JPS5989862A - Device for controlling direct coupling of torque converter in vehicle automatic transmission - Google Patents

Device for controlling direct coupling of torque converter in vehicle automatic transmission

Info

Publication number
JPS5989862A
JPS5989862A JP19850482A JP19850482A JPS5989862A JP S5989862 A JPS5989862 A JP S5989862A JP 19850482 A JP19850482 A JP 19850482A JP 19850482 A JP19850482 A JP 19850482A JP S5989862 A JPS5989862 A JP S5989862A
Authority
JP
Japan
Prior art keywords
valve
clutch
direct coupling
hydraulic
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19850482A
Other languages
Japanese (ja)
Other versions
JPS6148023B2 (en
Inventor
Masao Nishikawa
正雄 西川
Yoshimi Sakurai
桜井 義美
Takashi Aoki
隆 青木
Yoichi Sato
洋一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP19850482A priority Critical patent/JPS5989862A/en
Priority to GB8329947A priority patent/GB2132710B/en
Priority to FR838317909A priority patent/FR2550140B1/en
Priority to US06/551,739 priority patent/US4589537A/en
Priority to DE19833341160 priority patent/DE3341160A1/en
Publication of JPS5989862A publication Critical patent/JPS5989862A/en
Priority to GB8529288A priority patent/GB2166504B/en
Priority to GB8529289A priority patent/GB2166818B/en
Priority to US06/839,259 priority patent/US4693347A/en
Publication of JPS6148023B2 publication Critical patent/JPS6148023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0251Elements specially adapted for electric control units, e.g. valves for converting electrical signals to fluid signals
    • F16H2061/026On-off solenoid valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • F16H2061/145Control of torque converter lock-up clutches using electric control means for controlling slip, e.g. approaching target slip value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H59/22Idle position

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

PURPOSE:To remarkably simplify a direct coupling control device and as well to reduce a loss by leakage of hydraulic oil from valve, by using one modulator valve to carry out two types of direct coupling control, that is, to control the coupling force of a direct coupling clutch in accordance with variations in vehicle speed and as well to release the direct coupling clutch under the idle condition of an engine throttle valve. CONSTITUTION:A modulator valve Mv comprises a spool valve member 86 moving between a right closing position and a right opening position, a spring 87 urging the valve member 86 toward the opening position, a pilot hydraulic chamber 88, an input port 89 and an output port 90 which is connected to a hydraulic cylinder 14 in a direct coupling clutch Cd through an oil passage 91. There is provided a solenoid valve 96 for opening and closing a throttle valve 94 through which a hydraulic chamber 88' is connected to a discharge oil passage 95. An idle position detecting switch 100 closes when the throttle valve is returned to the idle opening degree range in association with an accelerator pedal 102.

Description

【発明の詳細な説明】 本発明は、ポンプ翼車な含む入力部材及びタービン翼車
を含む出力部材を有する流体式トルクコンバータと、1
段または複数段の歯車列を有し、これを”介して前記出
力部材のトルクを駆動車輪に伝達する補助変速機と備え
た自動変速機において、前記入、出力部材間にこれらを
機械的に結合し得る直結クラッチを介装して、トルクコ
ンバータの滑り損失を必要最小限に抑えるようにした、
トルクコンバータの直結制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a hydraulic torque converter having an input member including a pump wheel and an output member including a turbine wheel;
In an automatic transmission equipped with an auxiliary transmission that has a gear train of one or more stages and transmits the torque of the output member to the driving wheels through the gear train, the gear train is mechanically connected between the input and output members. A direct-coupled clutch is installed to minimize torque converter slip loss.
The present invention relates to a direct-coupled control device for a torque converter.

直結クラッチの作動によりドルクコ°ンバータを直結状
態にして車両を運転しているとき、減速すべくアクセル
ペダルを解放すると、エンジンを含むパワープラントに
加わる反力の急激な変化がパワープラントを介して車体
に伝達し、不快なサージングを伴い易い。これを防止す
るには、エンジン絞弁のアイドル位置では直結クラッチ
の作動な解除することが有効であり、既にそのだめの各
種の装置が提案されている。
When driving a vehicle with the converter in direct connection due to the operation of the direct coupling clutch, when the accelerator pedal is released to decelerate, a sudden change in the reaction force applied to the power plant including the engine is applied to the vehicle body via the power plant. and is likely to be accompanied by unpleasant surging. To prevent this, it is effective to release the direct coupling clutch when the engine throttle valve is in the idle position, and various devices for this purpose have already been proposed.

