JPH05333155A - Radioactive concentration measuring method for artificial radioactive nuclide in concrete - Google Patents

Radioactive concentration measuring method for artificial radioactive nuclide in concrete

Info

Publication number
JPH05333155A
JPH05333155A JP13856692A JP13856692A JPH05333155A JP H05333155 A JPH05333155 A JP H05333155A JP 13856692 A JP13856692 A JP 13856692A JP 13856692 A JP13856692 A JP 13856692A JP H05333155 A JPH05333155 A JP H05333155A
Authority
JP
Japan
Prior art keywords
radioactivity
detector
natural
measuring
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13856692A
Other languages
Japanese (ja)
Inventor
Tetsuo Goto
哲夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13856692A priority Critical patent/JPH05333155A/en
Publication of JPH05333155A publication Critical patent/JPH05333155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To measure the concentration of the heterogeneously distributed artificial radioactive nuclide without being affected by the natural radioactivity in concrete. CONSTITUTION:A gamma-ray energy measuring small detector 1 and a gamma-ray total counting rate measuring large detector 2 are combined, the counting rate caused by the natural radioactivity of the large detector 2 is calculated, evaluated, and subtracted from the concentration measured value of the natural radioactive nuclide of the small detector 1 to determine the net counting rate caused by the artificial radioactivity expected to be heterogeneous, and radioactivity conversion is made because the distribution of the natural radioactivity in a concrete sample 5 is nearly uniform. The measurement error due to heterogeneity is reduced, and the radioactivity can be discriminated from the natural radioactivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子炉の廃止措置に伴う
発電用原子炉建屋、放射性物質取扱施設の解体時等に大
量に発生する極めて放射能の低い汚染コンクリート中の
人工放射性核種の放射能濃度測定法に関する。
TECHNICAL FIELD The present invention relates to the emission of artificial radioactive nuclides in contaminated concrete with extremely low radioactivity, which is generated in large quantities when the nuclear reactor building for power generation and the radioactive material handling facility are dismantled due to the decommissioning of the nuclear reactor. Concerning the active concentration measurement method.

【0002】[0002]

【従来の技術】コンクリート中には天然放射性核種であ
るカリウム40,トリウムあるいはウラン系列の娘核種等
がγ線を放出する核種として含有され、その放射能レベ
ルはたとえばカリウム40の場合、1Bq/gに達する場合
がある。
2. Description of the Prior Art In concrete, natural radioactive nuclides such as potassium 40, thorium or uranium series daughter nuclides are contained as nuclides that emit γ rays, and the activity level is 1 Bq / g for potassium 40, for example. May reach.

【0003】一方、施設の運転中に汚染する可能性のあ
るコンクリートについては、コバルト60、セシウム137
といった人工放射性核種による想定汚染レベルは極めて
低いものが大部分であり、多くは 0.1Bq/g以下のもの
と予想される。
On the other hand, regarding concrete which may be contaminated during the operation of the facility, cobalt 60, cesium 137
Most of the assumed contamination levels due to artificial radionuclides are extremely low, and most are expected to be below 0.1 Bq / g.

【0004】このため、γ線のエネルギー弁別を伴わな
いγ線用全計数率計測用検出器による測定では両者のγ
線のエネルギーを用いた弁別は可能でなく、放射線検出
器により計数される値は天然放射性核種からのγ線が大
部分の場合のみ可能となる。
Therefore, in the measurement by the detector for measuring the total count rate for γ-rays, which does not involve the energy discrimination of γ-rays, both γ-rays are measured.
Discrimination using the energy of the rays is not possible and the values counted by the radiation detectors are only possible for most of the gamma rays from natural radionuclides.

【0005】すなわち、あらかじめ人工放射性核種を含
有していないことが明白な代表的な試験体について測定
し、その測定結果をいわゆるバックグラウンドとして試
料の測定時の計数率から引き去ることにより、人工の放
射能濃度に換算する方法が一般的である。
That is, by measuring in advance a typical test sample that is clear that it does not contain an artificial radionuclide, and subtracting the measurement result as the so-called background from the count rate at the time of measuring the sample, The method of converting into radioactivity concentration is common.

