JPS60119550A - Pattern forming material and pattern forming method - Google Patents

Pattern forming material and pattern forming method

Info

Publication number
JPS60119550A
JPS60119550A JP58226938A JP22693883A JPS60119550A JP S60119550 A JPS60119550 A JP S60119550A JP 58226938 A JP58226938 A JP 58226938A JP 22693883 A JP22693883 A JP 22693883A JP S60119550 A JPS60119550 A JP S60119550A
Authority
JP
Japan
Prior art keywords
pattern
polysilane
film
group
energy ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58226938A
Other languages
Japanese (ja)
Inventor
Saburo Imamura
三郎 今村
Osamu Kogure
小暮 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58226938A priority Critical patent/JPS60119550A/en
Publication of JPS60119550A publication Critical patent/JPS60119550A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0754Non-macromolecular compounds containing silicon-to-silicon bonds

Abstract

PURPOSE:To form a pattern high in oxygen plasma resistance and high in resolution on exposed parts by using a polysilane having a specified repeating units for a pattern-forming material, exposing it to high energy rays, and developing it. CONSTITUTION:A silicon substrate is coated with a coating material obtained by dissolving in chlorobenzene or the like, a polysilane having repeating units, each represented by the formula shown here in which R1, R2 are each same or different alkyl or phenyl; prebaked in an N2 gas stream, exposed to soft X-rays, UV rays, or the like, and the exposed parts are dissolved with methyl alcohol or the like to form a fine submicron pattern high in resolution with high sensitivity. In another way, this polysilane layer may be formed on an org. polymer layer formed on the substrate to form the pattern. As a result, the obtained pattern is heat resistant and high in dry etching resistance, and therefore, a pattern suitable for fabricating semiconductor elements and magnetic bulb elements can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子、磁気バブル素子及び光応用部品
等の製造に利用しうるパタン形成材料及びその使用方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pattern forming material that can be used in the manufacture of semiconductor devices, magnetic bubble devices, optical application parts, etc., and a method of using the same.

〔従来技術〕[Prior art]

従来、IC及びLSI等の製造ではレジストと呼ばれる
高分子化合物等の有機組成物で被加工基板を被榎し、高
エネルギー線をバタン状に照射してレジストに潜像を形
成し、これを現像してバタン状のレジスト膜を形成した
のち、被加工基板を腐食液に浸すことにより基板のレジ
ストに覆われていない部分を化学的にエツチングあるい
は不純物をドーピングするなどの処理を行ってきた。
Conventionally, in the production of ICs and LSIs, a substrate to be processed is coated with an organic composition such as a polymer compound called a resist, and a latent image is formed on the resist by irradiating it with high-energy rays, which is then developed. After forming a bat-shaped resist film, the substrate to be processed is immersed in a corrosive liquid to chemically etch the portions of the substrate not covered by the resist or to dope them with impurities.

しかし、近年集積回路の高集積化に伴い、更に微細なパ
タンを形成することが望まれている。
However, as integrated circuits have become more highly integrated in recent years, it has been desired to form even finer patterns.

特に、腐食液に浸しエツチングする湿式法ではサイドエ
ツチングが生じるため、これを避けるためにガスプラズ
マを用いた反応性イオンエツチングなどのドライエツチ
ングによる加工が盛んになってきた。しかし、従来のレ
ジストはドライエツチングにより被加工基板と同様にエ
ツチングされてしまうため、レジスト膜厚を厚くするこ
とによって、これに対処してきている。
In particular, wet etching methods involving immersion in a corrosive solution cause side etching, so to avoid this, dry etching methods such as reactive ion etching using gas plasma have become popular. However, since conventional resists are etched by dry etching in the same way as the substrate to be processed, this problem has been dealt with by increasing the thickness of the resist film.

したがって、ドライエツチング耐性の高いレジスト材料
が望まれているが、いまだ十分な耐性を有する材料は見
出されていない。
Therefore, a resist material with high dry etching resistance is desired, but a material with sufficient resistance has not yet been found.

