JPS60111037A - Idle controller of engine - Google Patents

Idle controller of engine

Info

Publication number
JPS60111037A
JPS60111037A JP21851983A JP21851983A JPS60111037A JP S60111037 A JPS60111037 A JP S60111037A JP 21851983 A JP21851983 A JP 21851983A JP 21851983 A JP21851983 A JP 21851983A JP S60111037 A JPS60111037 A JP S60111037A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
speed
idle
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21851983A
Other languages
Japanese (ja)
Inventor
Takayoshi Nishimori
西森 高義
Satoru Kawazoe
河添 覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP21851983A priority Critical patent/JPS60111037A/en
Publication of JPS60111037A publication Critical patent/JPS60111037A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To quickly concentrate an idling speed to a desired speed when an external load is activated, by performing control of the idling speed with an air fuel ratio fixed to a point of rich mixture during the recovery period to the desired revolution speed when the external load is activated. CONSTITUTION:When idling speed control is shifted to feedback control, a desired revolution speed is set according to an engine temperature and a load switch to extract a difference RPM between the desired revolution speed and an actual revolution speed. When an external load is activated, anticipated compensation of the quantity of air sucked is performed and it is discriminated whether the difference DELTARPM of a revolution number is within a safety range indicated by +-beta or not. If the difference is out of the safety range the air fuel ratio is fixed to the rich level and feedback control of the air fuel ratio is interrupted. As aforementioned, the feedback control of air fuel ratio is interrupted with air fuel mixture rich in case the difference between revolution numbers is great, the air fuel ratio is restrained from getting lean in company with an anticipated increase of intake air when an external load is thrown and temporary drop in revolution number due to lack of output may be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、クーラ゛°負荷等の外部負荷投入時におりる
アイドル回転数の変動を可及的に抑制するようにしたエ
ンジンのアイドル制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides an engine idle control device that suppresses as much as possible the fluctuations in the idle speed that occur when an external load such as a cooler load is applied. It is related to.

(従来技術) 混合気の空燃比を、空燃比センサの出力に応じて所定空
燃比にフィードバック制御し、もって燃焼性の向上を図
るようにしたエンジンは従来公知である(例えば、特開
昭33−113/3/号公報)。
(Prior Art) Engines in which the air-fuel ratio of the air-fuel mixture is feedback-controlled to a predetermined air-fuel ratio according to the output of an air-fuel ratio sensor to improve combustibility are conventionally known (for example, Japanese Patent Laid-Open No. 33 -113/3/publication).

又、アイドル運転時に、アイドル回転数を目標回転数に
収束せしめる如くエンジン回転数をフィードバック制御
するようにしたアイドル制御装置を備えたエンジンは従
来公知であり、しかもそのようなアイドル制御装置を備
えたエンジンにおいて、クーラ負荷等の外部負荷投入時
には吸入空気量を所定量だけ予じめ増量させて外部負荷
投入に伴なうアイドル回転数の一時的な落ち込みを防止
する(いわゆるアイドル回転数の見込制御)璋術思想も
従来公知である(例えば、特開昭5tt−//37.2
!;公報)。
Further, engines equipped with an idle control device that performs feedback control of the engine rotation speed so as to converge the idle rotation speed to a target rotation speed during idling operation are conventionally known, and engines equipped with such an idle control device In an engine, when an external load such as a cooler load is applied, the amount of intake air is increased by a predetermined amount in advance to prevent a temporary drop in the idle speed due to the application of an external load (so-called anticipatory control of the idle speed). ) Shōjutsu thought is also conventionally known (for example, Japanese Patent Application Laid-Open No. 5TT-//37.2
! ; public gazette).

ところが、アイドル制御装置を備え且つ混合気空燃比の
フィードバック制御を行なうようにしたエンジンにおい
ては、下記する如き2点の不具合があった。即ち、その
ひとつは、外部負荷投入時に一時的に吸入空気量を増量
してアイドル回転数の見込制御を行なう場合、吸入空気
量の増量に対して燃料増量が追従できず、一時的に混合
気の空燃比が希薄状態となり、その結果エンジンの一時
的な出力不足と外部負荷投入の相乗作用により回転数が
急激にしかも大きく落ち込み、場合によってはエンスト
を起こすおそれがあることである。
However, an engine equipped with an idle control device and configured to perform feedback control of the air-fuel mixture ratio has the following two problems. One of them is that when an external load is applied, when the intake air amount is temporarily increased to perform anticipatory control of the idle rotation speed, the fuel amount cannot be increased to keep up with the increase in the intake air amount, and the air-fuel mixture is temporarily reduced. The air-fuel ratio of the engine becomes lean, and as a result, the rotational speed suddenly and significantly drops due to the synergistic effect of the temporary lack of output of the engine and the application of external load, which may cause the engine to stall in some cases.

