JPS5996718A - Manufacture of thin film semiconductor - Google Patents

Manufacture of thin film semiconductor

Info

Publication number
JPS5996718A
JPS5996718A JP57207376A JP20737682A JPS5996718A JP S5996718 A JPS5996718 A JP S5996718A JP 57207376 A JP57207376 A JP 57207376A JP 20737682 A JP20737682 A JP 20737682A JP S5996718 A JPS5996718 A JP S5996718A
Authority
JP
Japan
Prior art keywords
gas
thin film
silicon
hydrogen
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57207376A
Other languages
Japanese (ja)
Inventor
Toshio Kamisaka
上坂 外志夫
Kazuaki Miyamoto
和明 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP57207376A priority Critical patent/JPS5996718A/en
Publication of JPS5996718A publication Critical patent/JPS5996718A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain the amorphous silicon thin film of high photoconductivity, high dark resistivity and high growing speed by a method wherein gas ion and silicon ion which are formed by colliding accelerated electron against the mixed gas and the like of hydrogen and oxygen and a silicon simple is collided against the substrate surface. CONSTITUTION:A vacuum chamber 2 is brought into a high vacuum condition of 1X10<-5> or below, and the mixed gas of hydrogen and oxygen or hydrogen and nitrogen is introduced from a gas introducing tube 5 in such a manner that partial pressure will be brought in the range from 1X10<-5>Torr to 8X10<-4>Torr. Then, the silicon atomlike particles vaporized by an electron beam evaporation source 4 and the introduced mixed gas are ionized by performing ionization or dissociation using the high speed electron sent from an electron generator 6. On this gas ion and silicon ion, high energy is given by applying a negative DC voltage to the substrate holder 7 using a power source 11, and after an amorphous silicon thin film has been formed on the surface of the substrate 8 by making incident of said energy on the substrate, the above is treated by heat in a hydrogen plasma atmosphere.

Description

【発明の詳細な説明】 本発明(Jシリコンからなる薄膜半導体の24!造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thin film semiconductor made of J silicon.

水素を含む非晶質シリコン膜G−J 、、高い光導電性
、優れた耐熱性、高い表面硬度を有し、優ねた電子写真
用感光体として期待されている。しかし−通常の方法で
作られた膜Gj暗低抵抗率1010Ωαと低(0arl
son法による電荷潜像の形成に(j不適当であった。
The hydrogen-containing amorphous silicon film G-J has high photoconductivity, excellent heat resistance, and high surface hardness, and is expected to be an excellent electrophotographic photoreceptor. However, - the film Gj made by the usual method has a dark low resistivity of 1010Ωα and a low (0arl
(j was unsuitable for forming a charge latent image by the SON method.

そこで、高い光導電性を損なうことなく、暗抵抗率を増
加させるためにいくつかの方法が提案されている。例え
ば、5iHjガス中に微量のB2 Hgガス及び0□ガ
スを導入し、グロー放電法で非晶質シリコン膜を堆積さ
せる方法、SiH4ガス中にN2を混合してグロー放電
法で非晶質シリコン膜を堆積させる方法などが行なわわ
ている。
Therefore, several methods have been proposed to increase dark resistivity without sacrificing high photoconductivity. For example, a small amount of B2 Hg gas and 0□ gas are introduced into 5iHj gas and an amorphous silicon film is deposited by a glow discharge method, or an amorphous silicon film is deposited by a glow discharge method by mixing N2 into SiH4 gas. Methods such as depositing films are being used.

しかしながらこれらの方法でCj2j能的に【j優ねた
非晶質シリコン膜を得ることGe!できるが、膜の成長
速度が通常100−数百λ/ m i nと遅く、電子
写真感光体として必要な膜厚(20μm以Dを得るため
に−極めて長時間を有し、生産性が悪いという欠点を有
している。
However, with these methods, it is possible to obtain an amorphous silicon film with excellent Cj2j performance. However, the film growth rate is usually as slow as 100 to several hundred λ/min, and it takes an extremely long time to obtain the film thickness required for an electrophotographic photoreceptor (20 μm or more), resulting in poor productivity. It has the following drawbacks.