一方、配線の多量化、三次元アレイ構造の素子などを実
現するために、段差のある基板上にレジストパタンを形
成することが望まれている。
On the other hand, in order to increase the number of wiring lines and realize elements with a three-dimensional array structure, it is desired to form a resist pattern on a substrate with steps.

したがって段差をカバーするために、レジスト膜を厚く
する必要が生じる。
Therefore, it is necessary to make the resist film thicker to cover the step.

更に、両速のイオンを基板に到達させることなく捕獲す
るためには、レジストの膜厚も厚くしなくてはならない
。しかし、従来のレジストでは、膜厚が厚くなるに従い
解像性が低下し、微細なバタンを形成することができな
かった。
Furthermore, in order to capture ions of both velocities without allowing them to reach the substrate, the resist film must be thick. However, with conventional resists, the resolution decreases as the film thickness increases, making it impossible to form fine patterns.

この問題を解決するために、レジストを一層ではなく多
層化することにより、形状比の高いレジストパタンを形
成する方法が提案されている。すなわち、第1層目に有
機高分子材料の厚膜を形成し、その上の第2層に薄膜の
レジスト材料層を形成したのち、第2層のレジスト材料
に高エネルギー線を照射し、現像したのち得られるパタ
ンをマスクとして第1層の有機高分子材料をドライエツ
チングすることにより、高形状比のバタンを得ようとす
るものである。しかし、この方法では第2層に通常のレ
ジストを用いた場合、第1層と第2層の材料のドライエ
ツチング速度の比、すなわち選択比が大きくとれなかっ
たり、大きくするためには、かなり長いエツチング時間
を必要とした。
In order to solve this problem, a method has been proposed in which a resist pattern with a high shape ratio is formed by using multiple layers of resist instead of one layer. That is, a thick film of an organic polymer material is formed as the first layer, a thin resist material layer is formed as the second layer on top of the thick film, and then the resist material of the second layer is irradiated with high energy rays and developed. Thereafter, the first layer of organic polymer material is dry-etched using the obtained pattern as a mask, thereby attempting to obtain a pattern with a high shape ratio. However, with this method, when a normal resist is used for the second layer, it may not be possible to obtain a large ratio of dry etching speeds, that is, selectivity, between the materials of the first and second layers, or it may take a long time to increase the dry etching rate. Etching time was required.

酸素プラズマを用いる多層レジスト系としては1層目の
厚膜高分子材料層と、2層目のレジストとの中間に酸素
プラズマ耐性の高い無機物層を設ける3層構造のレジス
トが提案されている。この場合はレジスト材料で形成し
たノ(タンをマスクとして四塩化炭素、四フフ化炭素又
はアルゴン等のガスを用いて無機物層をドライエツチン
グし、ついで無機物層パタンをマスクとして、酸素で有
機高分子材料層をドライエツチングすることになる。そ
してこの場合には、酸素プラズマは1層目の厚膜高分子
材料を速やかにエツチングでき、基板は全くエツチング
されないため、エツチングの終点をモニターせずとも所
望のプロファイルを有するレジスト膜くタンが形成でき
る。しかしながら、工程数が大幅に増加するという欠点
を有する。
As a multilayer resist system using oxygen plasma, a three-layer resist has been proposed in which an inorganic layer having high oxygen plasma resistance is provided between a first thick film polymer material layer and a second resist layer. In this case, the inorganic layer is dry-etched using a gas such as carbon tetrachloride, carbon tetrafluoride, or argon using a resist material pattern (tan) as a mask, and then the organic polymer layer is etched with oxygen using the inorganic layer pattern as a mask. In this case, the oxygen plasma can quickly etch the first layer of thick polymeric material without etching the substrate at all, allowing the desired etching to be achieved without monitoring the etching end point. However, the method has the disadvantage that the number of steps is significantly increased.