また、この問題の別の解決手段として、トルクコンバー
タの入、出力部材間に、直結クラッチと直列に一方向ク
ラッチを介装し、この一方向クラッチは、直結クラッチ
の作動時にはエンジンの出力トルクのみを出力部材側へ
伝達し得るように構成したものも既に提案されているが
、エンジン絞弁のアイドル状態では前記一方向クラッチ
の空転による振動音や摩耗の発生が多少ともあるので、
これを防止することを考慮すれば、直結クラッチを解除
する方が望ましい。
In addition, as another solution to this problem, a one-way clutch is interposed in series with the direct coupling clutch between the input and output members of the torque converter, and when the direct coupling clutch is operated, the one-way clutch only uses the output torque of the engine. There have already been proposals that are configured to transmit the power to the output member side, but when the engine throttle valve is in an idling state, some vibration noise and wear may occur due to the idling of the one-way clutch.
In order to prevent this, it is preferable to release the direct coupling clutch.

一方、出願人は、直結クラッチの作動中の動力性能の維
持を図る目的で、直結クラッチに滑り特性を与えると共
に直結クラッチの結合力を車速の変化に応じて制御し、
低車速域でのエンジンの最大出力運転時には、直結クラ
ッチに故意に滑りを  。
On the other hand, in order to maintain power performance during operation of the direct-coupled clutch, the applicant provides a slipping characteristic to the direct-coupled clutch and controls the coupling force of the direct-coupled clutch according to changes in vehicle speed.
When operating the engine at maximum output at low vehicle speeds, the direct clutch is intentionally slipped.

生起させることにより、エンジンの出力トルクの伝達を
、直結クラッチを含む機械伝動系とトルクコンバータの
流体を含む流体伝動系とに分担させて、トルクコンバー
タのトルク増幅機能を適当に回復させる、一種の動力分
割を行うようにしたものを既に提案した。
This is a kind of system that allows the transmission of engine output torque to be shared between the mechanical transmission system including the direct coupling clutch and the fluid transmission system including the fluid of the torque converter, thereby appropriately restoring the torque amplification function of the torque converter. We have already proposed a system that splits the power.

このような異種の直結制御を同時に行おうとすれば、二
ン、ジン絞弁のアイドル状態で直結クラッチを解除する
弁と、車速の変化に応じて直結クラッチの結合力を制御
する弁との2本の弁が必要であり、若しこれらを1本の
弁で効率良゛(制御できれば、装置が著しく簡素化され
、且つ弁がらの圧油の漏洩損失も大いに救済され、実用
上極めて有利となろう。
If we try to perform these different types of direct coupling control at the same time, we need two valves: one that releases the direct coupling clutch when the engine throttle valve is idling, and the other that controls the coupling force of the direct coupling clutch in response to changes in vehicle speed. If these valves could be efficiently controlled with one valve, the equipment would be significantly simplified, and leakage loss of pressure oil from the valves would be greatly alleviated, which would be extremely advantageous in practice. Become.

そこで本発明の目的は、1本の弁をもって前記異種の直
結制御を行い得る構成簡素な前記トルクコンバータの直
結制御装置を提供することを目的とする。この目的を達
成するために、本発明は、トルクコンバータの人、出力
部材間に設けられ、これら両部材を機械的に結合するよ
う作動し得る、滑り特性をもった油圧式直結クラッチと
、この直結クラッチの油圧シリンダと油圧源とを結ぶ油
路に介装されたモジュレータ弁とよりなり、このモジュ
レータ弁は前記油路を開閉する弁体と、この弁体を開弁
方向に付勢するばねと、該モジュレータ弁の入力ボート
側から前記弁体を閉弁方向に付勢するパイロット油圧を
導入する第1パイロツト油圧室と、前記弁体を開弁方向
に付勢するパイロット油圧を導入\する第2パイロツト
油圧室とより構成され、前記第2パイロツト油圧室に、
車速に比例して変化する油圧を出力する車速比例油圧発
生装置の出力側を絞りを介して接続し、さらにエンジン
絞弁のアイドル状態を検知して該第2パイロツト油圧室
を大気に開放する弁装置を接続したところに特徴がある
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a direct-coupling control device for the torque converter, which has a simple configuration and can perform the different types of direct-coupling control using a single valve. To achieve this objective, the present invention provides a hydraulic direct coupling clutch with slipping characteristics which is provided between the torque converter and the output member and which can be operated to mechanically couple these two parts. The modulator valve consists of a modulator valve installed in an oil passage connecting the hydraulic cylinder of the direct coupling clutch and the oil pressure source, and this modulator valve includes a valve element that opens and closes the oil passage, and a spring that biases the valve element in the valve opening direction. A first pilot hydraulic chamber introduces pilot hydraulic pressure from the input boat side of the modulator valve to bias the valve body in the valve closing direction, and a pilot hydraulic pressure to bias the valve disc in the valve opening direction is introduced. a second pilot hydraulic chamber;
A valve that connects the output side of a vehicle speed proportional hydraulic pressure generator that outputs hydraulic pressure that changes in proportion to vehicle speed via a throttle, and further detects the idle state of the engine throttle valve and opens the second pilot hydraulic chamber to the atmosphere. The feature lies in the way the device is connected.

