JPS60111981A - Quantitative analysis of strontium - Google Patents

Quantitative analysis of strontium

Info

Publication number
JPS60111981A
JPS60111981A JP21944583A JP21944583A JPS60111981A JP S60111981 A JPS60111981 A JP S60111981A JP 21944583 A JP21944583 A JP 21944583A JP 21944583 A JP21944583 A JP 21944583A JP S60111981 A JPS60111981 A JP S60111981A
Authority
JP
Japan
Prior art keywords
beta
measured
gamma
active
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21944583A
Other languages
Japanese (ja)
Inventor
Masahiro Kondo
正弘 近藤
Masaaki Fujii
藤井 正昭
Hiroshi Kitaguchi
博司 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21944583A priority Critical patent/JPS60111981A/en
Publication of JPS60111981A publication Critical patent/JPS60111981A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable quick analysis of the radio-active <89>Sr with a simple operation, by the simultaneous measurement of weak gamma and beta beams emitted from the <89>Sr and determination of total quantity of <89>Sr and <90>Sr. CONSTITUTION:The ratio-active Sr in the liquid specimen of the atomic power installation is treated chemically for preparing a pure Sr specimen 1. gamma and beta beams discharged by decay of an isotope <89>Sr are measured with detectors 3, 2 and the measured both radio-active beams are counted simultaneously for determination of the <89>Sr in a quantitative way. Further, the beta-beams emitted from <89>Sr and <90>Sr are measured with a detector 2 for evaluation of the total quantity of <89>Sr and <90>Sr, and by subtracting the quantity of <89>Sr subjected to quantitative evaluation from the total radio-active capacity, the quantity determination of the <90>Sr is accomplished.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ベータ線放出核種の分析に係り、特に含有す
る放射性同位体の種類が明らかな場合に好適な放射性ス
トロンチウムの分析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the analysis of beta-ray emitting nuclides, and particularly to a method for analyzing radioactive strontium suitable when the type of radioactive isotope contained is known.

〔発明の背景〕[Background of the invention]

従来、ベータ線放出核種であるストロンチウム(Sr)
の分析は、Srの同位体を化学分離した後、ベータ線検
出器で8JrとQO81の総量のベータ線を測定する。
Conventionally, strontium (Sr), a beta-ray emitting nuclide,
In this analysis, after chemically separating Sr isotopes, the total beta rays of 8Jr and QO81 are measured using a beta ray detector.

その後試料を放置し、Srの同位体である90Srが2
8.8年の半減期で崩壊し、娘核種としてイツトリウム
−90(”Y)が生成され、”Yは64時間の半減期で
減衰し、この生成と減衰が平衡状態に達するまで放置し
、この平衡状態試料を化学分離により”Yだけにし、″
。Y全分析全行い、”Yと90Srが平衡より”Sr’
r定量する。前項目で測定した値から”Srk差引くこ
とでa9Srk定量する31以上のことにミルキング法
と言う。(放射性ストロンチウム分析法;科学技術庁;
日本放射性同位元素協会; 1963 )第1図に、従
来の3r分析手順を示した。Sr同位体を化学分離した
後、2週間のミルキンz全実施し +10 y t−生
成させる。この状態で測定試料(89Sr、 90Sr
 、 110 Y)ノ全放射能(Bl)t−プラスチッ
ク検出器、0M管などで測定する。
After that, the sample was left to stand, and 90Sr, which is an isotope of Sr, was
It decays with a half-life of 8.8 years, producing yttrium-90 ("Y") as a daughter nuclide, "Y" decays with a half-life of 64 hours, and is left until this production and decay reach an equilibrium state. This equilibrium state sample is chemically separated to make only "Y"
. All Y analyzes were performed, and ``Y and 90Sr were in equilibrium with ``Sr'''
rQuantify. The milking method is used to quantify a9Srk by subtracting Srk from the value measured in the previous item. (Radioactive strontium analysis method; Science and Technology Agency;
Japan Radioisotope Society; 1963) Figure 1 shows the conventional 3R analysis procedure. After chemical separation of the Sr isotope, a 2-week milkin z cycle is performed to generate +10 yt-. In this state, the measurement samples (89Sr, 90Sr
, 110 Y) total radioactivity (Bl) is measured using a t-plastic detector, 0M tube, etc.