そこで本発明Gj %高い光導電性を有し、かつ暗抵抗
率が高く高速成長可能な電子写真感光体として有用な非
晶質シリコン膜からなる薄膜半導体の気された真空室内
に/ X / 0−”  トールからJ X 10−’
トールの範囲の分圧を有する様に水素ガスと酸素ガスの
混合ガス或い&j水素ガスと望素ガスの混合ガスを導入
し、該導入ガスと、シリコンを加熱蒸発することにより
得られるシリコン単原子とに加速電子を衝突させて電離
若しく(コ解tさせ、かくして生成したガスイオン及び
シリコンイオン10電界効果によって高エネルギーを付
加させて基材上しこ射突させることによりシリコンIF
を形成させ、更1こ該薄膜を水素プラズマ中で熱処理す
ることを要旨としている。
Therefore, in the present invention, a thin film semiconductor made of an amorphous silicon film, which has high photoconductivity, high dark resistivity, and is useful as an electrophotographic photoreceptor that can be grown at high speed, is placed in a vacuum chamber. -” Thor to J X 10-'
A mixed gas of hydrogen gas and oxygen gas or a mixed gas of hydrogen gas and hydrogen gas is introduced so as to have a partial pressure in the range of Torr, and the introduced gas and silicon monomer obtained by heating and evaporating silicon are mixed. Silicon IF is created by colliding accelerated electrons with atoms to cause ionization or decomposition, and by adding high energy to the thus generated gas ions and silicon ions by an electric field effect and causing them to bombard onto the base material.
The gist is to form a thin film, and then heat-treat the thin film in hydrogen plasma.

以F1本発明方法を詳述する。第1図及び第2図GJ本
発明方法を実施するための装置を示す。第1図において
、(IH−j真空槽で、非晶質シリコン薄膜を得るため
のものである。この槽(1)内に形成された真空室+2
1 GJ排気口(3)に連結された排気系装置(図示さ
ねていない)!こより/ X / 0−6までの高真空
1こ胡気されることが可能になっており、そして真空室
(2目こ(j電子ビーム蒸発源(4)(電源回路等に図
示さねていない)、ループ状のガス導入管(5)、電子
発生装置(6)、基材ホルダー(7)及びそf+ i、
:取付けらねた基材(8)が設置されている。真腋槽(
1)の外方1こ(J1電子発生装fk Ii !IJ作
させるだめの電源[9) 0.0)及びその回f各、基
材ホルダーに電圧を印加するため電源(11)及びその
回路、ループ状ガス導入管+51 )、:バルブ(ロ)
)〜0→により流量N節μ」能に接続された水素、酸素
或いcel窒素が充填されたボン”< 05) (+6
)が設置さねている。第2図Gj %第1図の装置で形
成されたシリコン薄膜をプラズマ処理するためのもので
ある。真空wJQυ内の真空室@+J排気口(ハ)に連
結された排気系装置(図示さねていない)によって/×
10−6トールまでの高真空に排気されることが可能に
なっており、真空室@1こ(jガス導入管■、プラズマ
発生のための電極(■(1)、シリコン薄膜が蒸着され
た基材(イ)及び基材(5)を加熱するためのヒーター
@(電源等&j図示されていない)が段置されている。
The F1 method of the present invention will be described in detail below. FIGS. 1 and 2 GJ show an apparatus for carrying out the method of the invention. In Fig. 1, it is an IH-j vacuum chamber for obtaining an amorphous silicon thin film.
1 Exhaust system device (not shown) connected to GJ exhaust port (3)! It is possible to carry out a high vacuum of up to ), loop-shaped gas introduction pipe (5), electron generator (6), substrate holder (7), and
: The base material (8) to be attached is installed. True axillary tank (
1) Outer one (J1 electronic generator fk Ii ! Power source for IJ production [9) 0.0) and each time f, a power source (11) and its circuit for applying voltage to the substrate holder , loop gas inlet pipe +51), :valve (b)
)~0→The cylinder filled with hydrogen, oxygen or cel nitrogen is connected to the flow rate N<05) (+6
) has not been installed. FIG. 2 Gj % This is for plasma processing the silicon thin film formed by the apparatus shown in FIG. /× by the exhaust system device (not shown) connected to the vacuum chamber @+J exhaust port (c) in the vacuum wJQυ
It is now possible to evacuate to a high vacuum of up to 10-6 Torr, and the vacuum chamber is equipped with a gas inlet tube (1), an electrode for plasma generation (1), and a silicon thin film deposited on it. Heaters @ (power supply, etc. &j not shown) for heating the base material (a) and the base material (5) are arranged in stages.