以下、図面により本発明の実施例について説明する。Embodiments of the present invention will be described below with reference to the drawings.

先ず、第1図は本発明を適用する前進3段、後進1段の
自動車用自動変速機の概要図である。図において、エン
ジンEの出力は、そのクランク軸1からトルクコンバー
タT、補助変速機M、差動装置Dfを順次繰て駆動車輪
W 、 W/に伝達され、これらを駆動する。
First, FIG. 1 is a schematic diagram of an automatic transmission for an automobile with three forward speeds and one reverse speed to which the present invention is applied. In the figure, the output of an engine E is transmitted from its crankshaft 1 through a torque converter T, an auxiliary transmission M, and a differential gear Df to drive wheels W1, W/ in order to drive these wheels.

トルクコンバータTは、クランク軸1に連結したポンプ
翼車2と、補助変速機Mの入力軸5に連結したタービン
翼車3と、入力軸5上に相対回転自在に支承されたステ
ータ軸4aに一方向クラッチ1を介して連結したステー
タ翼車4とより構成される。クランク軸1からポンプ翼
車2に伝達されるトルクは流体力学的にタービン翼車3
に伝達され、この間にトルクの増幅作用が行われると、
公知のように、ステータ翼車4がその反力を負担する。
The torque converter T includes a pump impeller 2 connected to a crankshaft 1, a turbine impeller 3 connected to an input shaft 5 of an auxiliary transmission M, and a stator shaft 4a supported on the input shaft 5 so as to be relatively rotatable. It is composed of a stator wheel 4 connected via a one-way clutch 1. The torque transmitted from the crankshaft 1 to the pump wheel 2 is hydrodynamically transmitted to the turbine wheel 3.
When the torque is amplified during this time,
As is known, the stator wheel 4 bears the reaction force.

ポンプ翼車2の右端には、第2図の油圧ポンプPを駆動
するポンプ駆動歯車8が設けられ、またステータ軸4a
の右端には第2図のレギュレータ弁Vγを制御するステ
ータアーム46が固設される。
A pump drive gear 8 for driving the hydraulic pump P shown in FIG. 2 is provided at the right end of the pump impeller 2, and a stator shaft 4a
A stator arm 46 for controlling the regulator valve Vγ shown in FIG. 2 is fixedly installed at the right end of the stator arm 46 .

ポンプ翼車2とタービン翼車3との間には、これらを機
械的に結合し得るローラ形式の直結クラッチCdが設け
られる。これを第2図及び第2A図により詳細に説明す
ると、ポンプ翼車2の内周壁2αには、内周に駆動円錐
面9をもった環状の駆動部材10が固着される。またタ
ービン翼車3の内周壁3αには、外周に前記駆動円錐面
9と平行に対面する被動円錐面11をもった被動部材1
2が軸方向摺動自在にスプライン嵌合される。この被動
部材12の一端にはピストン13が一体に形成されてお
り、このピストン13はタービン翼車3の内周壁3aに
設けた油圧シリンダ14に摺合され、該シリンダ14の
内圧とトルクコンバータTの内圧を左右両端面に同時に
受けるようになっている。
A roller-type direct coupling clutch Cd is provided between the pump impeller 2 and the turbine impeller 3 to mechanically connect them. To explain this in detail with reference to FIGS. 2 and 2A, an annular drive member 10 having a drive conical surface 9 on the inner circumference is fixed to the inner peripheral wall 2α of the pump impeller 2. Further, the inner peripheral wall 3α of the turbine impeller 3 has a driven member 1 having a driven conical surface 11 facing parallel to the driving conical surface 9 on the outer periphery.
2 are spline-fitted to be slidable in the axial direction. A piston 13 is integrally formed at one end of the driven member 12, and this piston 13 is slidably connected to a hydraulic cylinder 14 provided on the inner circumferential wall 3a of the turbine impeller 3. Internal pressure is applied to both left and right end surfaces simultaneously.

