification and disinfection of liquid, solid or gaseous substances
US20140239225A1 (en) * 2011-11-11 2014-08-28 Ngk Insulators, Ltd. Water-Selective Adsorbent and Method for Producing Same
CN111530241A (en) * 2020-04-13 2020-08-14 北京科技大学 SO is separated and recovered from flue gas2With NOxApparatus and method of

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753121A (en) * 1991-02-07 1998-05-19 Exxon Chemical Patents Inc. (Ecpi) Inorganic composite membrane comprising molecular sieve crystals
US5429743A (en) * 1991-02-07 1995-07-04 Technische Universiteit Delft Inorganic composite membrane comprising molecular sieve crystals
US5258339A (en) * 1992-03-12 1993-11-02 Worcester Polytechnic Institute Formation of zeolite membranes from sols
US5849980A (en) * 1994-07-08 1998-12-15 Exxon Research And Engineering Company Low alkaline inverted in-situ crystallized zeolite membrane
US5672388A (en) * 1994-07-08 1997-09-30 Exxon Research & Engineering Company Membrane reparation and poer size reduction using interfacial ozone assisted chemical vapor deposition
US5824617A (en) * 1994-07-08 1998-10-20 Exxon Research & Engineering Company Low alkaline inverted in-situ crystallized zeolite membrane
US5871650A (en) * 1994-07-08 1999-02-16 Exxon Research And Engineering Company Supported zeolite membranes with controlled crystal width and preferred orientation grown on a growth enhancing layer
EP0778075A1 (en) 1995-12-08 1997-06-11 Institut Francais Du Petrole Process for the preparation of porous glass supported zeolite membranes and zeolite membranes obtained thereby
US5972079A (en) * 1996-06-28 1999-10-26 University Of Delaware Supported carbogenic molecular sieve membrane and method of producing the same
US6471745B1 (en) * 1996-06-28 2002-10-29 University Of Delaware Nanoporous carbon catalytic membranes and method for making the same
US6472016B1 (en) * 1998-12-04 2002-10-29 Societe Des Ceramiques Techniques Membrane comprising a porous carrier and a layer of a molecular sieve and its preparation
US8168129B2 (en) 2005-04-29 2012-05-01 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Apparatus and method for purification and disinfection of liquid, solid or gaseous substances
US7811359B2 (en) 2007-01-18 2010-10-12 General Electric Company Composite membrane for separation of carbon dioxide
US20140239225A1 (en) * 2011-11-11 2014-08-28 Ngk Insulators, Ltd. Water-Selective Adsorbent and Method for Producing Same
CN111530241A (en) * 2020-04-13 2020-08-14 北京科技大学 SO is separated and recovered from flue gas2With NOxApparatus and method of

Similar Documents

Publication Publication Date Title
JPS60129119A (en) Gas separating membrane
GB8530028D0 (en) Porous fluorine resin membrane
GB2011804A (en) Gas Separation Membranes and Process for the Preparation Thereof
CN108298947A (en) A kind of purposes of attapulgite ceramic film support, preparation method and boracic sintering aid
RU2093495C1 (en) Method of preparing carbon material
Sano et al. Materials chemistry communications. New preparation method for highly siliceous zeolite films
JPH09173800A (en) Formation of supported zeolite membrane using glassy pore of support and zeolite membrane formed thereby
JP2501825B2 (en) Method for producing membranous synthetic zeolite
CA2028417A1 (en) Reaction bonded silicon nitride filtration membranes
JPS6127091B2 (en)
JPH038813B2 (en)
JPS5962324A (en) Filter medium and its manufacture
JPS6364954A (en) Manufacture of porous ceramic sintered body
JPS6349220A (en) Gas separating membrane
JP2923752B2 (en) Humidity responsive membrane with inorganic xerogel membrane
JPS62227421A (en) Gas separating membrane and manufacture of same
JPS553809A (en) Dynamic membrane formation supporter and its manufacture
JPS58172268A (en) Manufacture of sample for thermal hydrostatic press
JPS63274407A (en) Process for manufacture of separation film element
DK228680A (en) DRY INORGANIC ULTRAFILTRATION MEMBRANES AND PROCEDURES FOR PRODUCING THEREOF
JPS63126524A (en) Gas permselective composite membrane
JPS62230632A (en) Production of quartz glass
JPS61118114A (en) Production of filter medium
JPH01108175A (en) High function imparting treating for fibrous ceramic
JPS63213533A (en) Production of porous silicon resin complex film