一方、酸素プラズマによるドライエツチング耐性の高い
シリコーン系レジストを第2層に用いた場合には、第2
層のレジストパタンをマスりとじて第1層の有機高分子
材料をドライエツチングする際に酸素プラズマが使える
ため、短時間で少ない工程数によp高形状比のレジスト
パクンを形成できる。しかし、現在知られているシリコ
ーン系レジストではガラス転移温度が室温より相当低く
、分子量の低いポリマーは液状あるいは半液状のため、
非常に扱い難く、高エネルギー線に対しても感度が悪く
なる。
On the other hand, when a silicone resist with high resistance to dry etching by oxygen plasma is used for the second layer,
Since oxygen plasma can be used to dry-etch the organic polymer material of the first layer by masking off the resist pattern of the layer, a resist pattern with a high p shape ratio can be formed in a short time and with a small number of steps. However, the glass transition temperature of currently known silicone resists is considerably lower than room temperature, and the low molecular weight polymers are liquid or semi-liquid.
It is very difficult to handle and has poor sensitivity even to high-energy radiation.

他方、分子量を高くするとゴム状になシ若干扱いやすく
なり、また感度も高くなるが、現像溶媒中での膨潤のた
め、バタンのうね9等の解像度の低下を招く等の欠点が
あった。また、架橋反応の感度を高くするためビニル基
等の連鎖反応性の高い官能基を側鎖に導入しており、こ
れも解像性を低下させている原因となっている。
On the other hand, when the molecular weight is increased, it becomes rubbery and becomes slightly easier to handle, and the sensitivity also increases, but there are disadvantages such as a decrease in the resolution of batten ridges 9 etc. due to swelling in the developing solvent. . Furthermore, in order to increase the sensitivity of the crosslinking reaction, a functional group with high chain reactivity, such as a vinyl group, is introduced into the side chain, which also causes a decrease in resolution.

〔発明の目的〕[Purpose of the invention]

本発明は、これらの欠点を解消するためなされたもので
あυ、その目的は、高エネルギー線に対して、高感度、
高解像性を有し、しかもドライエツチング耐性の高いバ
タン形成材料及び〔発明の構成〕 本発明を概説すれば、本発明の第1の発明はバタン形成
材料の発明であって、下記一般式l(式中R1及びR2
は同−又は異なり、アルキル基及びフェニル基よシなる
群から選択した1種の基を示す)で表される繰返し単位
をもつポリ7ランを含むことを特徴とする。
The present invention was made to eliminate these drawbacks, and its purpose is to provide high sensitivity and high sensitivity to high energy rays.
A batten-forming material having high resolution and high dry etching resistance [Structure of the Invention] To summarize the present invention, the first invention of the present invention is an invention of a batten-forming material, which has the following general formula: l (in the formula R1 and R2
are the same or different and represent one type of group selected from the group consisting of an alkyl group and a phenyl group.

また、本発明の第2の発明は、バタン形成方法に関する
発明であって、基材上に高エネルギー線感応材料の膜を
形成し、熱処理し、その後大気中で高エネルギー線を照
射して形成膜の一部分を選択的に露光し、次いで露光部
分の膜を現像液により選択的に除去することによシバタ
ンを形成する方法において、該高エネルギー線感応材料
として、上記一般式1で表される繰返し単位をもつポリ
シランを含む材料を使用することを特徴とする。
Further, a second invention of the present invention is an invention related to a method for forming a baton, in which a film of a high-energy ray-sensitive material is formed on a base material, heat-treated, and then irradiated with high-energy rays in the atmosphere. In a method of forming a shibatan by selectively exposing a part of the film and then selectively removing the exposed part of the film with a developer, the high energy ray-sensitive material is a material represented by the above general formula 1. It is characterized by using a material containing polysilane having repeating units.

そして、本発明の第3の発明は、他のバタン形成方法に
関する発明であって、基材上に有機高分子材層を設け、
その上に高エネルギー線感応材料層を設け、その後大気
中で高エネルギー線を所望のバタン状に照射し、照射部
分の膜を現像液により選択的に除去したのち、これをマ
スクとして酸素を用いるドライエツチングによシ該高エ
ネルギー線感応材料に覆われていない部分の該有機高分
子材層をエツチング除去することによりバタンを形成す
る方法において、該高エネルギー線感応材料として、上
記一般式■で表される繰返し単位をもつポリシランを含
む材料を使用することを特徴とする。
And, the third invention of the present invention is an invention related to another batten forming method, which comprises providing an organic polymer material layer on a base material,
A layer of high-energy ray-sensitive material is provided on top of the layer, and then high-energy rays are irradiated in the atmosphere in a desired slam-like manner, and the film in the irradiated area is selectively removed using a developer. Oxygen is then used as a mask. In the method of forming a batten by dry etching the portions of the organic polymer material layer that are not covered with the high-energy ray-sensitive material, the high-energy ray-sensitive material is a compound represented by the general formula (2) above. It is characterized by the use of a material containing a polysilane having the repeating unit shown.