駆動及び被動円錐面9,11間には円柱伏のクラッチロ
ーラ15が介装され、このクラッチローラ15は、第2
A図に示すように、その中心軸線Oが、両日錐面9,1
1間の中央を通る仮想円錐面1cの母線yに対し一定角
度θ傾斜するように、環状のリテーナ16により保持さ
れる。
A cylindrical clutch roller 15 is interposed between the driving and driven conical surfaces 9 and 11, and this clutch roller 15
As shown in figure A, the central axis O is the conical surface 9,1
The virtual conical surface 1c is held by an annular retainer 16 so as to be inclined at a constant angle θ with respect to the generatrix y of the virtual conical surface 1c passing through the center of the conical surface 1c.

したがって、トルクコンバータTのトルク増幅機能が不
必要となった段階で、トルクコンバータTの内圧より高
い油圧を油圧シリンダ14内に導入すると、ピストン1
3即ち被動部材12が駆動部材10に向って押動される
。これによりクラッチローラ15は両日錐面9,11に
圧接されるが、このときエンジンEの出力トルクにより
駆動部材10が被動部材12に対して第2A図でX方向
に回転されると、これに伴いクラッチローラ15が自転
するが、このクラッチローラ15は、その中心軸線が前
述のように傾斜しているので、その自転により両部拐’
10.12にこれらを互いに接近させるような相対的軸
方向変位を与える。その結果、クラッチローラ15は両
日錐面9,11間に喰込み、両部材10.12間、即ち
ポンプ翼車2及びタービン翼車3間を機械的に結合する
。直結クラッチCdのこのような作動時でも、その結合
力を超えてエンジンの出力トルクが両翼車2,3間に加
わった場合には、クラッチローラ15は各円錐面9,1
1に対して滑りを生じ、上記トルク・は二分割されて、
一部のトルクは直結クラッチCdを介して機械的に、残
りのトルクは両翼車2,3を介して流体力学的に伝達す
ることになり、前者のトルクと後者のトルクとの比がク
ラッチロー215の滑り度合により変化する可変率動力
分割系が形成される。
Therefore, if a hydraulic pressure higher than the internal pressure of the torque converter T is introduced into the hydraulic cylinder 14 at a stage when the torque amplification function of the torque converter T is no longer necessary, the piston 1
3, that is, the driven member 12 is pushed toward the driving member 10. As a result, the clutch roller 15 is pressed against the conical surfaces 9 and 11, but at this time, when the drive member 10 is rotated in the X direction in FIG. 2A with respect to the driven member 12 by the output torque of the engine E, As a result, the clutch roller 15 rotates, but since the center axis of the clutch roller 15 is inclined as described above, both parts are separated due to the rotation.
10. Apply a relative axial displacement to 12 that brings them closer together. As a result, the clutch roller 15 bites between the two conical surfaces 9 and 11, mechanically connecting the two members 10 and 12, that is, the pump wheel 2 and the turbine wheel 3. Even during such operation of the direct coupling clutch Cd, if the output torque of the engine exceeds the coupling force and is applied between the two wing wheels 2 and 3, the clutch roller 15
1, the above torque is divided into two,
A part of the torque is transmitted mechanically via the direct coupling clutch Cd, and the remaining torque is transmitted hydrodynamically via the two wing wheels 2 and 3, and the ratio of the former torque to the latter torque is determined by the clutch load. A variable rate power split system that changes depending on the degree of slippage of 215 is formed.