又、他のひとつは、上記の如くアイドル回転数の見込補
正を行ない一時的に@転数が落ち込んだ場合においても
空燃比のフィードバック制御は連続的に行なわれており
、空燃比センサからはam増δ(信号が出力されている
ため、空燃比の希薄側から皓厚+l!lIへの反転時に
は空燃比が過濃状態となり、アイドル回転数が目標回転
数より高回転数側に大きくオーバシュートし、その結果
、回転数のハンチング輻が大きくなり、回転数が目標の
アイドル回転数に収束するまでに時間がかかるという不
具合である。
Another reason is that even if the idle speed is temporarily decreased by making the estimated correction for the idle speed as described above, feedback control of the air-fuel ratio is performed continuously, and the air-fuel ratio sensor detects the am Increased δ (signal is output, so when the air-fuel ratio is reversed from the lean side to the rich +l!lI, the air-fuel ratio becomes rich, and the idle speed greatly overshoots to the higher rotation speed side than the target rotation speed. However, as a result, the hunting convergence of the rotational speed becomes large, and it takes time for the rotational speed to converge to the target idle rotational speed.

(発明の目的) 本発明は、上記の如き従来のアイドル制御装置の問題に
鑑み、クーラ負荷等の外部負荷投入時におけるエンジン
のアイドル回転数の落ち込みを可及的に抑制してアイド
ル回転数をより迅速に目標回転数に収束せしめ、もって
アイドル回転数の制御特性の向上を図るようにしたエン
ジンのアイドル制御装置を提供することを目的としてな
されたものである。
(Object of the Invention) In view of the problems of the conventional idle control device as described above, the present invention aims to reduce the idle speed by suppressing as much as possible the drop in the engine idle speed when an external load such as a cooler load is applied. The object of this invention is to provide an engine idle control device that allows the engine speed to converge more quickly to a target speed, thereby improving the control characteristics of the idle speed.

(発明の構成) 本発明のエンジンのアイドル制御装置は、第1図に示す
機能ブロック図の如く回転数検出手段3/とアイドル回
転数制御手段32と亭燃比検出手段33と空燃比制御手
段31と負荷作動検出手段とを備え、回転数検出手段3
/の出力を受けてアイドル回転数制御手段3.2によっ
てアイドル時のエンジン回転数を目標回転数に制御し、
また空燃比検出手段33の出力を受けて空燃比制御手段
3tにより混合気の空燃比を予め設定した空燃比に制御
する一方、0荷作動検出手段3Sによりクーラ負荷等の
外部負荷作動時には空燃比制御手段31による空燃比の
制御を停止して空燃比を所定のnA厚ち“!燃比に固定
した状Dすでアイドル回転数を制御しもフて乃荷作動時
の一時的なアイドル回転数の落ち込みを可及的に抑制す
る一方、アイドル回転数が目標回転数に近づいて安定し
た状態となった時点で再び空燃比制御手段3I/、によ
る空燃比の制frillを開始させることによりアイド
ル回転数を迅速に目標回転数に収束せしめるようにした
ことを特徴とするものである。
(Structure of the Invention) The engine idle control device of the present invention comprises, as shown in the functional block diagram shown in FIG. and load operation detection means, and rotation speed detection means 3.
In response to the output of /, the idle speed control means 3.2 controls the engine speed at idle to the target speed,
Further, in response to the output of the air-fuel ratio detection means 33, the air-fuel ratio control means 3t controls the air-fuel ratio of the air-fuel mixture to a preset air-fuel ratio, while the zero-load operation detection means 3S controls the air-fuel ratio when an external load such as a cooler load is activated. A state in which the control of the air-fuel ratio by the control means 31 is stopped and the air-fuel ratio is fixed at a predetermined nA thickness ! fuel ratio. While suppressing the drop in the engine speed as much as possible, when the idle speed approaches the target speed and becomes stable, the air-fuel ratio control means 3I starts controlling the air-fuel ratio again, thereby reducing the idle speed. The present invention is characterized in that the number of revolutions is quickly converged to the target number of revolutions.