次に、測定試料中に有る90yi化学処理で分離し、そ
の放射能(B2)を測定する。”Yの放射油濃度がめら
れると、放射平衡に達している90 Srの放射能濃度
(B3)がまる。最初に測定した(B1)からB2 、
 B3 *差引くことによって、8QSrの放射能濃度
を定量することができる。
Next, the sample to be measured is separated by 90yi chemical treatment and its radioactivity (B2) is measured. "When the radioactive oil concentration of Y is determined, the radioactivity concentration (B3) of 90 Sr, which has reached radioactive equilibrium, is determined. From the first measured (B1), B2,
By subtracting B3*, the radioactivity concentration of 8QSr can be determined.

以上説明したように、従来方法で1istの同位体分析
に2週間以上の分析時間が必要となる1、また、化学処
理を伴う放射能測定であるため、専門的な知識あるいは
熟錬技術が必要となる。
As explained above, conventional methods require more than two weeks of analysis time to analyze one isotope1, and since radioactivity measurement involves chemical treatment, specialized knowledge or skill is required. becomes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、放射性srが放出するベータ線とガン
マ−線を計測することによって、前述の従来技術の持つ
欠点全改善せしめ、放射性Sr’c足量計測量計測法全
提供することにある。
The purpose of the present invention is to overcome all the drawbacks of the above-mentioned conventional techniques by measuring beta rays and gamma rays emitted by radioactive SR, and to provide a complete method for measuring the amount of radioactive SR. .

〔発明の概要〕 本発明の概要は、898rが放出する微弱なガンマ−線
およびベータ線全同時計測して89srを定量し、さら
に同位体8″srと90 srが放出するベータ線を計
測することにより H8rと908rの総量を把握する
。この2つの結果がら as srと908r’e算出
することでYの生成、分離過程を省略できることにある
[Summary of the Invention] The outline of the present invention is to quantify 89sr by simultaneously measuring weak gamma rays and beta rays emitted by 898r, and further to measure beta rays emitted by isotopes 8''sr and 90sr. By doing this, the total amount of H8r and 908r can be grasped. By calculating as sr and 908r'e from these two results, the generation and separation process of Y can be omitted.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

本実施例は、原子力施設の液体試料中の放射性Srk沈
殿分離方法等の化学的処理によって、純3r試料1を作
成し、ベータ線検出器であるプラスチックシンチレーシ
ョン検出器2、カンマ−線検出器であるウェル型NaI
シンチレーション検出器3の底面上にSr試料1を置き
、放射性Srが放出するベータ線とガンマ−線をプラス
チックシンチレーション検出器2、ウェル型NaIシン
チレーション検出器3によって同時計測する。ここで放
射性Srのエネルギーを考慮するとプラスチックシンチ
レーション検出器のクリスタルの厚みは7〜l Q 1
nlllが妥当であり、ガンマ−線計測にウェル型Na
Iシンチレーション検出器3を用いた理由は、放射性1
19 :3 rが放出するガンマ−線は、第3図に示す
ように微量であり、全放出当りの0.001(%)であ
り、このたぬ、検出効率全向上させるためにウェル型N
aIシンチレ〜ジョン検出器3を用いたのである。
In this example, a pure 3r sample 1 was prepared by a chemical treatment such as radioactive Srk precipitation separation method in a liquid sample at a nuclear facility, and a plastic scintillation detector 2, which is a beta ray detector, and a comma ray detector were used. A certain well-type NaI
An Sr sample 1 is placed on the bottom surface of a scintillation detector 3, and beta rays and gamma rays emitted by radioactive Sr are simultaneously measured by a plastic scintillation detector 2 and a well-type NaI scintillation detector 3. Considering the energy of radioactive Sr, the thickness of the crystal of the plastic scintillation detector is 7~l Q 1
nllll is appropriate, and well type Na is used for gamma ray measurement.
The reason for using the I scintillation detector 3 is that the radioactivity 1
As shown in Figure 3, the gamma rays emitted by 19:3r are very small, accounting for 0.001 (%) of the total emission.
An aI scintillation detector 3 was used.

放射性Srが放出するベータ線とガンマ−線は、各検出
器には(1)、 (2)式のように表わされる。
Beta rays and gamma rays emitted by radioactive Sr are expressed in each detector as shown in equations (1) and (2).