直結クラッチCdの作動状態において、トルクコンノ、
(−タTに逆負荷が加われば、被動部材120回転速度
が駆動部材100回転速度よりも大きくなるので、相対
的には駆動部材10が被動部材12に対してY方向に回
転し、これに伴いクラッチローラ15は先刻とは反対方
向に自転して、両部材10.12にこれらを互いに離間
させるような相対的な軸方向変位を与える。その結果、
クラッチローラ15は両回錐面9,11間への喰込みか
ら解除され、空転状態となる。したがって、タービン翼
車3かもポンプ翼車2への逆負荷の伝達は流体力学的に
のみ行われる。
In the operating state of the direct coupling clutch Cd, the torque controller,
(If a reverse load is applied to the motor T, the rotational speed of the driven member 120 becomes greater than the rotational speed of the driving member 100, so the driving member 10 rotates in the Y direction relative to the driven member 12, and Accordingly, the clutch roller 15 rotates in the opposite direction and applies a relative axial displacement to both members 10.12 that causes them to separate from each other.As a result,
The clutch roller 15 is released from being wedged between the conical surfaces 9 and 11, and enters an idling state. The transmission of the reverse load to the turbine wheel 3 and to the pump wheel 2 therefore takes place only hydrodynamically.

油圧シリンダ14の油圧を解除すれば、ピストン13は
トルクコンバータTの内圧を受けて当初の位置に後退す
るのヂ、直結クラッチCdは不作動状態となる。
When the hydraulic pressure of the hydraulic cylinder 14 is released, the piston 13 receives the internal pressure of the torque converter T and retreats to its original position, and the direct coupling clutch Cd becomes inactive.

再び第1図において、補助変速eMの互いに平行する人
、出力軸5.6間には低速段歯車列G1、中速段歯車列
G2、高速段歯車列G3及び後進歯車列Grが並列に設
けられる。低速段歯車列G1は、入力軸5に低速段クラ
ッチC1を介して連結される駆動歯車11と、出力軸6
に一方向りラッチCOを介して連結され上記歯車1Tと
噛合する被動歯車18とより構成され、また中速段歯車
列G2は、入力軸5に中速段クラッチC2を介して連結
される駆動歯車19と、出力軸6に切換クラッチCsを
介して連結され上記歯車19と噛合する被動歯車20と
より構成され、また高速段歯車列G3は、入力軸5に固
設した駆動歯車21と、出力軸6に高速段クラッチC3
,を介して連結される被動歯車22とより構成され、ま
た後進歯車列Gγは、中速段歯車列G、の駆動歯車19
と一体に形成した駆動歯車23と、出力軸6に前記切換
クラッチC,sを介して連結される被動歯車24と、上
記両歯車23.24に噛合するアイドル歯車25とより
構成される。前記切換クラッチCsは前記被動歯車20
,24の中間に設けられ、該クラッチCsのセレクタス
リーブ26を図で左方の前進位置または右方の後進位置
にシフトすることにより被動歯車20.24を出力軸6
に選択的に連結することができる。
Again in FIG. 1, a low speed gear train G1, a middle speed gear train G2, a high speed gear train G3, and a reverse gear train Gr are provided in parallel between the mutually parallel output shafts 5 and 6 of the auxiliary gear shift eM. It will be done. The low-speed gear train G1 includes a drive gear 11 connected to the input shaft 5 via a low-speed clutch C1, and an output shaft 6.
A driven gear 18 is connected to the input shaft 5 via a one-way latch CO and meshes with the gear 1T, and a middle speed gear train G2 is a drive gear connected to the input shaft 5 via a middle speed clutch C2. The high-speed gear train G3 includes a gear 19 and a driven gear 20 that is connected to the output shaft 6 via a switching clutch Cs and meshes with the gear 19, and the high-speed gear train G3 includes a drive gear 21 fixed to the input shaft 5. High speed clutch C3 on output shaft 6
, and the driven gear 22 connected via the reverse gear train Gγ.
A driven gear 24 is connected to the output shaft 6 via the switching clutches C and s, and an idle gear 25 meshes with both gears 23 and 24. The switching clutch Cs is connected to the driven gear 20.
, 24, and by shifting the selector sleeve 26 of the clutch Cs to the forward position on the left or the reverse position on the right in the figure, the driven gear 20.
can be selectively linked to.