(実施例) 第2図には本発明の実施例に係るアイドル制御装置を備
えた自動車用エンジン/のシステム図が示されている。
(Embodiment) FIG. 2 shows a system diagram of an automobile engine equipped with an idle control device according to an embodiment of the present invention.

エンジン/の吸気通路2には、吸気上流側から吸気下流
側に向って順次エアクリーナq1エアフロメータ5、燃
料インジェクター乙、スロットルバルブ7が取付けられ
ている。又、スロットルバルブ7の近傍位置には、スロ
ットルセンサrが取付けられている。さらに、この吸気
通路2には、スロットルバルブ7をバイパスする如くし
てバイパスエア通路/6が設けられている。このバイパ
スエア通路/乙の途中には、ダイヤフラム式のアクチュ
エータ/ゲが取付けられており、バイパスエア量はこの
アクチュエータ/lによって制御される。又、アクチュ
エータ/lのダイヤフラムM / 5は、正圧導入通路
/7を介してスロットルバルブ7より吸気上流側の吸気
通路ノに、また負圧導入通路/にを介してスロットルバ
ルブ7より吸気下流側の吸気通路2にそれぞれ連通せし
められている。このダイヤフラムN/3の内圧即ち、バ
イパスエア通路/乙の開度は、正圧導入通路/7に設け
たデユーティ制御式の正圧側室賊弁/2と負圧導入通路
/gに設けたデユーティ制御式の負圧側電磁弁/3によ
って制御される。尚、バイパスエア通路/乙のffff
度は、ボジションセンサ/lによって検出される。
An air cleaner Q1, an air flow meter 5, a fuel injector B, and a throttle valve 7 are installed in the intake passage 2 of the engine in order from the intake upstream side to the intake downstream side. Further, a throttle sensor r is attached near the throttle valve 7. Further, this intake passage 2 is provided with a bypass air passage/6 so as to bypass the throttle valve 7. A diaphragm type actuator/ge is installed in the middle of this bypass air passage/l, and the amount of bypass air is controlled by this actuator/l. The diaphragm M/5 of the actuator/l is connected to the intake passage upstream of the throttle valve 7 via the positive pressure introduction passage/7, and to the intake passage downstream of the throttle valve 7 via the negative pressure introduction passage/7. They are respectively communicated with the intake passages 2 on the sides. The internal pressure of this diaphragm N/3, that is, the opening degree of the bypass air passage /B, is determined by the duty-controlled positive pressure side valve /2 provided in the positive pressure introduction passage /7 and the duty control type positive pressure side valve /2 provided in the negative pressure introduction passage /g. It is controlled by a controlled negative pressure side solenoid valve/3. In addition, the bypass air passage/Otsu's ffff
The degree is detected by a position sensor/l.

エンジンlの排気通路3には、o、センサ9が取付けら
れている。さらに、エンジン/のシリンダ側壁/Φには
水温センサ2jが、またディストリビュータ/9にはク
ランク角センサ2乙がそれぞれ取付けられている。
A sensor 9 is attached to the exhaust passage 3 of the engine l. Further, a water temperature sensor 2j is attached to the cylinder side wall /Φ of the engine, and a crank angle sensor 2o is attached to the distributor /9.

又、符号2/、2.2.23は、それぞれクーラスイッ
チ、シフトスイッチ及びパワーステアリングスイッチで
ある。
Further, the symbols 2/, 2, 2, and 23 are a cooler switch, a shift switch, and a power steering switch, respectively.

このエンジン/においては、燃料インジェクター乙と臣
圧側ηL磁弁/2と負圧側電磁弁/3の作1助を、エア
フロメータSとスロットルセンサにと0ユセンサツとポ
ジションセンサ//と水温センサ2Sとクランク角セン
サ2乙の各センサからの入力信号と、クーラスイッチ2
/とシフトスイッチ22とパワーステアリングスイッチ
23の各接点入力信号とを受けて作動するコントローラ
20によって制御jることにより、エンジンのアイドア
1゜回転数と混合体空燃比をフィードパ・ツク制御する
ようにしている。以下、このコントローラ20&こよる
アイドル回転数と混合気空燃比の制御システムを第3図
に示すフローチャートに基いて説明する。
In this engine/, the fuel injector O, the pressure side ηL solenoid valve/2, and the negative pressure side solenoid valve/3 are connected to the air flow meter S, the throttle sensor, the 0 user sensor, the position sensor //, and the water temperature sensor 2S. Input signals from each sensor of crank angle sensor 2 and cooler switch 2
/ and each contact input signal of a shift switch 22 and a power steering switch 23, and is controlled by a controller 20 which operates in response to feed-pack control of the engine eye door 1 degree rotation speed and mixture air-fuel ratio. ing. Hereinafter, a control system for controlling the idle speed and the air-fuel mixture ratio by the controller 20 will be explained based on the flowchart shown in FIG. 3.