【0006】しかしながら、一般に天然放射性核種の濃
度は試験体の種類により大幅に変動するため、当該バッ
クグランウンドは測定試料、つまりコンクリート試料の
種類、材質、骨材の種類等により変える必要がある。そ
のため、極めて繁雑なうえに上述したように測定対象と
なる人工放射性核種のレベルが低い場合には、天然の放
射能レベルの変動が大きな誤差をもたらすことになる。
However, since the concentration of natural radionuclides generally varies greatly depending on the type of test specimen, the background must be changed depending on the type of measurement sample, that is, the type of concrete sample, the material, the type of aggregate, and the like. Therefore, when the level of the artificial radionuclide to be measured is low as described above in addition to being extremely complicated, the fluctuation of the natural radioactivity level causes a large error.

【0007】また、天然の放射性核種が多量に含まれる
場合の極めて低い人工放射性核種の測定には、乳牛等に
含まれる放射性よう素の現場での測定が知られている。
この測定には測定に緊急を要するため、充分な遮蔽体内
での測定は困難であり、このため、天然の放射性核種の
影響を考慮した測定が必要である。
In addition, in-situ measurement of radioiodine contained in dairy cows and the like is known for the measurement of extremely low artificial radionuclide when a large amount of natural radionuclide is contained.
Since this measurement requires urgent measurement, it is difficult to carry out the measurement within a sufficient shielded body. Therefore, it is necessary to consider the influence of natural radionuclides.

【0008】この測定原理はNaI検出器等のエネルギ
ーの弁別が可能な検出器により、カリウム40あるいはト
リウム系列の娘核種の対象放射性核種のエネルギー情報
を有する部分への影響をあらかじめ求めておき、一次連
立方程式の解により放射性よう素(主としてよう素129
)濃度を算出する方法である。
The principle of this measurement is that the effect of the daughter radionuclide of potassium 40 or thorium series on the portion having the energy information of the target radionuclide is obtained in advance by a detector capable of discriminating the energy such as NaI detector, and the primary Radioactive iodine (mainly iodine 129
) A method of calculating the concentration.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この方
法は数リットル程度の小型の試料を測定対象としたもの
であり、大型試料の測定に適した大型化が必要な場合、
検出部の大型化が困難である。また、ある程度の大型化
が可能な検出器も知られているが、高価になる欠点があ
る。
However, this method is intended for measuring a small sample of about several liters, and when a large size suitable for measuring a large sample is required,
It is difficult to increase the size of the detector. Further, a detector that can be upsized to some extent is also known, but it has a drawback that it becomes expensive.

【0010】さらに、 200リットルドラム缶を対象とし
た低レベル放射性廃棄物用の測定では、プラスチックシ
ンチレーション検出器およびGeあるいはNaI検出器
の2台の検出器を用いた測定装置が提案されている。
Further, for the measurement of low-level radioactive waste for 200 liter drums, a measuring device using two detectors, a plastic scintillation detector and a Ge or NaI detector, has been proposed.

【0011】この測定装置は、大型のプラスチックシン
チレーション検出器の全計数率をGe検出器等のγ線エ
ネルギーが計数可能な検出器のピーク計数率に検出効率
の重みをつけた形で分配し、それぞれの放射能濃度を求
める方式である。
This measuring device distributes the total count rate of a large-sized plastic scintillation detector in such a manner that the peak count rate of a detector capable of counting γ-ray energy such as a Ge detector is weighted for the detection efficiency, This is a method of obtaining the respective radioactivity concentrations.

【0012】しかしながら、極めて低い放射能レベルの
測定に応用した場合、検出可能な人工放射性核種の放射
能レベルはGe検出器等のエネルギー弁別が可能な検出
器の検出下限で定まり、天然放射性の濃度が高い場合に
ついては、人工放射性核種の濃度の換算は不可能となる
課題がある。
However, when applied to the measurement of extremely low radioactivity levels, the radioactivity levels of the artificial radionuclides that can be detected are determined by the lower detection limit of detectors capable of energy discrimination such as Ge detectors, and the concentration of natural radioactivity If the value is high, there is a problem that conversion of the concentration of artificial radionuclide becomes impossible.