而して、セレクタスリーブ26が図′示のように前進位
置に保持されているとき、低速段クラッチCIのみを接
続すれば、駆動歯車11が入力軸5に連結されて低速段
歯車列G、が確立し、この歯車列G、を介して入力軸5
から出力軸6にトルクが伝達される。次に、俳速段クラ
ッチC1の接続状態のままで、中速段クラッチC2を接
続すれば、駆動歯車19が入力軸5に連結されて中速段
歯車列G2が確立し、この歯車列G2を介して入力軸5
から出力軸6にトルクが伝達される。この間、低、中速
段歯車列G1 、G、の変速比の差により、低速段歯車
列G、の被動歯車18に比べ出力軸6の方が大きい速度
で回転するので、一方向クラッチC’ oは空転して低
速段歯車列G1を実質上体止させる。また、低速段クラ
ッチC′1の接続状態に4・jいて、中速段クラッチC
2を遮断すると共に高速段クラッチC3を接続すれば、
被動歯車22が出力軸6に連結されて高速段歯車列G3
が確立し、この歯車列G3を介して入力軸5から出力軸
6にトルクが伝達される。この場合も、中速段歯車列G
2の確立時と同様に一方向りラッチCOは空転して低速
段歯車列G、を休止させる。次に、セレクタスリーブ2
6を右方の後進位置に切換え、中速段クラッチC2のみ
を接続すれば、跳動歯車23が入力軸5に、被動歯車2
4が出力軸6にそれぞれ連結されて後進歯車列Gγが確
立し、この歯車列Gτを介して入力軸5から出力軸6に
トルクが伝達される。
When the selector sleeve 26 is held in the forward position as shown in the figure, if only the low gear clutch CI is connected, the drive gear 11 is connected to the input shaft 5 and the low gear train G, is established, and the input shaft 5 is connected via this gear train G.
Torque is transmitted from the output shaft 6 to the output shaft 6. Next, if the intermediate gear clutch C2 is connected while the high gear clutch C1 is still connected, the drive gear 19 is connected to the input shaft 5 and the intermediate gear train G2 is established. Input shaft 5 through
Torque is transmitted from the output shaft 6 to the output shaft 6. During this time, the output shaft 6 rotates at a higher speed than the driven gear 18 of the low-speed gear train G due to the difference in gear ratio between the low- and middle-speed gear trains G1 and G, so the one-way clutch C' o rotates idly and substantially stops the low speed gear train G1. Also, while the low speed clutch C'1 is in the connected state, the middle speed clutch C'1 is in the connected state, and the middle speed clutch C'
2 and connect high-speed clutch C3,
The driven gear 22 is connected to the output shaft 6 to form a high-speed gear train G3.
is established, and torque is transmitted from the input shaft 5 to the output shaft 6 via this gear train G3. In this case as well, the middle speed gear train G
Similarly to the establishment of step 2, the one-way latch CO idles to bring the low-speed gear train G to rest. Next, selector sleeve 2
6 to the right reverse position and connect only the middle speed clutch C2, the jumping gear 23 connects to the input shaft 5 and the driven gear 2
4 are respectively connected to the output shaft 6 to establish a reverse gear train Gγ, and torque is transmitted from the input shaft 5 to the output shaft 6 via this gear train Gτ.

出力軸6に伝達されたトルクは、該軸6の端部に設けた
出力歯車2γから差動装置Dfの大径歯車28に伝達さ
れる。
The torque transmitted to the output shaft 6 is transmitted from the output gear 2γ provided at the end of the shaft 6 to the large diameter gear 28 of the differential device Df.

第2図は、第1図の低、中、高速段クラッチCIyC2
p C3の作動を制御するための油圧回路の一例と、本
発明に基づく直結クラッチCd、の制御装置Dcの一例
とを組合せたものを示す1図において油圧ポンプPは、
油タンクRから油を吸い上げて作動油路2LK圧送する
。この圧油はレギュレータ弁Vrにより所定圧力に調圧
された後、マニュアル弁Vmへ送られる。この油圧をラ
イン圧plという。
Figure 2 shows the low, middle, and high speed clutches CIyC2 in Figure 1.
In FIG. 1 illustrating a combination of an example of a hydraulic circuit for controlling the operation of p C3 and an example of a control device Dc of a direct coupling clutch Cd based on the present invention, the hydraulic pump P is
The oil is sucked up from the oil tank R and sent under pressure to the hydraulic oil path 2LK. After this pressure oil is regulated to a predetermined pressure by a regulator valve Vr, it is sent to a manual valve Vm. This oil pressure is called line pressure pl.