第3図のフロー・チャート1こおいて、先ずステップS
1においてコントローラ20を初期値化する。
In the flow chart 1 of FIG. 3, first, step S
1, the controller 20 is initialized.

次に、各センサ及び負荷スイッチから入力情報を読み(
ステップS、) 、スロットル開度とエンジン回転数か
ら現在エンジンはアイドル運転されているのかどうかの
アイドル判定を行なう(ステップSj)。アイドル判定
の結果、現在は非アイドル状態であると判定された場合
には、ステップS、fの燃料制御ルーチンに従って通常
の燃料制御C空燃比のフィードバック制御)を行なう。
Next, read the input information from each sensor and load switch (
In step S,), it is determined whether the engine is currently in idle operation based on the throttle opening degree and engine speed (step Sj). If it is determined that the engine is currently in a non-idle state as a result of the idle determination, normal fuel control (air-fuel ratio feedback control) is performed according to the fuel control routine of steps S and f.

一方、アイドル判定の結果、現在はアイドル状態である
と判定された場合には、アイドル回転数のフィードバッ
ク制御に移る。即ち、先ず、ステップS7においてエン
ジン温度(冷却水温)と負荷スイッチから目標(アイド
ル)回転数を設定するC即ち、エンジン温度に対しては
燃焼特性の観点から低温時の回転数を高温時の回転数よ
り高回転側に設定し、また負荷スイッチに対しては、負
荷スイッチ作動に伴なう回転数の落ち込みを見込んで予
じめ負荷スイッチ作動時の回転数を負荷スイッチ非作動
時の回転数よりも所定値だけ高回転側に設定する)。次
に、この目標回転数と実際の回転数との差分ΔRPM 
fe算出するCステップS9)。
On the other hand, if it is determined that the vehicle is currently in an idle state as a result of the idle determination, the process moves to feedback control of the idle rotation speed. That is, first, in step S7, the target (idle) rotation speed is set from the engine temperature (cooling water temperature) and the load switch. For load switches, set the rotation speed when the load switch is activated to the rotation speed when the load switch is not activated, anticipating the drop in rotation speed due to the load switch activation. ). Next, the difference ΔRPM between this target rotation speed and the actual rotation speed
C step S9) to calculate fe.

次に、実際に外部負荷が作動したかどうかを判定しくス
テップSA) 、その結果、外部負荷が作動していない
場合にけ、ステップS1.以下の回転数制御ルーチン1
1側に制御が移るが、もし外部負荷が作動した場合には
、先ずステップS7において吸入空気量の見込補正(即
ち、バイパスエア爪を増量補正する)を行なった後、ス
テップS、以下の本発明の主体であるところの0荷作動
時における燃料コントロールルーチンAの実行に移る。
Next, it is determined whether or not the external load has actually operated (step SA), and if the result is that the external load has not operated, step S1. Rotation speed control routine 1 below
However, if the external load is activated, the control is first corrected in step S7 to estimate the amount of intake air (i.e., the bypass air claw is corrected to increase the amount), and then in step S, the following main flow is performed. Now we move on to the execution of fuel control routine A during zero load operation, which is the main subject of the invention.

即ち、吸入空’<C;+tの見込補正後、先ず、ステッ
プS、において、ステップSgでめた回転数の差分△R
PM が1β (RPM)c示される安定域内にあるか
どうかを判定するC換言ずれば、回転数の差分ΔPPM
 が、吸入空気f1の見込増量分によって空燃比が一時
的にfIi薄となって回転数が大きく落ち込むおそれの
ある領域内にあるのかどうかを判定する)。
That is, after the expected correction of suction air '<C;
Determine whether PM is within the stability range indicated by 1β (RPM)C In other words, the difference in rotational speed ΔPPM
However, it is determined whether or not the air-fuel ratio is in a region where there is a risk that the rotational speed may drop significantly due to the air-fuel ratio temporarily becoming thinner fIi due to the estimated increase in intake air f1).