本発明における一般式■中のアルキル基としては、メチ
ル基、エチル基、プロピル基などが挙げられる。
Examples of the alkyl group in the general formula (1) in the present invention include a methyl group, an ethyl group, and a propyl group.

本発明における最も重要な点は、ポリ7エ二ルメチルシ
ランなどのポリシランが大気中で高エネルギー線を照射
することにより高感度、高解像性のポジ形レジストとな
ることを見出した点にある。
The most important point of the present invention is that it has been found that polysilane such as poly7enylmethylsilane can be turned into a positive resist with high sensitivity and high resolution by irradiating it with high energy rays in the atmosphere.

ポリシランがポジ形になる理由としては、高エネルギー
線照射により大気中の酸素で酸化され、OH基やシロキ
サン構造が生成し化学構造の変化によシ溶解性が変化す
るためと推定さね一従来にない新しい反応を利用したも
のである。
It is assumed that the reason why polysilane becomes positive is that it is oxidized by oxygen in the atmosphere by high-energy ray irradiation, producing OH groups and siloxane structures, and the change in chemical structure changes its solubility. It utilizes a new reaction that does not exist in Japan.

高エネルギー線としては大気中露光できるもので軟X線
等が使用できる。また、ポリシランは550 nm 付
近まで吸収をもつため、遠紫外光、紫外光も光源として
使用できる。
As high-energy radiation, soft X-rays and the like that can be exposed in the atmosphere can be used. Further, since polysilane has absorption up to around 550 nm, far ultraviolet light and ultraviolet light can also be used as a light source.

本発明のポリマーは室温で固体であり高い耐熱性をもつ
。しかも、ベンゼン、トルエン、キシレン、メチルエチ
ルケトン、モノクロロベンゼンなどの有機溶媒によく溶
解し、これをスピンコードなどによシ基板に塗布すれば
優れた皮膜が形成できる。したがって従来のシリコーン
系レジストが液体あるいはゴム状であるのに対し格段に
扱いやすいものにすることができた。
The polymer of the present invention is solid at room temperature and has high heat resistance. Moreover, it dissolves well in organic solvents such as benzene, toluene, xylene, methyl ethyl ketone, and monochlorobenzene, and can form an excellent film when applied to a substrate using a spin cord or the like. Therefore, unlike conventional silicone resists which are liquid or rubber-like, it is possible to make the resist much easier to handle.

本発明の一般式Iで示される高分子化合物の製造法とし
てはメチルフェニルジクロロシランなどのジクロロ化合
物をカリウム、ナトリウムなどの金属で縮合する方法が
挙げられる。
Examples of the method for producing the polymer compound represented by the general formula I of the present invention include a method of condensing a dichloro compound such as methylphenyldichlorosilane with a metal such as potassium or sodium.

以下に本発明における高エネルギー線感応材料の製造例
を示す。
Examples of manufacturing the high-energy ray-sensitive material according to the present invention are shown below.

製造例1 100−のドデカンに5tのナトリウムを入れ、かくは
んしながら加温し、穏やかに還流させた。これに15f
のメチルフェニルジクロロシランを滴下し、2時間反応
させた。反応終了後、室温まで冷却し濾過した。ヘキサ
ン、メタノール、水等で順次洗浄し、白色の固体を得た
Production Example 1 5 tons of sodium was added to 100-g of dodecane, heated while stirring, and gently refluxed. 15f for this
of methylphenyldichlorosilane was added dropwise, and the mixture was reacted for 2 hours. After the reaction was completed, the mixture was cooled to room temperature and filtered. A white solid was obtained by sequentially washing with hexane, methanol, water, etc.

