JPS5994620A - Production of carbon fiber by vapor phase method - Google Patents

Production of carbon fiber by vapor phase method

Info

Publication number
JPS5994620A
JPS5994620A JP20106582A JP20106582A JPS5994620A JP S5994620 A JPS5994620 A JP S5994620A JP 20106582 A JP20106582 A JP 20106582A JP 20106582 A JP20106582 A JP 20106582A JP S5994620 A JPS5994620 A JP S5994620A
Authority
JP
Japan
Prior art keywords
carbon fibers
substrates
fiber
cylinder
production zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20106582A
Other languages
Japanese (ja)
Inventor
Shingo Morimoto
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20106582A priority Critical patent/JPS5994620A/en
Publication of JPS5994620A publication Critical patent/JPS5994620A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the convection of gases, promote the growth of fibers and produce carbon fibers in a high productivity, by dispersing and arranging plural fiber depositing substrates in a production zone of the carbon fibers. CONSTITUTION:A hydrocarbon is thermally decomposed to give carbon fibers. In the process, plural fiber depositing substrates 2, e.g. made of a ceramic such as alumina, mullite or graphite, are dispersed and arranged in a production zone of the carbon fibers in a cylinder 1, e.g. made of a ceramic subh as alumina, preferably at 0.5-2cm equal spaces (l1). Preferably, metallic fine powder 4, etc. is scattered on the surface of the substrates 2, and the temperature of the production zone of the carbon fibers is kept at 1,000-1,300 deg.C. The shape of the substrates 2 is suitably a plate or rod, etc. EFFECT:The carbon fibers can be efficiently produced at >=0.5cm/min fiber growth rate and >=30% fiber forming yield.

Description

【発明の詳細な説明】 本発明は炭化水素の熱分解によるいわゆる気相法による
炭素繊維の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon fibers by the so-called gas phase method by thermal decomposition of hydrocarbons.

気相法による炭素繊維は優れた特性、特長をもっている
が、生産性が低いことが工業化の難点とされる。
Carbon fiber produced by the vapor phase method has excellent properties and features, but low productivity is said to be a difficulty in industrialization.

従来一般に知られている気相法の炭素繊維は炉内に設置
した横型のセラミック製円筒の内面に基板を設置しA、
+ガス等を流し、次いで円筒内を所定温度に上げ、ベン
ゼン等の炭化水素ガスを1−12ガス等で希釈して流し
、炭化水素を熱分解し、基板上に炭素繊維を生成、成長
させることにより製造されている。この場合基板上に鉄
粉等の微粒子を存在させることが有効であることも知ら
れている。
Conventionally known vapor phase method carbon fiber is produced by placing a substrate on the inner surface of a horizontal ceramic cylinder placed in a furnace.
+ gas etc. is flowed, then the inside of the cylinder is raised to a specified temperature, hydrocarbon gas such as benzene is diluted with 1-12 gas etc. and the hydrocarbon is pyrolyzed and carbon fibers are generated and grown on the substrate. It is manufactured by In this case, it is also known that it is effective to have fine particles such as iron powder on the substrate.

従来法では円筒内の空間が充分に利用されておらず、丑
たこの炉は炉外のガスの導入部、排出部の長さもかなり
あるので、炉を横に配置すると、建屋の高さ方向の空間
の利用効率が低くなる。
In the conventional method, the space inside the cylinder is not fully utilized, and the Ushitako furnace has a considerable length of the gas introduction and exhaust sections outside the furnace, so if the furnace is placed horizontally, space usage efficiency becomes low.

そこで本発明者は先ず円筒を縦型にすることを検討した
。縦型力ら建屋の空間利用率が高凍るばかりでなく、炭
素繊維の析出基板の交換を円筒に接触させずに行なうこ
とができ、操作上も好ましい。
Therefore, the inventor first considered making the cylinder vertical. The vertical structure not only improves the space utilization rate of the building, but also allows the carbon fiber deposition substrate to be replaced without contacting the cylinder, which is favorable in terms of operation.

ところが単純に横型を縦型にしただけでは炭素繊維は初
めに生成はするが、その後の成長が阻害されて繊維の収
量が少ない。それは繊維が成長の過程でガスの大きな流
速によって折れたり曲ったすすることが原因であること
がわかった。ガスの流速が大きいのは対流によるためで
あり、供給するガスの量のコントロールではガス流速を
小さくすることはむずかしい。
However, if carbon fibers are simply changed from horizontal to vertical, carbon fibers are initially produced, but subsequent growth is inhibited, resulting in a low fiber yield. It was found that this was caused by the fibers being bent or bent due to the large gas flow rate during the growth process. The high gas flow rate is due to convection, and it is difficult to reduce the gas flow rate by controlling the amount of gas supplied.