【0013】本発明は上記課題を解決するためになされ
たもので、大型の試料に対応し、大型かつ安価な高感度
検出器および小型のエネルギー弁別が可能な検出器を組
み合わせ、天然放射能が試料のコンクリート中で一様に
分布していることを利用し、コンクリート中の天然放射
能の影響を受けることなく天然核種の濃度が人工放射性
核種の影響が大きい場合でも、不均質に分布している人
工放射性核種の影響の少ないコンクリート中の人工放射
性核種の放射能濃度測定法を提供することにある。
The present invention has been made to solve the above-mentioned problems, and is compatible with a large sample, and combines a large-sized and inexpensive high-sensitivity detector and a small-sized detector capable of discriminating energy to obtain natural radioactivity. Utilizing the fact that the sample is evenly distributed in concrete, the concentration of natural nuclides is not unevenly distributed even if the effect of artificial radionuclides is large without being affected by natural radioactivity in concrete. The purpose of the present invention is to provide a method for measuring the radioactivity concentration of an artificial radionuclide in concrete which is less affected by the existing radionuclides.

【0014】[0014]

【課題を解決するための手段】本発明は天然の放射性核
種中に含まれる人工放射性核種を測定するコンクリート
中の人工放射性核種の放射能濃度測定法において、γ線
用全計数率計測用大型検出器とγ線エネルギー測定用小
型検出器とを組み合わせ、前記小型検出器の天然放射性
核種の濃度測定値から前記大型検出器の天然放射能に起
因する計数率分を計算評価し、引き去ることにより不均
質と予想される人工放射能に起因する正味計数率を求
め、さらにコンクリート試料中の放射能濃度に換算して
天然放射能と弁別することを特徴とする。
The present invention is a method for measuring the radioactivity concentration of an artificial radionuclide in concrete for measuring an artificial radionuclide contained in a natural radionuclide. By combining a small detector for measuring gamma-ray energy with a detector, calculating and evaluating the count rate component due to the natural radioactivity of the large detector from the measured value of the natural radionuclide concentration of the small detector, and subtracting It is characterized in that the net count rate resulting from the artificial radioactivity expected to be inhomogeneous is obtained, converted into the radioactivity concentration in the concrete sample, and discriminated from the natural radioactivity.

【0015】[0015]

【作用】本発明の測定法は、γ線用全計数率計測用大型
検出器およびγ線エネルギー測定が可能な小型検出器を
組み合わせて、次の方法により人工放射能のみの値に換
算する。
In the measuring method of the present invention, a large detector for measuring the total counting rate for γ-rays and a small detector capable of measuring γ-ray energy are combined and converted into a value of only artificial radioactivity by the following method.

【0016】天然放射性核種であるカリウム40,トリウ
ムあるいはウラン系列の娘核種等がコンクリート試料中
にほぼ均一に分布している。したがって、コンクリート
試料が検出器に比べて大型の場合でもγ線エネルギー測
定用小型検出器により狭い領域を測定する。これにより
核種に固有なγ線のエネルギーを測定することができ、
正確な核種別濃度評価が可能である。また、人工の放射
性核種に比べ濃度が高いため、小型の検出器に対しても
充分な感度を有する。
Natural radioactive nuclides such as potassium 40, thorium or uranium series daughter nuclides are distributed almost uniformly in the concrete sample. Therefore, even if the concrete sample is larger than the detector, a small area for measuring the gamma ray energy is used to measure a narrow area. This makes it possible to measure the γ-ray energy peculiar to the nuclide,
Accurate nuclear species concentration evaluation is possible. Further, since the concentration is higher than that of artificial radionuclides, it has sufficient sensitivity even for small detectors.

【0017】γ線エネルギー測定用小型検出器による測
定結果は、図4に示すエネルギースペクトルとして測定
され、天然の放射性核種iに固有なγ線エネルギーEi
に対応する光電ピーク計数率P1 が求められる。
The measurement result by the small detector for measuring γ-ray energy is measured as an energy spectrum shown in FIG. 4, and the γ-ray energy Ei peculiar to the natural radionuclide i is measured.
Then, the photoelectric peak count rate P 1 corresponding to is calculated.