この重合体の重量平均分子量Mw=2.5 X 10’
、分散度My/Mn=4であった。
Weight average molecular weight Mw of this polymer = 2.5 x 10'
, the degree of dispersion My/Mn=4.

製造例2〜5 原料のジクロロシランとして、フェニルメチルジクロロ
シランとジメチルジクロロシラ/(製造例2)、フェニ
ルメチルジクロロシランとジフェニルジクロロシラン(
製造例3)、ジフェニルジクロロシランとジメチルジク
ロロシラン(製造例4)、フェニルメチルジクロロシラ
ン、ジメチルジクロロシラン及ヒジフェニルジクロロシ
ラン(製造例5)を用い、製造例1と全く同様な方法で
重合を行い、白色の重合体を得た。
Production Examples 2 to 5 As raw material dichlorosilane, phenylmethyldichlorosilane and dimethyldichlorosilane/(Production Example 2), phenylmethyldichlorosilane and diphenyldichlorosilane (
Production Example 3), diphenyldichlorosilane and dimethyldichlorosilane (Production Example 4), phenylmethyldichlorosilane, dimethyldichlorosilane and hydiphenyldichlorosilane (Production Example 5), and polymerization was carried out in exactly the same manner as Production Example 1. A white polymer was obtained.

下記表1に得られた各重合体の重量平均分子量 1 〔実施例〕 以下、本発明を実施例により更に詳細に説明するが、本
発明はこれらに限定されるものではクロロベンゼンに溶
解し、シリコンウェハに約α5μmの厚さに塗布し10
0℃で20分間窒素気流中プリベークした。プリベーク
後、水冷回転式モリブデンターゲット(加速電圧16K
V。
Weight average molecular weight of each polymer obtained in Table 1 below 1 [Example] The present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these. Coat the wafer to a thickness of approximately α5μm and
Prebaking was performed at 0° C. for 20 minutes in a nitrogen stream. After prebaking, water-cooled rotating molybdenum target (acceleration voltage 16K)
V.

200 mA ) からの波長5.4Aの軟X線を大気
中で照射した。軟X線照射により膜厚が0となる照射量
は500 m:f/lylであり、ポジ形レジストとし
て、一般に使われているポリメチルメタクリレートの約
10倍の感度であった。また解像性の目安となるγ値は
1.7であった。実際にマスク(吸収体Au、担体81
)ヲつけて照射しメチルアルコールで50秒現像したと
ころ0.5μmのマスクバタンが忠実に転写されていた
Soft X-rays with a wavelength of 5.4 A from 200 mA) were irradiated in the atmosphere. The irradiation dose at which the film thickness was reduced to 0 by soft X-ray irradiation was 500 m:f/lyl, and the sensitivity was about 10 times that of polymethyl methacrylate, which is commonly used as a positive resist. Further, the γ value, which is a measure of resolution, was 1.7. Actually the mask (absorber Au, carrier 81
) was applied, irradiated, and developed with methyl alcohol for 50 seconds, and a 0.5 μm mask pattern was faithfully transferred.

実施例2 シリコンウェハにAz−1350レジスト(シプレイ社
製ンを2μm の厚さに塗布し、200℃で30分間加
熱し不溶化させた。このAZ レジストの上に製造例1
で得たポリフェニルメチルシランを実施例1と同様な操
作で約12μmの厚さに塗布し、マスクを付けて大気中
で軟X線照射し、メチルアルコールで30秒現像したと
ころAZ レジスト上にO,′5μm ライン/スペー
スのバタンか形成できた。その後平行平板型スパッタエ
ツチング装置で酸素ガスをエッチャントガスとしてエツ
チングを行った(印加パワーSOW、エツチング室内圧
80ミリトル酸素ガス)。このエツチング条件では、ポ
リフェニルメチルシランのエツチング速度は0、またA
Zレジストのエツチング速度は800A/分であり、2
8分間エツチングすることによりポリフェニルメチルシ
ランのパタンに覆われていない部分のAZ レジストは
完全に消失した。エッチンク後α3μm ライン/スペ
ースのバタンか23μmの膜厚で形成できた。
Example 2 AZ-1350 resist (manufactured by Shipley) was applied to a silicon wafer to a thickness of 2 μm and heated at 200°C for 30 minutes to insolubilize it.
The polyphenylmethylsilane obtained in Example 1 was applied to a thickness of about 12 μm in the same manner as in Example 1, irradiated with soft X-rays in the air with a mask on, and developed with methyl alcohol for 30 seconds. O, '5μm line/space pattern could be formed. Thereafter, etching was performed using a parallel plate type sputter etching apparatus using oxygen gas as an etchant gas (applied power SOW, etching chamber pressure 80 mtorr oxygen gas). Under these etching conditions, the etching rate of polyphenylmethylsilane is 0, and the etching rate of A
The etching speed of the Z resist is 800 A/min, and 2
By etching for 8 minutes, the AZ resist in the areas not covered by the polyphenylmethylsilane pattern completely disappeared. After etching, we were able to form a film with a thickness of 23 μm using α3 μm lines/spaces.