N+=alA”十82Aa9+a3A” 曲−(1)N
2=a、Al19曲間・曲間間(2)ここで N1 ニブラスチックシンチレーション検出器2の計数
率 N2 :ウエル型Nal7ンチンーシヨン検出器3の計
数率 Aa9 、 li9 Srの壊変率 A90 、110Srの壊変率 3、:89Srが放出するガンマ−線に対する計数効率 B2 :90Srが放出するベータ線のみの計数効率 a、: 908 rが放出するベータ線のみの計数効率 H4:89srが放出するガンマ−線がウェル型NaI
シンチV−ジョン検出器3に及ぼす計数効率 である。
N+=alA"182Aa9+a3A" Song-(1)N
2=a, Al19 between songs/between songs (2) where N1 Counting rate of niblastic scintillation detector 2 N2: Counting rate of well-type Nal7 scintillation detector 3 Aa9, li9 Decay rate of Sr A90, Decay of 110Sr Rate 3: Counting efficiency for gamma rays emitted by 89Sr B2: Counting efficiency for only beta rays emitted by 90Sr a,: Counting efficiency for only beta rays emitted by 908r H4: The gamma rays emitted by 89sr well type NaI
This is the counting efficiency on the scintillation V-john detector 3.

各放射線は、(1)、 (2)式で表わさせるように、
ベータ線はプラスチックシンチレーション検出器2、ガ
ンマ−iUウェル型NaIシンチレーション検出器3で
測定される。検出された放射線は、検出器中で電気信号
に変換され、プリアンプ4に出力される。
Each radiation is expressed by equations (1) and (2),
Beta rays are measured with a plastic scintillation detector 2 and a gamma-iU well type NaI scintillation detector 3. The detected radiation is converted into an electrical signal in the detector and output to the preamplifier 4.

プリアンプ4中では、電気信号が波形整形され、整形さ
れた電気信号は、リニアアンプ5に入力され増幅される
。リニアアンプ5出力は、ガンマ−線出力は、ガンマ−
線用のンングルチャンネルアナライザ6(SCA)、ベ
ータ線出力は、ベータ線用5CA6で所定のエネルギー
に対するガンマ−線、ベータ線のパルスを識別した後、
同時計数回路7に入力する。同時計数回路に入力した、
ベータ線、ガンマ−線の出力信号は、同回路7中では同
一時刻(同時計数回路70分解時間内)に入ったベータ
、ガンマ−線のみのパルス信号i出力する。このパルス
信号の計数重金N、とすれば、(3)式で表わされる。
In the preamplifier 4, the electrical signal is waveform-shaped, and the shaped electrical signal is input to the linear amplifier 5 and amplified. Linear amplifier 5 output is gamma ray output, gamma ray output is
After identifying gamma rays and beta ray pulses for a predetermined energy using the single channel analyzer 6 (SCA) for beta rays, the beta ray output is determined by the beta ray 5CA 6.
It is input to the coincidence counting circuit 7. input to the coincidence circuit,
Output signals of beta rays and gamma rays are outputted as pulse signals i of only beta and gamma rays that enter the circuit 7 at the same time (within the decomposition time of the coincidence circuit 70). Letting N be the counting weight of this pulse signal, it is expressed by equation (3).

N3 ” aI a4 A” −”・・(3)この、S
CC50同時計測回路7で出力されるパルス(lは、演
算装置9のインターフェイス8へ通じて、演算装置9の
メモリ上に格納される。
N3 "aI a4 A"-"...(3) This, S
The pulse (l) output by the CC50 simultaneous measurement circuit 7 is passed to the interface 8 of the arithmetic unit 9 and stored in the memory of the arithmetic unit 9.

あらかしぬ設定した計測時間が終了すると、演算装置9
ば、メモリ上の計測データ全貌み込み(4)式の計算を
実行して、89Srの壊変率(A”)’にめる 89Srの壊変率がまると、各計数効率は、校正時にま
っているから直ちに QOS 1の壊変率(A”)が算
出できる。
When the set measurement time ends, the calculation device 9
For example, when the decay rate of 89Sr is calculated by incorporating the entire measurement data in the memory into the decay rate (A'')' of 89Sr, each counting efficiency is calculated as follows during calibration. Therefore, the disintegration rate (A”) of QOS 1 can be calculated immediately.

ここで、(4)式について補足説明すると、理論的には
偶発的同時計数を考慮しなければならないが、同時計数
回路70分解時間を短時間(1μs以下)にすると、偶
発的同時計数は無視できるようになる。
Here, to provide a supplementary explanation of equation (4), theoretically, accidental coincidences must be taken into account, but if the decomposition time of the coincidence circuit 70 is shortened (1 μs or less), accidental coincidences can be ignored. become able to.