【0018】天然の放射性核種は一般にコンクリート試
料中に均質に分布しているため、天然の放射性核種iの
放射能濃度換算Ca1はγ線エネルギーE1 、試料のかさ
密度ρに依存する放射能濃度換算計数Ka (E1 ,ρ)
を用いて求められる。 Ca1=Ka (E1 ,ρ)×Pa1 …(1)
Since the natural radionuclide is generally uniformly distributed in the concrete sample, the radioactivity concentration conversion C a1 of the natural radionuclide i is γ-ray energy E 1 , and the radioactivity depending on the bulk density ρ of the sample. Concentration conversion factor K a (E 1 , ρ)
Is calculated using. C a1 = K a (E 1 , ρ) × P a1 (1)

【0019】一方、上記核種のγ線用全計数率計測用大
型検出器に対する計数率寄与Pb1は同様にγ線エネルギ
ーE1 、コンクリート試料のかさ密度ρに依存する当該
検出器の放射能濃度換算定数Kb (E1 ,ρ)の逆数を
a1に掛けることで求められる。 Pb1=1/Kb (E1 ,ρ)×Ca1 …(2)
On the other hand, the count rate contribution P b1 of the nuclide to the large-scale detector for measuring the total count rate for γ-rays similarly depends on the γ-ray energy E 1 and the bulk density ρ of the concrete sample, and the radioactivity concentration of the detector. It can be obtained by multiplying C a1 by the reciprocal of the conversion constant K b (E 1 , ρ). P b1 = 1 / K b (E 1 , ρ) × C a1 (2)

【0020】したがって、コンクリート試料に含有され
る全ての天然放射性核種によるγ線用全計数率計測用大
型検出器の寄与の合計pbtは以下の式で計算される。 pbt=ΣK’(E1 ,ρ)×Pa1 …(3) ここで、 K’(E1 ,ρ)=Ka (E1 ,ρ)/Kb (E1 ,ρ) …(4) である。
Therefore, the total contribution p bt of the large detectors for measuring the total counting rate for γ rays by all the natural radionuclides contained in the concrete sample is calculated by the following formula. p bt = ΣK ′ (E 1 , ρ) × P a1 (3) Here, K ′ (E 1 , ρ) = K a (E 1 , ρ) / K b (E 1 , ρ) (4) ).

【0021】ところで、γ線用全計数率計測用大型検出
器空の計数率情報Pt については、コンクリート試料中
の天然放射性核種に起因する計数率情報pbt、人工の放
射性核種の両者に起因する計数率情報Pm および宇宙
線、検出部の素材、周辺構造材、土壌などからの天然バ
ックグラウンドpc の3者を含んだものである。
By the way, regarding the count rate information P t of the large detector for measuring the total count rate for γ-rays, the count rate information p bt derived from the natural radionuclide in the concrete sample and the artificial radionuclide count rate information P m and cosmic rays, the detection unit of the material, the peripheral structural member are those containing 3's natural background p c from soil.

【0022】したがって、天然核種による寄与を除いた
人工の放射性核種成分によるγ線用全計数率計測用大型
検出器の寄与pm は当該検出器の全計数率Pt を用い以
下の式で与えられる。 pm =Pt −pbt−pc …(5)
Therefore, the contribution p m of the large detector for measuring the total counting rate for γ rays by the artificial radionuclide component excluding the contribution by the natural nuclide is given by the following equation using the total counting rate P t of the detector. Be done. p m = P t −p bt −p c (5)

【0023】以上のように両者の検出器計数率情報を組
み合わせることにより、人工放射性核種のみの全計数率
を求めることが可能である。さらにこれをコンクリート
試料中の人工放射性核種放射能濃度Cm に換算する際、
含有が予想される人工放射性核種の放出γ線エネルギー
Eを用いる。 Cm =Kb (E,ρ)×Pm …(6)
By combining the detector count rate information of both detectors as described above, it is possible to obtain the total count rate of only the artificial radionuclide. Furthermore, when converting this to the artificial radionuclide radioactivity concentration C m in the concrete sample,
The emitted gamma ray energy E of the artificial radionuclide expected to be contained is used. C m = K b (E, ρ) × P m (6)