真空槽Qυの夕[方にIj、プラズマを発生させるため
の電源翰と、ガス導入管(ハ)に、バルブ(至)シこよ
り流新調#…能に接続された水素が充填されたボンベ0
〃が設置されている。
On the evening side of the vacuum tank Qυ is Ij, a power supply wire for generating plasma, a cylinder filled with hydrogen connected to the gas introduction pipe (c), and a new flow from the valve (to).
〃 has been installed.

基材(8)として(:11材質、形状共しこ特に限定さ
れるものでなく、高分子材料、セラミック材狙或いGj
金属材料のいづわでも良く、形状もフィルム状、薄板状
或いGjドラム状のものであっても良い。
As the base material (8) (:11, the material and shape are not particularly limited, and polymeric materials, ceramic materials, or Gj
It may be made of metal material, and may have a film-like, thin-plate-like, or Gj-drum-like shape.

また、第1文の蒸着装置と第2図のプラズマ装置&j1
゛必ずしも別々の真至槽である必要(jなく、開閉シャ
ッター等で分離された2つの真空室を有する同一の真空
槽であってもよく、こうすることにより、蒸着プロセス
7J)らプラズマ処理プロセスへ真空を破ることなく移
ることができる。
In addition, the vapor deposition device in the first sentence and the plasma device in Figure 2 &j1
``They do not necessarily have to be separate vacuum chambers (they may be the same vacuum chamber with two vacuum chambers separated by an opening/closing shutter, etc., and by doing so, the plasma treatment process can be moved to without breaking the vacuum.

第1図及び第2同条こ示される装置を一用いて薄膜半導
体を製造するにi:Js基材(8)を基材ホルダー(7
)に取り付け、電子ビーム蒸発源(4)にシリコンを供
給し、次いで排気口(3)から排気を行ない、真空室(
2)を/ X / 0”  トール以下の高真空となし
、g空度が安定した所でループ状のガス導入管(5)よ
り、バルブ(L2)〜@)を調節しながら水素と酸素或
い(j水素と窒素の混合ガスを、分圧が/×10−5ト
ールがらs×io’  トールの範囲になる様導入する
。ここで、混合ガスの容量の割合0ゴ、水素/、0【こ
対し酸素或い(ゴ智素が0.07ないし0.5であるの
が好ましい。
1 and 2. In manufacturing a thin film semiconductor using the apparatus shown in FIG.
), supply silicon to the electron beam evaporation source (4), then exhaust from the exhaust port (3) to create a vacuum chamber (
2) to a high vacuum of less than / (j) A mixed gas of hydrogen and nitrogen is introduced so that the partial pressure ranges from /x10-5 torr to sxio' torr.Here, the volume ratio of the mixed gas is 0g, hydrogen/,0 [On the other hand, it is preferable that the amount of oxygen or oxygen is 0.07 to 0.5.

次いで、電子ビーム蒸発源(4)を動作させてシリコン
を蒸気化させ、該シリコンの原子状粒子と導入された混
合ガスを電子発生装置(6)からの高速電子9こより電
離若しくG:l解!せしめてイオン化させる。尚、電子
発生装置+61Gj、フィラメント(61)、メツシュ
状電諷#3罎、ガード電極6つから構成されており、電
源tlO) )こより負の直流電位を与えられたフィラ
メント(61)に電源(9)により交流電流を通電し加
熱せしめ熱電子を発生させると共Fこメツシュ状電極−
を接地することにより上記熱電子を電界加速させて高速
電子を発生する様になっている。
Next, the electron beam evaporation source (4) is operated to vaporize the silicon, and the silicon atomic particles and the introduced mixed gas are ionized or G:l by high-speed electrons from the electron generator (6). Solution! At least ionize it. It is composed of an electron generator +61Gj, a filament (61), a mesh-like electric wire #3, and six guard electrodes. 9), an alternating current is applied to generate heat and thermionic electrons, and the F-shaped mesh electrode is heated.
By grounding, the hot electrons are accelerated by an electric field to generate high-speed electrons.