内径10cT11程度の横型炉の場合、炉内に多少の温
度差が生じても対流によるトラブルは事実上発生しない
。横型でも炉が犬きくなると対流、偏流の問題が生じる
が、縦型に比べると少ない。
In the case of a horizontal furnace with an inner diameter of about 10 cT11, troubles due to convection will virtually never occur even if a slight temperature difference occurs within the furnace. Even if the furnace is horizontal, problems with convection and drift will occur if the furnace gets too loud, but these are less common than with vertical furnaces.

本発明の目的は気相法の炭素繊維の生長速度の増大及び
空間利用率の増加により生産性の向上を図ることにある
An object of the present invention is to improve productivity by increasing the growth rate of carbon fibers using the vapor phase method and increasing the space utilization rate.

このため本発明においては炭化水素が熱分解する空間帯
域に複数の基板をできるだけ等間隔に分散配列させる構
成とした。
Therefore, in the present invention, a plurality of substrates are arranged in a distributed manner as evenly spaced as possible in a spatial zone where hydrocarbons are thermally decomposed.

以下図面に例示した装置により本発明を具体的に説明す
る。
The present invention will be specifically explained below using the apparatus illustrated in the drawings.

第1図は縦に配置した円筒1内に板状の繊維析出基体2
を配列した状態を示す斜視図である。第2図は基体3と
して棒状のものを配列した状態の斜視図である。
Figure 1 shows a plate-shaped fiber precipitation base 2 inside a vertically arranged cylinder 1.
FIG. 3 is a perspective view showing a state in which the FIG. 2 is a perspective view of the base body 3 in which rod-shaped objects are arranged.

円筒】はアルミナ等のセラミック製、基体2はアルミナ
、ムライト、黒鉛質等のセラミック製のものが適する。
The cylinder] is preferably made of ceramic such as alumina, and the base 2 is suitably made of ceramic such as alumina, mullite, or graphite.

基体2の数は円筒の太さによって定めるが、その間隔で
、が05〜2cmに々るようにその数を決めるのがよい
The number of base bodies 2 is determined by the thickness of the cylinder, and it is preferable to determine the number so that the distance between them is 0.5 to 2 cm.

基体は第2図に示すように棒状体3のものでもよい。こ
の場合は棒状体同志の間隔12、棒状体と円筒内面との
間隔13が上記の範囲に入るように選ぶことが好ましい
。4はFe粉等の微粉末である。
The base body may be a rod-shaped body 3 as shown in FIG. In this case, it is preferable that the spacing 12 between the rod-like bodies and the spacing 13 between the rod-like bodies and the inner surface of the cylinder fall within the above ranges. 4 is a fine powder such as Fe powder.

このように複数の基体を配列することによシ、ガスの対
流は相当防止される。そしてさらに望ましくは円筒の長
さ方向に対する直角断面の最高温度帯域における温度差
が小さいことである。実験によればこの温度差が20°
C以下が特によい。これらの条件が満足されると対流に
よるガス流速は1cm / sea以下になる。
By arranging a plurality of substrates in this manner, gas convection is considerably prevented. More preferably, the temperature difference in the highest temperature zone of the cross section perpendicular to the longitudinal direction of the cylinder is small. According to experiments, this temperature difference is 20°
C or lower is particularly good. When these conditions are satisfied, the gas flow rate due to convection will be 1 cm/sea or less.

基体の表面に公知の方法(特開昭52−103528)
に従って金属微粉等を散布する。金属は周期率表の第8
族、isa族のもので300Å以下の超微粉が望ましい
。壕だこれらは化合物であってもよい。
A known method (Japanese Unexamined Patent Publication No. 103528/1983) on the surface of the substrate
Spread fine metal powder, etc. according to the following. Metals are number 8 on the periodic table.
Ultrafine powder of 300 Å or less in the isa group is desirable. These may be compounds.

これらの超微粉はアルコール等に分散し、基体にスプレ
ーし、乾燥して使用するが、超微粉であるため、基体が
垂直でも殆んど落下することがない。
These ultrafine powders are used by dispersing them in alcohol or the like, spraying them onto a substrate, and drying them, but since they are ultrafine powders, they almost never fall even when the substrate is vertical.