【0024】この際、人工の放射性物質にあっては、コ
ンクリート試料中に不均質に放射能が分布している可能
性はあるが、大型検出器ごとコンクリート試料全体を同
時に測定する。これにより概ね均質と見なすことがで
き、正確な放射能濃度の換算が可能となる。
At this time, in the case of artificial radioactive substances, there is a possibility that the radioactivity is non-uniformly distributed in the concrete sample, but the whole concrete sample is simultaneously measured for each large detector. As a result, it can be regarded as almost homogeneous, and accurate conversion of radioactivity concentration becomes possible.

【0025】[0025]

【実施例】図1から図3を参照しながら本発明に係るコ
ンクリート中の人工放射性核種の放射能濃度測定法の一
実施例を説明する。
EXAMPLES An example of the method for measuring the radioactivity concentration of artificial radionuclide in concrete according to the present invention will be described with reference to FIGS. 1 to 3.

【0026】実施例の装置構成を図1および図2に、回
路構成を図3に示す。図1および図2において、検出部
はγ線エネルギー測定用小型検出器1とγ線用全計数率
計測用大型検出器2がコンクリート試料5を挟んで一対
に配置されている。コンクリート試料5は試料用駆動装
置3内に収容され、この試料用駆動装置3の両側は遮蔽
体4で覆われ、また前記各検出器1,2はそれぞれ遮蔽
体4内に収納され、配置されている。計測は試料用駆動
装置3によって試料を水平方向に移動させながら実施さ
れる。
The apparatus configuration of the embodiment is shown in FIGS. 1 and 2, and the circuit configuration is shown in FIG. In FIG. 1 and FIG. 2, a small detector 1 for measuring γ-ray energy and a large detector 2 for measuring total counting rate for γ-rays are arranged in a pair so as to sandwich a concrete sample 5 in the detection section. The concrete sample 5 is housed in the sample drive device 3, both sides of the sample drive device 3 are covered with the shield 4, and the detectors 1 and 2 are housed and arranged in the shield 4 respectively. ing. The measurement is performed while the sample driving device 3 moves the sample in the horizontal direction.

【0027】γ線用全計数率計測用大型検出器2として
はプラスチックシンチレーション検出器、液体シンチレ
ーション検出器などが使用可能であり、一方、γ線エネ
ルギー測定用小型検出器1としてはGe半導体検出器、
NaI(T1)検出器等が使用可能である。
A plastic scintillation detector, a liquid scintillation detector or the like can be used as the large detector 2 for measuring the total count rate for γ rays, while a Ge semiconductor detector is used as the small detector 1 for measuring γ ray energy. ,
A NaI (T1) detector or the like can be used.

【0028】γ線用全計数率計測用大型検出器2からの
信号は図3に示したように前置増幅器6および線形増幅
器7を通して増幅、波形整形後、波高弁別器8により電
気的ノイズが除去され、計数率情報として計数器9によ
り一定時間計数される。
The signal from the large detector 2 for measuring the total count rate for γ-rays is amplified by the preamplifier 6 and the linear amplifier 7 as shown in FIG. It is removed and counted by the counter 9 for a certain period of time as count rate information.

【0029】一方、γ線エネルギー測定用小型検出器1
からの信号は前置増幅器6および線形増幅器7を通して
増幅、波形整形後、アナログ・ディジタル変換器10によ
り信号高に応じたディジタル信号としてプロセスメモリ
11にγ線のエネルギースペクトル情報としてストアされ
る。
On the other hand, a small detector 1 for measuring γ-ray energy
The signal from is amplified by the preamplifier 6 and the linear amplifier 7, and after waveform shaping, it is processed by the analog / digital converter 10 as a digital signal corresponding to the signal height.
It is stored in 11 as energy spectrum information of γ rays.