安定域の判定の結果、差分ΔRPV が安定域外である
場合には、吸入空気量の増量補正によって回転数の落ち
込みが発生するおそれがあるため、空燃比を濃厚側にお
いて固定し、空燃比のフィードバック制御を停止する。
If the difference ΔRPV is outside the stable range as a result of the stability range judgment, there is a risk that the rotational speed will drop due to the increase correction of the intake air amount, so the air-fuel ratio is fixed on the rich side and feedback of the air-fuel ratio is performed. Stop control.

即ち、01センサ9の出力を読み込みCステップS1)
、現在空燃比が希薄側にあるのかそれとも濃厚側にある
のかを判定し、濃厚側にあれば現在の空燃比補正係数C
Eをそのままホールドしくステップ511)、逆に希薄
側にあれば現在の空燃比補正係数C#をΔCヶだけ大き
くしてホールドする(ステップS、工)。このように、
回転数の差分が大きい場合に、空燃比を濃厚側に固定し
た状態で空燃比のフィードバック制御を停止させると、
外部負荷投入時の吸入空気量の見込増量に伴なって一時
的に空燃比が希薄状態となるのを可及的に抑制して出力
不足に起因する回転数の一時的な落ち込みを防止するこ
とができる。尚、この蔓燃比補正係数のホールド状態、
換言すれ(ば、空燃比のフィードバック制御の停止状態
は、回転数が次第に目標回転数に近づぎ、その差分ΔR
PMが安定域内に入った時点において解除される(ステ
ップS’8)。
That is, the output of the 01 sensor 9 is read and C step S1)
, determines whether the current air-fuel ratio is on the lean side or on the rich side, and if it is on the rich side, the current air-fuel ratio correction coefficient C is determined.
If E is held as it is (step 511), on the other hand, if it is on the lean side, the current air-fuel ratio correction coefficient C# is increased by ΔC and held (step S). in this way,
If the difference in rotational speed is large and the air-fuel ratio feedback control is stopped with the air-fuel ratio fixed on the rich side,
To prevent a temporary drop in rotational speed due to insufficient output by suppressing as much as possible the air-fuel ratio from becoming temporarily lean due to an expected increase in the amount of intake air when an external load is applied. I can do it. In addition, the hold state of this fuel ratio correction coefficient,
In other words, when the air-fuel ratio feedback control is stopped, the rotation speed gradually approaches the target rotation speed, and the difference ΔR
It is canceled when the PM enters the stable range (step S'8).

負荷作動時における燃料コントロールルーチンAを実行
した後は、引き続き回転数制御ルーチンBの実行に移る
が、この場合、エンジン回転数を目標回転数に正確に収
束せしめようとすればどうしても回転数のハンチングが
大きくなるため、ここでは先ず、エンジンの運転特性を
損なわない範囲で許容し得る目標回転数と実際の回転数
との差分の最大値を設定して、この最大値内の回転数領
域を不感帯とし、ステップSyでめた差分ΔRPMがこ
の不感帯内にある場合には現在アイドル回転数は目標回
転数に収束していると判断し何ら回転数制御を行なわな
いが、差分ΔRPM がこの不感帯内にない場合には、
回転数の制御が必要と判断し、所定の回転数制御を行な
う(ステップ陣)。即ち、この場合には、先ず、現在の
回転数が目標回転数より高同転域にあるのかどうかを判
定しCステップ5qt) 、目標回転数より高回転域に
ある場合には、アクチュエータ/lのダイヤフラム室1
5の内圧を正圧倒に制御しぞ回転数の下降制御を行ない
 (ステップS、L)、逆に目標回転数より低回転域に
ある場合には、アクチュエータ/lのダイヤフラム室1
5の内圧を負圧側に制御して回転数の上昇制御を行なう
(ステップS、7) 。
After executing the fuel control routine A during load operation, the engine speed control routine B continues to be executed, but in this case, if the engine speed is to accurately converge to the target speed, engine speed hunting is inevitable. First, we set the maximum value of the difference between the target rotation speed and the actual rotation speed that is allowable within a range that does not impair the operating characteristics of the engine, and then define the rotation speed region within this maximum value as a dead zone. If the difference ΔRPM determined in step Sy is within this dead band, it is determined that the current idle speed has converged to the target speed, and no speed control is performed, but if the difference ΔRPM is within this dead band. If not,
It is determined that rotational speed control is necessary, and a predetermined rotational speed control is performed (step group). That is, in this case, it is first determined whether the current rotation speed is in a higher rotation range than the target rotation speed (C step 5qt), and if the current rotation speed is in a higher rotation range than the target rotation speed, the actuator/l is diaphragm chamber 1
The internal pressure of actuator 5 is controlled to positive overload and the rotation speed is controlled to decrease (steps S, L). Conversely, if the rotation speed is lower than the target rotation speed, diaphragm chamber 1 of actuator/l is controlled to lower the rotation speed.
The internal pressure of No. 5 is controlled to the negative pressure side to increase the rotational speed (step S, 7).