実施例3〜4 実施例1の方法において、軟X線照射の代りに遠紫外線
(実施例5)、紫外線(実施例4)、を用いて照射した
。この時残膜0となる各高エネルギー線照射量を表2に
示す。
Examples 3 to 4 In the method of Example 1, far ultraviolet rays (Example 5) and ultraviolet rays (Example 4) were used instead of soft X-ray irradiation. Table 2 shows the respective high energy ray irradiation doses at which no film remained at this time.

表 2 実施例5 製造例2〜5で得たポリシランを実施例1の方法で軟X
線照射した時、残goとなるときの照射量(感度)及び
γ値を表3に示す。
Table 2 Example 5 The polysilanes obtained in Production Examples 2 to 5 were soft-Xed by the method of Example 1.
Table 3 shows the irradiation amount (sensitivity) and γ value when there is residual go when irradiated with radiation.

表 3 実施例6 製造例2〜5で得たポリシランを実施例3〜4と同様な
方法で照射した時、残膜0となる照射量(感度)は表4
のとおりである。
Table 3 Example 6 When the polysilanes obtained in Production Examples 2 to 5 were irradiated in the same manner as Examples 3 to 4, the irradiation amount (sensitivity) at which no film remained was as shown in Table 4.
It is as follows.

表 4 〔発明の効果〕 以上説明したように、本発明で得られたポリシランは、
高い耐熱性を有し、更に高エネルギー線に対して高い反
応性と高い解像性を有している。また、得られた重合体
は、いずれも白色粉末で浴解性、塗膜性にも優れ、従来
の液体に近いシリコーン樹脂よりも扱いやすい、更にま
た、酸素ガスプラズマに対して高い耐性をもつため、下
層に厚い有機物膜を有する2層レジストの上層として使
用すれば、著しく高い形状比を有するサブミクロンパタ
ンを形成することができるという顕著な効果が奏せられ
る。
Table 4 [Effects of the invention] As explained above, the polysilane obtained by the present invention has the following properties:
It has high heat resistance, high reactivity to high energy rays, and high resolution. In addition, the resulting polymers are all white powders with excellent bath-dissolvability and coating properties, making them easier to handle than conventional silicone resins that are close to liquids.Furthermore, they have high resistance to oxygen gas plasma. Therefore, if it is used as an upper layer of a two-layer resist having a thick organic film as the lower layer, a remarkable effect can be achieved in that a submicron pattern having a significantly high shape ratio can be formed.

特許出願人 日本電信電話公社 代理人 中本 宏 同 井 上 昭Patent applicant: Nippon Telegraph and Telephone Corporation Agent Hiroshi Nakamoto Akira Inoue

Claims (1)