前記の如くしてイオン化されたガスイオン及びシリコン
イオンに対し、基材ホルダー(7)に′准源(]■)に
より負の直流電圧を印加することで高エネルギーを付与
し、基材(8)の表面をこ入射せしめかくして薄膜半導
体である非晶質シリコン薄膜を形成させる。ここで高エ
ネルギーとして【J運動エネルギーが常温において/ 
QoVから5 K e Vまでの範囲であり、好ましく
G;1100ev  から2 KeV  である次1こ
非晶質シリコン薄膜が形成さねた基材を真空室(イ)の
電#lj(イ)上1こ配置し、排気ロハヤから/×/σ
5トール以下の高真空【こ排気する。真空室(イ)の貞
空度が安定してから、ガス導入管(ハ)よりバルブ(ト
)を43節しながら水素ガスを分圧0.lトールからS
トールの範囲シこなる様導入する。次いで電漣一番こよ
り電極稗と電極輪の間に直流電界を生じゼしめプ、ラズ
マを発生させる。この時印加させる電圧として+* s
 o o vから3KVであるのが好ましい。
High energy is imparted to the gas ions and silicon ions ionized as described above by applying a negative DC voltage to the substrate holder (7) using a quasi-source (]■). ) to form an amorphous silicon thin film which is a thin film semiconductor. Here, as a high energy [J kinetic energy at room temperature/
QoV ranges from 5 K e V, preferably G: 1100 ev to 2 KeV. Next, the substrate on which the amorphous silicon thin film has been formed is placed on voltage #lj (A) in a vacuum chamber (A). Place one and start /×/σ from the exhaust lohaya
Evacuate to a high vacuum of 5 torr or less. After the vacancy of the vacuum chamber (A) becomes stable, hydrogen gas is introduced into the gas introduction pipe (C) at a partial pressure of 0. l tall to S
Introducing Thor's range. Next, a direct current electric field is generated between the electrode shaft and the electrode ring from the first part of the electric wire, generating a zephrup and a lasma. The voltage to be applied at this time is +*s
Preferably it is 3KV from o ov.

また、プラズマ処理中、基材@&jヒーター@【こよっ
てioo”cからs00℃までの恥囲の湿度に保たれて
いる。かくして、特性の優ねた薄膜半導体を得る。
Further, during the plasma treatment, the base material @ & j heater @ [Thus, the humidity is maintained at an ambient temperature from ioo'c to s00°C.Thus, a thin film semiconductor with excellent characteristics is obtained.

第1.2図シこ示した装置を用いてシリコン薄膜を形成
する具体例を次に記す。
A specific example of forming a silicon thin film using the apparatus shown in FIG. 1.2 will be described below.

〔具体例〕〔Concrete example〕

第1図に示される装置を用い、高純度シリコン塊(ワタ
、9999%以上)を電子ビーム蒸発源(4)に人ね、
基材(8)としてガラス板(米国コーニング社製70S
9ガラス)を用い、基材ホルダー(7)1こ取り付は下
記の条件で基材(8)の表面1こ厚さ2μmの蒸着層を
形成させた。
Using the apparatus shown in Fig. 1, a high-purity silicon block (wat, 9999% or more) is exposed to an electron beam evaporation source (4).
A glass plate (70S manufactured by Corning, USA) was used as the base material (8).
A vapor deposition layer having a thickness of 2 μm was formed on the surface of the substrate (8) under the following conditions when attaching one substrate holder (7) using a glass substrate (No. 9 glass).

混合ガス導入前の圧力 :  2×70”  トール水
素と酸素の混合比 :  i:o、os混合ガスの分圧
 −7×/び5 c−ルイオン化電圧:  300V イオン化屯流:  200mA イオン加速電圧:  300v 基材の湿度  :  、!SO°C 蒸MW度   :  、2ooo^/ m i nかく
して得られたシリコン薄膜を、第2図に示される装置を
用いて下記の条件でプラズマ処理を行った。
Pressure before mixed gas introduction: 2 x 70" Mixing ratio of hydrogen and oxygen: i: o, os Partial pressure of mixed gas -7 x/5 c-Ionization voltage: 300V Ionization current: 200mA Ion acceleration voltage : 300v Humidity of substrate: ,!SO°C Evaporation MW degree: ,2oooo^/min The silicon thin film thus obtained was subjected to plasma treatment under the following conditions using the apparatus shown in FIG. .