負荷作動時における燃料フントロールルーチンAと回転
数制御ルーチンBを実行した後は、通常の燃料制御(空
燃比制御)を行なう (ステップs+2)。
After executing the fuel fuel control routine A and the rotational speed control routine B during load operation, normal fuel control (air-fuel ratio control) is performed (step s+2).

(発明の効果) 本発明のエンジンのアイドル制御装置は、混合気の空燃
比とアイドル回転数のフィードバック制御を行なうよう
にしたエンジンにおいて、アイドル運転時においてクー
ラ負荷等の夕(部負荷が作動した場合、空燃比を濃厚側
に固定した上でアイドル回転数の制御を行なうことによ
り、負荷投入時におけるアイドル回転数の急激な落ち込
みを抑制するとともに、回転数変動が所定範囲内に収束
した時点において空燃比のフィードバック制御を開始し
てハンチング幅を可及的に少ならしめるようにしている
ため、外部負荷作動時におけるエンジンのアイドル回転
数をより迅速に目標回転数に収束せしめることができ、
それだけアイドル回転数の制御特性が向上するという効
果がある。
(Effects of the Invention) The engine idle control device of the present invention provides an engine that performs feedback control of the air-fuel ratio of the air-fuel mixture and the idle speed. In this case, by controlling the idle speed after fixing the air-fuel ratio to the rich side, it is possible to suppress the sudden drop in the idle speed when a load is applied, and also to control the idle speed when the speed fluctuation has converged within a predetermined range. Feedback control of the air-fuel ratio is started to reduce the hunting width as much as possible, so the engine's idle speed can more quickly converge to the target speed when an external load is operating.
This has the effect of improving the control characteristics of the idle speed accordingly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のエンジンのアイドル制御装置の機能ブ
ロック図、’?JS2図は本発明の実施例に係るアイド
ル制イ1+1装置を備えたエンジンの制御システム図、
第3図は第2図に示したコントローラの制M;Uフロー
チャー1〜である。 /・・・・・エンジン ノ・・・・・吸気通路 3・・・・・排気通路 t・・・・・エアクリーナ S・・・・・エアフロメータ 乙・・・・・畑;刺インジェクター 74・・・・スロットルバルブ g・・・・・スロットルセンサ 9・・・・・0ユセンサ //・・・・ポジションセンサ /l・・・・アクチュエータ /乙・・・・バイパスエア通路 /り・・・・ディストリビュータ 20・・・・コントローラ 2S・・・・水温センサ 2乙・・・・クランク角センサ 出 願 人 東洋工業株式会社
FIG. 1 is a functional block diagram of an engine idle control device according to the present invention. Figure JS2 is a control system diagram of an engine equipped with an idle control A1+1 device according to an embodiment of the present invention;
FIG. 3 shows the control M;U flowchart 1 to 1 of the controller shown in FIG. /...Engine...Intake passage 3...Exhaust passage T...Air cleaner S...Air flow meter O...Field; Stab injector 74. ...Throttle valve g...Throttle sensor 9...0 U sensor//...Position sensor/l...Actuator/B...Bypass air passage/R...・Distributor 20...Controller 2S...Water temperature sensor 2B...Crank angle sensor Applicant: Toyo Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] /、エンジン回転数を検出する回転数検出手段と、該回
転数検出手段の出方を受け、アイドル時のエンジン回転
数を予め設定された目標回転数に制御するアイドル回転
数制御手段と、エンジンに供給される混合気の空燃比を
検出する空燃比検出手段と、該空燃比検出手段の出力を
受け、混合気の空燃比を予め設定された空燃比に制御す
る空燃比制御手段とを(イ&えたエンジンにおいて、ア
イドル時における外rif+負荷の作動を検出する負荷
作動検出手段を設け、外部負荷作動時−1,記空燃比制
御手段によるろ“2燃比の制御を停止し、空燃比を所定
の濃い21!燃比に固定してアイドル回転数を制御する
とともに、該アイドル回転数と目標回転数との差が所定
値以内になった時、空燃比制御手段の作動停止をM除す
ることを特徴とするエンジンのアイドル制御装置。
/, a rotation speed detection means for detecting the engine rotation speed, an idle rotation speed control means for controlling the engine rotation speed at idle to a preset target rotation speed in response to the output of the rotation speed detection means; an air-fuel ratio detection means for detecting the air-fuel ratio of the air-fuel mixture supplied to the air-fuel mixture, and an air-fuel ratio control means for receiving the output of the air-fuel ratio detection means and controlling the air-fuel ratio of the air-fuel mixture to a preset air-fuel ratio ( A load operation detection means for detecting the operation of the external rif+load during idling is provided in the engine, and when the external load is operated, the air-fuel ratio control means stops controlling the air-fuel ratio and adjusts the air-fuel ratio. The idle speed is controlled by fixing it to a predetermined rich 21! fuel ratio, and when the difference between the idle speed and the target speed becomes within a predetermined value, the operation stop of the air-fuel ratio control means is divided by M. An engine idle control device featuring:
JP21851983A 1983-11-18 1983-11-18 Idle controller of engine Pending JPS60111037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21851983A JPS60111037A (en) 1983-11-18 1983-11-18 Idle controller of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21851983A JPS60111037A (en) 1983-11-18 1983-11-18 Idle controller of engine