【特許請求の範囲】 1、 下記一般式l: 1 t1 (式中R1及びR,は同−又は異なり、アルキル基及び
フェニル基よりなる群から選択した1種の基を示す)で
表される繰返し単位をもつポリシランを含むことを特徴
とするノ(タン形成材料。 2 基材上に高エネルギー線感応材料の膜を形成し、熱
処理し、その後大気中で高エネルギー線を照射して形成
膜の一部分を選択的に露光し、次いで露光部分の膜を現
像液により選択的に除去することにより)くタンを形成
する方法において、該高エネルギー線感応材料として、
下記一般式I: j′t2 (式中R1及びR2は同−又は異なp、アルキル基及び
フェニル基よシなる群から選択した1種の基を示す)で
表される繰返し単位をもつポリシランを含む材料を使用
することを特徴とするバタン形成方法。 & 基材上に有機高分子材層を設け、その上に高エネル
ギー線感応材料層を設け、その後大気中で高エネルギー
線を所望のバタン状に照射し、照射部分の膜を現像液に
より選択的に除去したのち、これをマスクとして酸素を
用いるドライエツチングにより該高エネルギー線感応材
料に覆われていない部分の該有機高分子材層をエツチン
グ除去することによシバタンを形成する方法において、
該高エネルギー線感応材料として、下記一般式■: (式中R1及びR2は同−又は異なり、アルキル基及び
フェニル基よシなる群から選択した1種の基を示す)で
表される繰返し単位をもつポリシランを含む材料を使用
することを特徴とするバタン形成方法。
[Claims] 1. Represented by the following general formula l: 1 t1 (wherein R1 and R are the same or different and represent one group selected from the group consisting of an alkyl group and a phenyl group) A tan-forming material characterized by containing polysilane having repeating units. 2. A film of a high-energy ray-sensitive material is formed on a base material, heat-treated, and then irradiated with high-energy rays in the atmosphere to form a film. In a method of forming a film by selectively exposing a portion to light and then selectively removing the film in the exposed portion with a developer, the high-energy ray-sensitive material comprises:
A polysilane having a repeating unit represented by the following general formula I: j't2 (wherein R1 and R2 are the same or different p, an alkyl group and a phenyl group) A batan forming method characterized by using a material comprising: & An organic polymer material layer is provided on the base material, a high energy ray sensitive material layer is provided on top of it, and then high energy rays are irradiated in the atmosphere in a desired slam-like manner, and the irradiated area of the film is selected using a developer. In a method of forming a shibatan by etching away the portions of the organic polymer material layer that are not covered with the high-energy ray-sensitive material by dry etching using oxygen as a mask,
The high-energy ray-sensitive material is a repeating unit represented by the following general formula (1): (wherein R1 and R2 are the same or different and represent one type of group selected from the group consisting of an alkyl group and a phenyl group) A method for forming a batten, characterized by using a material containing polysilane having a polysilane.
JP58226938A 1983-12-02 1983-12-02 Pattern forming material and pattern forming method Pending JPS60119550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58226938A JPS60119550A (en) 1983-12-02 1983-12-02 Pattern forming material and pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58226938A JPS60119550A (en) 1983-12-02 1983-12-02 Pattern forming material and pattern forming method

Publications (1)

Publication Number Publication Date
JPS60119550A true JPS60119550A (en) 1985-06-27

Family

ID=16852957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58226938A Pending JPS60119550A (en) 1983-12-02 1983-12-02 Pattern forming material and pattern forming method

Country Status (1)