水素導入前の圧力 :  2×10”  トール水素分
圧   :(7,,2)−ル 印加電圧  :  /KV 放電電流  : 5m人 基材の湿度 : 300°C 処理時間  : 30分 かくして得られたシリコン薄膜をx腺[口1折で解析し
た結果非晶質であり、特性GJ ’F &!のi車りで
あった 暗抵抗率 :g×1014Ωα 光照射下での抵抗率 −乙X101°Ωan(照射条件
 :He−Heレーザー300 IIW/CffL’)
〔比較例/〕 具体例/と同一の条件で厚さ2μmの蒸着層?を形成さ
せ、プラズマ処理を行なわなしAで、特性を調べた所F
記の通りであった。
Pressure before hydrogen introduction: 2×10” Torr hydrogen partial pressure: (7,,2)-le Applied voltage: /KV Discharge current: 5m Humidity of human base material: 300°C Processing time: Obtained after 30 minutes The silicon thin film was analyzed by folding it into an x-ray, and it was found to be amorphous, with the characteristics GJ 'F &! Ωan (irradiation conditions: He-He laser 300 IIW/CffL')
[Comparative example/] A 2 μm thick vapor deposited layer under the same conditions as the specific example/? was formed and the characteristics were investigated in A without plasma treatment.F
It was as written.

暗抵抗率 二よ×l011Ωα 光照射下での抵抗率 二 乙×109Ωm〔具体例!〕 混合ガスを水素と窒素(混合比/:0.2>  に貧え
、具1ぐ例/と同一の条件で蒸着及びプラズマ処理を行
なった。膜厚2μm の試料をX線回折で?1析した結
果非晶質で、特性f:j下記の通りであった。
Dark resistivity 2×l011Ωα Resistivity under light irradiation 2×109Ωm [Specific example! ] The mixed gas was hydrogen and nitrogen (mixing ratio /:0.2>), and evaporation and plasma treatment were performed under the same conditions as Example 1.A sample with a film thickness of 2 μm was analyzed by X-ray diffraction. As a result of analysis, it was found to be amorphous, and the characteristics f:j were as follows.

暗抵抗率 :  3X1013Ωm 光照射下での抵抗率 :2X10”Ωα〔比較例2〕 具体例2においてプラズマ処理を行なわなし)薄膜の特
性(コ下記の通りであった。−暗抵抗率: 乙×101
0ΩOマ 光照射Fの抵抗率 二 8×1010ΩC″In以上説
明したよう(こ本発明方法!j1シリコン薄膜を高遼吸
4長で作成した後水素プラズマ中で熱処理するものであ
るから、ダングリングボンドを著しく減少させることが
でき、光照射シこより抵抗率が著しく下るという鈍ねた
特性を有するシリコン薄膜を得ることができるのである
。従って本発明の方法によりば鮎単に高品質の薄膜半導
体を得ることができ、特に電子写真感光体のtJl!造
に好逆である。
Dark resistivity: 3×1013Ωm Resistivity under light irradiation: 2×10”Ωα [Comparative Example 2] In Specific Example 2, no plasma treatment was performed) Characteristics of the thin film (The characteristics were as follows. - Dark resistivity: Otsu× 101
0ΩO resistivity of light irradiation F 2 8×1010ΩC″In As explained above (this is the method of the present invention!j1 Since the silicon thin film is created with high absorption 4 length and then heat treated in hydrogen plasma, dangling It is possible to significantly reduce the amount of bond and obtain a silicon thin film with dull characteristics such that the resistivity is significantly lower than that obtained by light irradiation.Therefore, the method of the present invention makes it possible to easily produce high quality thin film semiconductors. This is particularly advantageous for the tJl! structure of electrophotographic photoreceptors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Gj非晶質シリフン薄膜を得るための装置の構成
図、第2図(ゴシリコン薄膜をプラズマ処理するための
装置の構成園である。 (イ)・・・真空室   +811ンの・・・基材特許
串腋1人  稍水化学工業株式会社代表者 第沼基利
Figure 1 shows the configuration of an apparatus for obtaining amorphous silicon thin film, and Figure 2 shows the configuration of an apparatus for plasma processing a silicon thin film. (a) Vacuum chamber +811...・Base material patent Kushiwaki 1 person: Kensui Chemical Industry Co., Ltd. Representative Motoshi Dainuma

Claims (1)