演算装置9でめた、放射性bQSrとQoSrの壊変率
より、試料採取時刻から測定時刻までの経過時間内によ
る減衰を補正し簡単に8981と908rを定量評価す
ることができる。
From the decay rates of radioactive bQSr and QoSr determined by the arithmetic unit 9, it is possible to easily quantitatively evaluate 8981 and 908r by correcting the attenuation due to the elapsed time from the sample collection time to the measurement time.

また、定f!′評価した放射性SrO値全演算装置9の
ターミナルであるデイスプVイ装置11、プリンタ10
VrC定量結果全表示、印字することにより分析者に定
量評価結果を知らせる。
Also, constant f! 'Display device 11, which is a terminal of the evaluated radioactive SrO value calculation device 9, and printer 10
The entire VrC quantitative result is displayed and printed to notify the analyst of the quantitative evaluation result.

次に本装置の校正方法について記す。本装置は、(i)
、 (2)式に示すようにa、、、、a4の計数効果が
ある。しかし、同時計数方法を採用するたぬ請求めなく
ても良い。Sr試料作成時にGM管検出器等のベータ線
検出器によって、ベータ線を計測し8″Sr、!:″。
Next, we will describe how to calibrate this device. This device: (i)
, As shown in equation (2), there is a counting effect of a, , , a4. However, it is not necessary to apply the coincidence counting method. When preparing the Sr sample, beta rays were measured using a beta ray detector such as a GM tube detector, and the result was 8″Sr,!:″.

Srの合計量全定量する。その試料ヲミルキング方法に
より、90SrとYが平衡状態VCなったときの90 
y =を化学分離した後計測して、その値よりQoSr
を定量する。定量しfc90Sr。
Quantitate the total amount of Sr. By the milking method of the sample, when 90Sr and Y are in equilibrium state VC, 90
y = is measured after chemical separation, and from that value QoSr
Quantify. Quantitate fc90Sr.

値トベータ線計測によってめた19 Slと90Srの
総量から89Srと90Srの両方全定量できる。
The total amount of both 89Sr and 90Sr can be determined from the total amount of 19Sl and 90Sr determined by tobeta ray measurement.

よって、計数効率であるa2と”s 請求めることがで
きる。次に8O8,が放出するガンマ−線と近いエネル
ギーを持つ単色光であるMO−54(0,85MeV)
、C0−58(0,81MeV)等の標準放射線線源に
よりa。をめる。
Therefore, the counting efficiency a2 and "s" can be claimed.Next, MO-54 (0.85 MeV) is monochromatic light with energy close to the gamma ray emitted by 8O8.
, by a standard radiation source such as C0-58 (0,81 MeV). I put it on.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、放射性5rt−ミルキング方法で定量
評価する際、高度な分析技術や長時間の分析時間金製し
たが、本発明により分析時間を大幅に短縮するだけでな
く、簡単な操作で放射性8rの分析ができる。
According to the present invention, when performing quantitative evaluation using the radioactive 5rt-milking method, advanced analysis techniques and long analysis times are required. Radioactive 8r can be analyzed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はミルキング方法による放射性srの分析法の説
明図、第2図は本発明の実施例を示す装置構成図、第3
図は放射性srのエネルギー準位図である。 1・・・純Sr試料、2・・・プラスチックシンチレー
シEI7検出5.3・・・ウェル型NaIシンチV−シ
ョ第2区
Fig. 1 is an explanatory diagram of the radioactive SR analysis method using the milking method, Fig. 2 is a diagram showing the configuration of an apparatus showing an embodiment of the present invention, and Fig. 3
The figure is an energy level diagram of radioactive sr. 1...Pure Sr sample, 2...Plastic scintillation EI7 detection 5.3...Well type NaI scintillation V-sho 2nd section

Claims (1)

【特許請求の範囲】[Claims] 1、放射性Srの測定において、同位体allSrの崩
壊で放出するガンマ−線をガンマ−線検出器で測定し、
ベータ線はベータ線検出器で測定し、測定した両数射線
を同時計数をすることにより、上記all Srを定量
的に把握して置き +111 SrとSrが放出するベ
ータ線をベータ線検出器で測定し、89SrとgoSr
の総量を評価し、前項で定量評価されている8gSrの
量を総放射能から差引くことにより”Sr’Fc定量す
ることを特徴とするストロンチウムの定量測定方法。
1. In measuring radioactive Sr, gamma rays emitted by the decay of the isotope allSr are measured with a gamma ray detector,
Beta rays are measured with a beta ray detector, and by counting both measured rays simultaneously, the above all Sr can be quantitatively understood. Measure 89Sr and goSr
A method for quantitatively measuring strontium, characterized in that "Sr'Fc is quantified by evaluating the total amount of strontium and subtracting the amount of 8gSr quantitatively evaluated in the previous section from the total radioactivity.
JP21944583A 1983-11-24 1983-11-24 Quantitative analysis of strontium Pending JPS60111981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21944583A JPS60111981A (en) 1983-11-24 1983-11-24 Quantitative analysis of strontium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21944583A JPS60111981A (en) 1983-11-24 1983-11-24 Quantitative analysis of strontium