基体を配列した炭素繊維の生成帯域の温度は約1000
〜1300°Cが適する。炭化水素ガスはH2ガス、A
rガス等で希釈して用いるが、炭化水素ガスの濃度や混
合ガスの供給速度等は特開昭52−103528と同様
である。!、だガスの圧力は常圧附近が取扱い易く望ま
しい。
The temperature of the carbon fiber production zone where the substrate is arranged is about 1000℃.
~1300°C is suitable. Hydrocarbon gas is H2 gas, A
Although it is used after being diluted with r gas, etc., the concentration of hydrocarbon gas, the supply rate of mixed gas, etc. are the same as in JP-A-52-103528. ! It is preferable that the pressure of the gas be around normal pressure for ease of handling.

ガスの流す方向は上から下へ又はその逆のどちらでも可
能である。炭化水素としてはベンゼンの外、トルエン、
メタン、エチレン、揮発油等が使用できる。
The direction of gas flow can be from top to bottom or vice versa. In addition to benzene, toluene,
Methane, ethylene, volatile oil, etc. can be used.

図示のものは円筒を縦に配置したものであるが、勿論横
型にしても本発明は可能である。
Although the cylinder shown in the figure is vertically arranged, the present invention is of course possible even if the cylinder is horizontally arranged.

本発明によれば、繊維の成長速度約0.5cm1分以」
二で、炭化水素中の炭素の繊維化収率30%以上と高能
率で炭素繊維を得ることができる。
According to the present invention, the fiber growth rate is about 0.5 cm per minute or more.
Second, carbon fibers can be obtained with high efficiency, with a fiberization yield of carbon in hydrocarbons of 30% or more.

実施例 第1図に示すようにアルミナ製円筒(内径10cm )
内にムライト質基板を5枚配置した。基板間の間隔は1
cIrLである。また基板の高さは30cmとした。
Example As shown in Figure 1, an alumina cylinder (inner diameter 10 cm)
Five mullite substrates were placed inside. The distance between the boards is 1
cIrL. Further, the height of the substrate was 30 cm.

基板と円筒内面との間隔は約2cmである。The distance between the substrate and the inner surface of the cylinder was approximately 2 cm.

基板にはエチルアルコールに分散したFeの超微粉(約
300人下)をスプレーし、乾燥して使用した。
Ultrafine powder of Fe dispersed in ethyl alcohol (approximately 300 ml) was sprayed onto the substrate, dried, and used.

炭化水素ガスとしてはベンゼンを用い、これを2、゛ 
        水素ガ スで希釈(べ/ゼンの濃度4〜10容量%)。混合ガス
の送入量は02〜051/分とした2、基板部分の温度
を約1100°Cとし、また基板間の温度差は最も太き
いところで2’Cとした。
Benzene is used as the hydrocarbon gas, and it is
Dilute with hydrogen gas (concentration of be/zene 4-10% by volume). The feeding rate of the mixed gas was 02 to 051/min2, the temperature of the substrate portion was approximately 1100°C, and the temperature difference between the substrates was 2'C at the widest point.

以上の条件で3時間継続し、炭素繊維を生成させた。The above conditions were continued for 3 hours to produce carbon fibers.

比較のため、上記基板の代りに円筒の内面に二つ割の桶
状の基板を合せて円筒内にはめ込み、基板として用い、
その他は上記と同様にして実験した。基板を二つ割とし
たのは繊維の採取を容易にするためである。
For comparison, instead of the above substrate, a halved bucket-shaped substrate was placed on the inner surface of a cylinder and fitted into the cylinder, and used as a substrate.
The experiment was otherwise carried out in the same manner as above. The reason why the substrate was divided into two parts was to make it easier to collect the fibers.

結果は次の通り(太さ、長さは平均) 繊維の収量  太 さ  長 さ 本発明  1.9   1−0〜20μ4〜5c+y+
比較例  01g   3〜5μ 1〜2Cm
The results are as follows (thickness and length are average) Fiber yield Thickness Length Invention 1.9 1-0~20μ4~5c+y+
Comparative example 01g 3~5μ 1~2Cm

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明方法に使用される装置の1例を
示す断面図。 1  円筒、  2  基板、 4 ・・微粉特許出願
人  昭和電工株式会社
FIGS. 1 and 2 are cross-sectional views showing one example of an apparatus used in the method of the present invention. 1 cylinder, 2 substrate, 4...Fine powder patent applicant Showa Denko K.K.