【特許請求の範囲】 1)IO−6トール以下の高真空【こ排気された真空室
内に/×101トールからlX10−’  トールの範
囲の分圧を有する様に水素ガスと酸素ガスの混合ガス或
いGjj素ガスと窒素ガスの混合ガスを導入し、該導入
ガスと、シリフンを加熱蒸発することシこより得られる
シリコン単原子とに加′fAA電子を衝突させて電離若
しく輻解離させ、かくして生成したガスイオン及びシリ
コンイオンに電界効果によって高エネルギーを付与させ
て基材上条こ射突させることによりシリコン薄膜を形成
させ、更に該薄膜を水素プラズマ中で熱処理することを
特徴とする薄膜半導体の製造方法。 2)混合ガスρ容景の割合が水素/、0をこ対し酸素或
いは窒素が0.0/ないしOojであることを特徴とす
る特許請求の範囲第1項に記載の薄膜半導体の製造方法
[Claims] 1) High vacuum of IO-6 Torr or less [A mixed gas of hydrogen gas and oxygen gas such that the evacuated vacuum chamber has a partial pressure in the range of /×101 Torr to 1×10−' Torr. Alternatively, a mixed gas of Gjj element gas and nitrogen gas is introduced, and the introduced gas and silicon monoatoms obtained by heating and evaporating silicon are collided with added fAA electrons to cause ionization or radiation dissociation, A thin film characterized in that a silicon thin film is formed by imparting high energy to the gas ions and silicon ions thus generated by an electric field effect and causing them to collide on a substrate, and then heat-treating the thin film in hydrogen plasma. Semiconductor manufacturing method. 2) The method for manufacturing a thin film semiconductor according to claim 1, characterized in that the ratio of the mixed gas ρ volume is hydrogen/0 to 0.0/0 to oxygen or nitrogen.
JP57207376A 1982-11-25 1982-11-25 Manufacture of thin film semiconductor Pending JPS5996718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207376A JPS5996718A (en) 1982-11-25 1982-11-25 Manufacture of thin film semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207376A JPS5996718A (en) 1982-11-25 1982-11-25 Manufacture of thin film semiconductor

Publications (1)

Publication Number Publication Date
JPS5996718A true JPS5996718A (en) 1984-06-04

Family

ID=16538697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207376A Pending JPS5996718A (en) 1982-11-25 1982-11-25 Manufacture of thin film semiconductor

Country Status (1)

Country Link
JP (1) JPS5996718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436035A (en) * 1991-12-05 1995-07-25 Alusuisse-Lonza Services Ltd. Coating a substrate surface with a permeation barrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138916A (en) * 1980-03-31 1981-10-29 Fujitsu Ltd Formation of amorphous thin film
JPS577116A (en) * 1980-06-16 1982-01-14 Matsushita Electric Ind Co Ltd Manufacture of amorphous silicon thin film
JPS5754930A (en) * 1980-09-20 1982-04-01 Minolta Camera Co Ltd Exposure controlling circuit of camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138916A (en) * 1980-03-31 1981-10-29 Fujitsu Ltd Formation of amorphous thin film
JPS577116A (en) * 1980-06-16 1982-01-14 Matsushita Electric Ind Co Ltd Manufacture of amorphous silicon thin film
JPS5754930A (en) * 1980-09-20 1982-04-01 Minolta Camera Co Ltd Exposure controlling circuit of camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436035A (en) * 1991-12-05 1995-07-25 Alusuisse-Lonza Services Ltd. Coating a substrate surface with a permeation barrier

Similar Documents

Publication Publication Date Title
JP3352842B2 (en) Thin film formation method by gas cluster ion beam
JPS59159167A (en) Manufacture of amorphous silicon film
JPS582022A (en) Thin film formation
JPH0542813B2 (en)
JPH0380531A (en) Method and apparatus for surface treating and thin film member
JPS5996718A (en) Manufacture of thin film semiconductor
EP0029747A1 (en) An apparatus for vacuum deposition and a method for forming a thin film by the use thereof
JP3503787B2 (en) Thin film formation method
JPS6134173A (en) Production of high-hardness boron nitride film
JPH0131289B2 (en)
JPH04285154A (en) Formation of carbon thin film
JP2679011B2 (en) Method of introducing impurity atoms
JPS5996720A (en) Manufacture of thin film semiconductor
JPS639743B2 (en)
Takaoka et al. Development of liquid polyatomic ion beam system for surface modification
JP3102540B2 (en) Method for forming low hydrogen content amorphous silicon semiconductor thin film
Nara et al. Synchrotron radiation-assisted silicon film growth by irradiation parallel to the substrate
JPS5957419A (en) Manufacture of semiconductor thin film
JPS61189625A (en) Formation of deposited film
JPS6025225A (en) Manufacture of thin film semiconductor
JPS5874518A (en) Manufacture of amorphous silicon
JPS61179869A (en) Method of forming accumulated film
Kruzelecky et al. DC saddle-field plasma-enhanced vapour deposition
JPS609657B2 (en) Ion plating method and device
JPS5837247B2 (en) Manufacturing method of amorphous silicon