【0030】両者の情報に関してはそれぞれ計算機12に
取り込まれ、演算処理が行われる。後者については得ら
れたγ線のエネルギースペクトル情報から放射性核種に
固有なエネルギーに対応したγ線の光電ピーク計数率情
報として演算処理が行われる。
Both pieces of information are loaded into the computer 12 and subjected to arithmetic processing. For the latter, the calculation processing is performed from the obtained energy spectrum information of γ rays as the photoelectric peak count rate information of γ rays corresponding to the energy peculiar to the radionuclide.

【0031】演算処理部では天然放射性核種および人工
放射性核種のそれぞれに対するエネルライブラリイを有
しており、前述したとおりの図4に示すγ線のエネルギ
ースペクトル情報の光電ピーク計数率の核種別の振り分
けを行い、カリウム40、トリウム、ウランの娘核種など
のコンクリート中に均一かつ、人工放射性核種に比べ多
量に含まれる天然の放射性核種に応じた計数率情報が得
られる。
The arithmetic processing unit has an energy library for each of the natural radionuclides and the artificial radionuclides, and as described above, the distribution of the photoelectric peak count rate of the nuclear spectrum of the γ-ray energy spectrum information shown in FIG. 4 is distributed. By doing so, it is possible to obtain count rate information according to the natural radionuclide that is uniform in concrete such as potassium 40, thorium, and uranium daughter nuclide, and is contained in a large amount compared to the artificial radionuclide.

【0032】この情報から式(3) を用いて、γ線用全計
数率計測用大型検出器2の天然放射性核種に起因する計
数率寄与分に換算を行う。
From this information, the contribution to the count rate due to the natural radionuclide of the large detector 2 for measuring the total count rate for γ rays is converted using Equation (3).

【0033】一方、γ線用全形数率計測用大型検出器2
からの計数率情報Pt については、測定試料中の天然放
射性核種に起因する計数率情報pbt、人工の放射性核種
の両者に起因する計数率情報Pm および天然バックグラ
ウンドpc の3者を含んだものである。
On the other hand, a large detector 2 for measuring the total number of parts for γ-rays 2
For count rate information P t from the count rate information p bt due to natural radionuclides in the measurement sample, the three parties of the count rate information P m and natural background p c due to both artificial radionuclides It is included.

【0034】pbtについては式(3) を用い、γ線エネル
ギー測定用小型検出器1のγ線スペクトル情報から求め
られ、一方、天然バックグラウンドpc についてはコン
クリート試料のない状態でγ線用全計数率計測用大型検
出器2によりコンクリート試料の計測に先だって計測す
る。
The p bt is obtained from the γ-ray spectrum information of the small detector 1 for measuring γ-ray energy by using the equation (3), while the natural background p c is obtained for the γ-ray without the concrete sample. A large detector 2 for measuring the total count rate is used to measure the concrete sample prior to measurement.

【0035】これにより、求めることが可能であり、前
述したとおりの手順を用いて人工の放射性核種の放射能
量に換算する。
From this, it is possible to obtain, and it is converted into the amount of radioactivity of the artificial radionuclide using the procedure as described above.

【0036】[0036]

【発明の効果】本発明によれば、不均質に分布している
おそれのある人工放射性核種の放射能濃度をγ線用全計
数率計測用大型検出器を用いることにより、高感度かつ
正確に測定することができ、また、γ線エネルギー測定
用小型検出器を用いることにより天然放射能の影響を取
り除くことができるため、放射能をあまりに過大評価す
ることなく、正確な人工放射性核種の測定が可能とな
る。
According to the present invention, by using a large detector for measuring the total counting rate for γ rays, the radioactivity concentration of the artificial radionuclide which may be nonuniformly distributed can be detected with high sensitivity and accuracy. Since the influence of natural radioactivity can be removed by using a small detector for measuring γ-ray energy, accurate measurement of artificial radionuclides can be performed without overestimating radioactivity. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための測定装置の1例を
示す断面図。
FIG. 1 is a sectional view showing an example of a measuring device for carrying out the method of the present invention.

【図2】図1における測定装置を一部欠除して示す斜視
図。
FIG. 2 is a perspective view showing a part of the measuring device in FIG.