Publications (1)

Publication Number Publication Date
JPS60111981A true JPS60111981A (en) 1985-06-18

Family

ID=16735519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21944583A Pending JPS60111981A (en) 1983-11-24 1983-11-24 Quantitative analysis of strontium

Country Status (1)

Country Link
JP (1) JPS60111981A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249337A (en) * 2007-03-29 2008-10-16 Natl Inst Of Radiological Sciences Radioactivity absolute measurement method, method for determining detection efficiency of radiation detector assembly and method for calibrating radiation measuring apparatus
JP4834552B2 (en) * 2004-09-10 2011-12-14 株式会社湘南合成樹脂製作所 Rehabilitation pipe for pipeline facility repair
JP2013210317A (en) * 2012-03-30 2013-10-10 National Institute Of Advanced Industrial & Technology Measuring method for radioactive substance and measuring device for the same
EP3757623A1 (en) * 2019-06-26 2020-12-30 Safetec Entsorgungs- und Sicherheitstechnik GmbH Method for localization of areas of increased radioactivity in an object

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834552B2 (en) * 2004-09-10 2011-12-14 株式会社湘南合成樹脂製作所 Rehabilitation pipe for pipeline facility repair
JP2008249337A (en) * 2007-03-29 2008-10-16 Natl Inst Of Radiological Sciences Radioactivity absolute measurement method, method for determining detection efficiency of radiation detector assembly and method for calibrating radiation measuring apparatus
JP2013210317A (en) * 2012-03-30 2013-10-10 National Institute Of Advanced Industrial & Technology Measuring method for radioactive substance and measuring device for the same
EP3757623A1 (en) * 2019-06-26 2020-12-30 Safetec Entsorgungs- und Sicherheitstechnik GmbH Method for localization of areas of increased radioactivity in an object
WO2020260570A1 (en) * 2019-06-26 2020-12-30 Safetec Entsorgungs- Und Sicherheitstechnik Gmbh Method for localising regions of increased radioactivity in a test object

Similar Documents

Publication Publication Date Title
US4483816A (en) Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors
US7388206B2 (en) Pulse shape discrimination method and apparatus for high-sensitivity radioisotope identification with an integrated neutron-gamma radiation detector
US20140151567A1 (en) Neutron spectrometer
JPH1164529A (en) Dust monitor
JP5994169B2 (en) Radioactive substance measuring method and measuring apparatus therefor
JPS60111981A (en) Quantitative analysis of strontium
Spencer et al. Neutron activation analysis of sodium in blood serum
JPH05333155A (en) Radioactive concentration measuring method for artificial radioactive nuclide in concrete
RU2390800C2 (en) Method and device for measuring spectral and integral density of neutron stream
EP0042099A2 (en) Self-regulating neutron coincidence counter
JPH06103279B2 (en) Component analysis method
Eckhoff et al. Trace element determinations by neutron activation analysis: theory and development
JPS61160079A (en) Apparatus for analysis of beta nuclide
JPS5977346A (en) Analyzing apparatus for element composition of substance
Pylypchynets et al. Isotopic identification of photofissed nuclear materials in stainless steel containers using delayed gamma-rays
RU2217777C2 (en) Device for evaluating concentration of radioactive materials
JPH1152061A (en) Radioactivity measuring device
Alfassi Principles of activation analysis
JPS6063485A (en) Radioactive nuclide analyzer
Nishizawa et al. Application of NaI (T1) Scintillation Detector to Measurement of Tritium Concentration
RU2054659C1 (en) Method for determining quantitative composition of two- component fissile heavy nuclei mixture
Prindle et al. The half life of 239Pu
Huang et al. Intercalibrated radionuclide activities in spiked water samples of the IAEA worldwide open proficiency test
US5164149A (en) Nuclide separation type of precipitator system
JP2022059665A (en) Radiation analysis device and dust monitor device