Country Link
JP (1) JPS60119550A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226748A (en) * 1985-03-30 1986-10-08 Japan Synthetic Rubber Co Ltd X-ray resist
JPS62153852A (en) * 1985-12-27 1987-07-08 Toshiba Corp Photosensitive composition
JPS62222247A (en) * 1986-03-24 1987-09-30 Mitsubishi Electric Corp Positive photoresist material
JPS63184746A (en) * 1984-04-05 1988-07-30 アメリカ合衆国 Formation of positive image on surface of substrate
DE4039519A1 (en) * 1989-12-11 1991-06-13 Canon Kk Barrier layer organic photo-element - has poly:silane organic semiconductor layer used e.g. metal- or semiconductor-insulator-semiconductor Schottky transition
JPH0431864A (en) * 1990-05-28 1992-02-04 Shin Etsu Chem Co Ltd Pattern forming method
JPH0431865A (en) * 1990-05-28 1992-02-04 Shin Etsu Chem Co Ltd Pattern forming method
US5159042A (en) * 1988-12-29 1992-10-27 Canon Kabushiki Kaisha Polysilane compounds and electrophotographic photosensitive members with the use of said compounds
JPH04134499U (en) * 1991-02-08 1992-12-15 株式会社荏原製作所 floating aerator
US5220181A (en) * 1989-12-11 1993-06-15 Canon Kabushiki Kaisha Photovoltaic element of junction type with an organic semiconductor layer formed of a polysilane compound
JPH0643655A (en) * 1991-03-04 1994-02-18 Internatl Business Mach Corp <Ibm> Forming process of resist image and electronic device
US6110651A (en) * 1997-12-11 2000-08-29 Shin-Etsu Chemical, Co., Ltd. Method for preparing polysilane pattern-bearing substrate
JP2005036139A (en) * 2003-07-17 2005-02-10 Osaka Gas Co Ltd Copolysilane and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184746A (en) * 1984-04-05 1988-07-30 アメリカ合衆国 Formation of positive image on surface of substrate
JPS61226748A (en) * 1985-03-30 1986-10-08 Japan Synthetic Rubber Co Ltd X-ray resist
JPS62153852A (en) * 1985-12-27 1987-07-08 Toshiba Corp Photosensitive composition
JPS62222247A (en) * 1986-03-24 1987-09-30 Mitsubishi Electric Corp Positive photoresist material
US5159042A (en) * 1988-12-29 1992-10-27 Canon Kabushiki Kaisha Polysilane compounds and electrophotographic photosensitive members with the use of said compounds
US5220181A (en) * 1989-12-11 1993-06-15 Canon Kabushiki Kaisha Photovoltaic element of junction type with an organic semiconductor layer formed of a polysilane compound
DE4039519A1 (en) * 1989-12-11 1991-06-13 Canon Kk Barrier layer organic photo-element - has poly:silane organic semiconductor layer used e.g. metal- or semiconductor-insulator-semiconductor Schottky transition
JPH0431865A (en) * 1990-05-28 1992-02-04 Shin Etsu Chem Co Ltd Pattern forming method
JPH0431864A (en) * 1990-05-28 1992-02-04 Shin Etsu Chem Co Ltd Pattern forming method
JPH04134499U (en) * 1991-02-08 1992-12-15 株式会社荏原製作所 floating aerator
JPH0643655A (en) * 1991-03-04 1994-02-18 Internatl Business Mach Corp <Ibm> Forming process of resist image and electronic device
US6110651A (en) * 1997-12-11 2000-08-29 Shin-Etsu Chemical, Co., Ltd. Method for preparing polysilane pattern-bearing substrate
JP2005036139A (en) * 2003-07-17 2005-02-10 Osaka Gas Co Ltd Copolysilane and method for producing the same

Similar Documents

Publication Publication Date Title
US4931351A (en) Bilayer lithographic process
US4985342A (en) Polysiloxane pattern-forming material with SiO4/2 units and pattern formation method using same
JPS60119550A (en) Pattern forming material and pattern forming method
CA1272059A (en) Negative photoresist systems
JPS60238827A (en) Photosensitive resin composition
EP0274757A2 (en) Bilayer lithographic process
US4701342A (en) Negative resist with oxygen plasma resistance
JPS6098431A (en) Pattern forming material and formation of pattern
US3520685A (en) Etching silicon dioxide by direct photolysis
JPS59198446A (en) Photosensitive resin composition and using method thereof
JPS6080844A (en) Pattern forming material and formation of pattern
JPS60220340A (en) Photosensitive resin composition and formation of pattern
JP3034090B2 (en) Pattern formation method
JPH08193167A (en) Photosensitive resin composition
JPS5953837A (en) Pattern forming material and pattern forming method
JPS60220341A (en) Photosensitive photoresist composition and formation of pattern
KR100403324B1 (en) Method for manufacturing fine pattern of semiconductor device
JPS6076739A (en) Photosensitive resin composition and method for using it
JPS61289345A (en) Resist for lithography
JPS63157145A (en) Photosensitive resin composition
JPS6120031A (en) Resist material and its preparation
US4520097A (en) Negative-type resist sensitive to ionizing radiation
JPS6017443A (en) Pattern forming material and formation of pattern
JPH063548B2 (en) Photosensitive resin composition
JPS6080851A (en) Pattern forming material and formation of pattern