Publications (1)

Publication Number Publication Date
JPS60111037A true JPS60111037A (en) 1985-06-17

Family

ID=16721199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21851983A Pending JPS60111037A (en) 1983-11-18 1983-11-18 Idle controller of engine

Country Status (1)

Country Link
JP (1) JPS60111037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213754A (en) * 1985-07-09 1987-01-22 Nippon Denso Co Ltd Idle rotational speed control device in internal-combustion engine
JPS63302161A (en) * 1987-05-30 1988-12-09 Mazda Motor Corp Idling engine speed control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159526A (en) * 1978-06-07 1979-12-17 Hitachi Ltd Engine speed controller
JPS5669438A (en) * 1979-11-08 1981-06-10 Mazda Motor Corp Idling speed controller for engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159526A (en) * 1978-06-07 1979-12-17 Hitachi Ltd Engine speed controller
JPS5669438A (en) * 1979-11-08 1981-06-10 Mazda Motor Corp Idling speed controller for engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213754A (en) * 1985-07-09 1987-01-22 Nippon Denso Co Ltd Idle rotational speed control device in internal-combustion engine
JPS63302161A (en) * 1987-05-30 1988-12-09 Mazda Motor Corp Idling engine speed control device

Similar Documents

Publication Publication Date Title
JPS63302161A (en) Idling engine speed control device
JP4539211B2 (en) Control device for internal combustion engine
US4719894A (en) Exhaust gas reflux apparatus
JP3760591B2 (en) Engine air volume control device
JP3564520B2 (en) Engine idle speed control device
JPS60111037A (en) Idle controller of engine
JPH09209800A (en) Intake air quantity control device for internal combustion engine
JPH09303181A (en) Idle operation control device for internal combustion engine
JPH0774625B2 (en) Control device for internal combustion engine
JPH04191433A (en) Combustion control device for engine
JPH02267340A (en) Air-fuel ratio control device for internal combustion engine
JPH0734194Y2 (en) Auxiliary air amount control device for internal combustion engine
JP3026881B2 (en) Carburetor air bleed control
JPH0755302Y2 (en) Engine intake air amount control device
JPH0221580Y2 (en)
JP2569546B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH11200928A (en) Idling speed controller of vehicle engine
JPH07189708A (en) Swirl control valve opening/closing control device
JPH0526939B2 (en)
JPH0730924Y2 (en) Auxiliary air introduction device for internal combustion engine
JP3235313B2 (en) Open / close control device for swirl control valve
JPH07332165A (en) Exhaust gas reflux control device of internal combustion engine
JPS5913343Y2 (en) Vehicle internal combustion engine
JPS6123628Y2 (en)
JPH0417793Y2 (en)