Claims (1)

【特許請求の範囲】[Claims] 炭化水素ガスの熱分解による炭素繊維の製造法において
、炭素繊維の生成帯域に複数の繊維析出基体を分散配列
し、ガスの対流を少なくし、繊維の成長を促進させたこ
とを特徴とする炭素繊維の製造法。
A method for producing carbon fibers by thermal decomposition of hydrocarbon gas, characterized in that a plurality of fiber deposition substrates are dispersed and arranged in a carbon fiber production zone to reduce gas convection and promote fiber growth. Fiber manufacturing method.
JP20106582A 1982-11-18 1982-11-18 Production of carbon fiber by vapor phase method Pending JPS5994620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20106582A JPS5994620A (en) 1982-11-18 1982-11-18 Production of carbon fiber by vapor phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20106582A JPS5994620A (en) 1982-11-18 1982-11-18 Production of carbon fiber by vapor phase method

Publications (1)

Publication Number Publication Date
JPS5994620A true JPS5994620A (en) 1984-05-31

Family

ID=16434796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20106582A Pending JPS5994620A (en) 1982-11-18 1982-11-18 Production of carbon fiber by vapor phase method

Country Status (1)

Country Link
JP (1) JPS5994620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500943A (en) * 1984-12-06 1987-04-16 ハイピリオン・カタリシス・インタ−ナシヨナル・インコ−ポレイテツド carbon fibril
JPS63503555A (en) * 1986-06-06 1988-12-22 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド Novel carbon fibrils
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500943A (en) * 1984-12-06 1987-04-16 ハイピリオン・カタリシス・インタ−ナシヨナル・インコ−ポレイテツド carbon fibril
JPH03174018A (en) * 1984-12-06 1991-07-29 Hyperion Catalysis Internatl Inc Carbon fibril, its production and composition containing same
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JPS63503555A (en) * 1986-06-06 1988-12-22 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド Novel carbon fibrils
JPH01131251A (en) * 1986-06-06 1989-05-24 Hyperion Catalysis Internatl Inc Novel carbon fibril, its production and composition containing said fibril
JPH0377288B2 (en) * 1986-06-06 1991-12-10 Haipirion Katarishisu Intern Inc

Similar Documents

Publication Publication Date Title
KR102053726B1 (en) A method for manufacturing multi-walled carbon nanotubes using continuous process
JP2012524015A5 (en)
KR20040030718A (en) Method for the selective production of ordered carbon nanotubes in a fluidised bed
MY127311A (en) A shell metal catalyst and a precursor thereof, a process for their preparation and the use of the catalyst
KR102085940B1 (en) A catalyst for mass production of multi-walled carbon nanotubes
US5327454A (en) Bridge for connecting cores in a manufacturing equipment of polycrystal silicon
JP6609300B2 (en) Equipment for growing silicon carbide of specific shape
JPS57117622A (en) Production of carbon fiber through vapor-phase process
CN106747665A (en) A kind of preparation method of the graphite plate coating in silicon carbide monocrystal growth thermal field structure
JPS5994620A (en) Production of carbon fiber by vapor phase method
KR20210003709A (en) Chemical vapor deposition silicon carbide bulk with enhanced etching properties
CN1394829A (en) Microtube titanium carbonate base fibre and its preparation process
CN108560058A (en) A kind of preparation method of zirconium carbide whisker
JPH05246786A (en) Method for uniformly coating core powders with ultrafine silicon-based particles while using chemical vapor decomposition in presence of core powders
US4486473A (en) Method and apparatus for coating fragile articles in a fluidized bed of particles using chemical vapor deposition
WO2020006782A1 (en) Porous nitrogen-iron single crystal material and preparation method and application thereof
CN1166826C (en) Prepn. process of fishbone-shaped nano carbon fiber
JPS58110493A (en) Production of graphite whisker
Pajkic et al. Atmospheric pressure microwave plasma fluidized bed CVD of AlN coatings
JPS6278217A (en) Vapor-phase production of carbon fiber
JPH0874130A (en) Apparatus for vapor-phase production of carbon fiber
JPH0435215B2 (en)
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JP3673294B2 (en) Method and apparatus for producing vapor grown carbon fiber
JPH0437624Y2 (en)