【図3】図1の測定装置における回路を示すブロック
図。
FIG. 3 is a block diagram showing a circuit in the measuring apparatus of FIG.

【図4】図1の測定装置の小型検出器によるコンクリー
トのエネルギースペクトルの測定例を示すスペクトル線
図。
FIG. 4 is a spectrum diagram showing an example of measuring an energy spectrum of concrete with a small detector of the measuring apparatus of FIG.

【符号の説明】[Explanation of symbols]

1…γ線エネルギー測定用小型検出器、2…γ線用全計
数率計測用大型検出器、3…試料用駆動装置および計量
計、4…遮蔽体、5…コンクリート試料、6…前置増幅
器、7…線形増幅器、8…波高弁別器、9…計数器、10
…アナログ・ディジタル変換器、11…プロセスメモリ、
12…計算機。
DESCRIPTION OF SYMBOLS 1 ... Small detector for measuring γ-ray energy, 2 ... Large detector for measuring total counting rate for γ-rays, 3 ... Drive device and meter for sample, 4 ... Shield, 5 ... Concrete sample, 6 ... Preamplifier , 7 ... Linear amplifier, 8 ... Wave height discriminator, 9 ... Counter, 10
… Analog / digital converter, 11… Process memory,
12 ... calculator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 天然の放射性核種中に含まれる人工放射
性核種を測定するコンクリート中の人工放射性核種の放
射能濃度測定法において、γ線用全計数率計測用大型検
出器とγ線エネルギー測定用小型検出器とを組み合わ
せ、前記小型検出器の天然放射性核種の濃度測定値から
前記大型検出器の天然放射能に起因する計数率分を計算
評価し、引き去ることにより不均質と予想される人工放
射能に起因する正味計数率を求め、さらにコンクリート
試料中の放射能濃度に換算して天然放射能と弁別するこ
とを特徴とするコンクリート中の人工放射性核種の放射
能濃度測定法。
1. A large detector for measuring the total count rate for gamma rays and a gamma ray energy measuring method for measuring the radioactivity concentration of artificial radionuclides in concrete for measuring artificial radionuclides contained in natural radionuclides. In combination with a small detector, the count rate resulting from the natural radioactivity of the large detector is calculated and evaluated from the measured value of the natural radionuclide concentration of the small detector, and it is expected to be heterogeneous by subtracting it from the artificial radioactivity. A method for measuring the radioactivity concentration of artificial radionuclides in concrete, which comprises determining the net count rate resulting from radioactivity and converting it to the radioactivity concentration in the concrete sample to distinguish it from natural radioactivity.
JP13856692A 1992-05-29 1992-05-29 Radioactive concentration measuring method for artificial radioactive nuclide in concrete Pending JPH05333155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13856692A JPH05333155A (en) 1992-05-29 1992-05-29 Radioactive concentration measuring method for artificial radioactive nuclide in concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13856692A JPH05333155A (en) 1992-05-29 1992-05-29 Radioactive concentration measuring method for artificial radioactive nuclide in concrete

Publications (1)

Publication Number Publication Date
JPH05333155A true JPH05333155A (en) 1993-12-17

Family

ID=15225141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13856692A Pending JPH05333155A (en) 1992-05-29 1992-05-29 Radioactive concentration measuring method for artificial radioactive nuclide in concrete

Country Status (1)

Country Link
JP (1) JPH05333155A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208192A (en) * 2005-01-28 2006-08-10 Mitsubishi Heavy Ind Ltd Artificial radioactivity measuring device and measuring method
JP2013104726A (en) * 2011-11-11 2013-05-30 Japan Atomic Energy Agency Radiation measurement device
JP2013543587A (en) * 2010-10-07 2013-12-05 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ System for in situ direct measurement of alpha rays and related methods for quantifying the activity of alpha radionuclides in solution
JP2020094981A (en) * 2018-12-14 2020-06-18 清水建設株式会社 Method for estimating level of radioactive waste
KR102196916B1 (en) * 2020-06-24 2020-12-30 (주) 뉴케어 Apparatus for isotope identification and quantification in radioactive waste
CN112711062A (en) * 2020-12-22 2021-04-27 上海工物高技术产业发展有限公司 Energy spectrum fitting deduction method and device, computer equipment and storage medium
JP2022062500A (en) * 2020-10-08 2022-04-20 日本原子力発電株式会社 Radioactivity concentration evaluation method
JP2022062498A (en) * 2020-10-08 2022-04-20 日本原子力発電株式会社 Radioactivity concentration evaluation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208192A (en) * 2005-01-28 2006-08-10 Mitsubishi Heavy Ind Ltd Artificial radioactivity measuring device and measuring method
JP2013543587A (en) * 2010-10-07 2013-12-05 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ System for in situ direct measurement of alpha rays and related methods for quantifying the activity of alpha radionuclides in solution
JP2013104726A (en) * 2011-11-11 2013-05-30 Japan Atomic Energy Agency Radiation measurement device
JP2020094981A (en) * 2018-12-14 2020-06-18 清水建設株式会社 Method for estimating level of radioactive waste
KR102196916B1 (en) * 2020-06-24 2020-12-30 (주) 뉴케어 Apparatus for isotope identification and quantification in radioactive waste
US20210405229A1 (en) * 2020-06-24 2021-12-30 NuCare, Inc. Apparatus for analyzing and measuring nuclides and concentration thereof in radioactive waste
US11567224B2 (en) * 2020-06-24 2023-01-31 NuCare, Inc. Apparatus for analyzing and measuring nuclides and concentration thereof in radioactive waste
JP2022062500A (en) * 2020-10-08 2022-04-20 日本原子力発電株式会社 Radioactivity concentration evaluation method
JP2022062498A (en) * 2020-10-08 2022-04-20 日本原子力発電株式会社 Radioactivity concentration evaluation device
CN112711062A (en) * 2020-12-22 2021-04-27 上海工物高技术产业发展有限公司 Energy spectrum fitting deduction method and device, computer equipment and storage medium
CN112711062B (en) * 2020-12-22 2024-05-28 上海工物高技术产业发展有限公司 Energy spectrum fitting deduction method, device, computer equipment and storage medium

Similar Documents

Publication Publication Date Title
US5206174A (en) Method of photon spectral analysis
JP5546174B2 (en) Radioactivity concentration evaluation method and evaluation program for radioactive waste, and radioactivity concentration evaluation apparatus
JP3597973B2 (en) Dust monitor
JP2008139094A (en) Radioactivity measuring method and instrument
US5442180A (en) Apparatus for the field determination of concentration of radioactive constituents in a medium
JPH05333155A (en) Radioactive concentration measuring method for artificial radioactive nuclide in concrete
KR102394944B1 (en) Apparatus for measuring and amending activity concentration density of radioactive material and operation calibration methode thereof
JP2703409B2 (en) Radioactivity measurement method
JPS61107183A (en) Method for measuring radioactive quantity of radioactive waste contained in receptacle
Yokoyama et al. Development of clearance verification equipment for uranium-bearing waste
JP2002236194A (en) Method and device for evaluating burn-up
JP4241633B2 (en) Artificial radioactivity measuring apparatus and measuring method
JPH0479597B2 (en)
Kull et al. Guidelines for gamma-ray spectroscopy measurements of $ sup 235$ U enrichment
Tessaro et al. Inventorying the radionuclides in spent cartridge filters from the primary circuit of a nuclear research reactor by the dose-to-activity method
JP2635860B2 (en) Radioactivity evaluation method for solidified radioactive waste
JP7154154B2 (en) Radioactive dust monitor and method for measuring radioactivity concentration
Wang et al. Rapid determination of Sr-89/Sr-90 in radwaste by low-level background beta counting system
JPH04326095A (en) Criticality surveillance monitor for neutron multiplication system
JP2023037880A (en) Radioactivity assessment method and decay heat assessment method
JPH0670675B2 (en) Uranium enrichment measuring method and measuring device
Vasilyev The BiPo low-background detector project
JPS62168080A (en) Measuring instrument for radiation concentration
Pérot Non-destructive Nuclear Measurements in Support to Nuclear Industry
Brodzinski Instrumentation and assay procedures for verification of the radionuclide content of low-level waste packages