レギュレータ弁Vrは、調圧ばね30と、その外端を支
承するばね受筒31とを有し、このばね受筒31は調圧
ばね30のセット荷重を加減すべく左右に移動すること
ができる。このばね受筒31の外側面には、これに前記
ステータ翼車4に作用する反力、即ちステータ反力を加
えるように前記ステータアーム4bが当接し、さらにば
ね受筒31にはステータ反力を支承するステータばね3
2が接続される。したがって、ステータ反力が増大すれ
ばステータばね32が圧縮されるので、これに伴いばね
受筒31は左動して調圧ばね30のセット荷重を増大さ
せ、その結果作動油路29の油圧は増圧される。
The regulator valve Vr has a pressure regulating spring 30 and a spring receiver 31 that supports the outer end of the spring receiver 31, and the spring receiver 31 can move left and right to adjust the set load of the pressure regulating spring 30. . The stator arm 4b is in contact with the outer surface of the spring receiver 31 so as to apply a reaction force acting on the stator wheel 4, that is, a stator reaction force. Stator spring 3 supporting the
2 is connected. Therefore, when the stator reaction force increases, the stator spring 32 is compressed, and accordingly, the spring receiver 31 moves to the left to increase the set load of the pressure regulating spring 30, and as a result, the oil pressure in the hydraulic oil passage 29 decreases. The pressure will be increased.

レギュンーぞ弁Vrにより調圧された圧油の一部は絞り
33を有する入口油路34を経てトルクコンバータT内
に導かれて、キャビテーションを防止するようKその内
部を加圧するが、この内圧は、上記絞り330大きさや
、トルクコンバータTの出口油路35に設けたチェック
弁36のばね3Tの強さ等で決められる。
A part of the pressure oil whose pressure is regulated by the regulation valve Vr is guided into the torque converter T through an inlet oil passage 34 having a throttle 33, and pressurizes the inside of the torque converter T to prevent cavitation. , is determined by the size of the aperture 330, the strength of the spring 3T of the check valve 36 provided in the outlet oil passage 35 of the torque converter T, etc.

チェック弁36を通過した油は図示しないオイルクーラ
を経て油タンクRに戻る。
The oil that has passed through the check valve 36 returns to the oil tank R via an oil cooler (not shown).

油圧ポンプPより吐出される圧油の余剰分はレギュレー
タ弁Vγより潤滑油路38へ導かれ、各部潤滑部へ送ら
れるが、この際の必要最小限の油圧を確保するために調
圧弁39が潤滑油路38に接続される。
The excess pressure oil discharged from the hydraulic pump P is guided to the lubricating oil path 38 by the regulator valve Vγ and sent to each lubricating part, but in order to ensure the minimum necessary oil pressure at this time, the pressure regulating valve 39 is It is connected to the lubricating oil path 38.

マニュアル弁Vmへ送られた圧油は、抜弁Vmが図示の
中立位置Nにあるときは前記′クラッチC1゜C2、C
3その他各種油圧作動部のいずれにも送られることがな
い。抜弁Vmが図示の位置から1段左へ移動してドライ
ブ位置りにシフトされると、油圧ポンプPからの作動油
路29が、前記低速段クラッチC8の油圧シリンダ40
.に通じる作動油路41.と前記セレクタスリーブ26
をシフトするための油圧サーボモータSmのばね室42
に通じる作動油路43とに連通されるので、低速段クラ
ッチC□が作動(接続)されて、前述のように低速段歯
車列G、が確立すると共に、サーボモータSmのピスト
ン44は図示の左動位置に留まり、シフトフォーク45
を介して前記セレクタスリーブ26を第1図の状態の前
進位置に保持するので、後進歯車列Grは不作動状態に
おかれる。
When the release valve Vm is at the neutral position N shown in the figure, the pressure oil sent to the manual valve Vm is supplied to the clutches C1, C2, and C2.
3. It is not sent to any of the other various hydraulic operating parts. When the release valve Vm moves one step to the left from the illustrated position and is shifted to the drive position, the hydraulic oil passage 29 from the hydraulic pump P connects to the hydraulic cylinder 40 of the low speed clutch C8.
.. Hydraulic oil passage 41. and the selector sleeve 26
Spring chamber 42 of hydraulic servo motor Sm for shifting
Since the low speed clutch C□ is operated (connected) and the low speed gear train G is established as described above, the piston 44 of the servo motor Sm is Stays in the left moving position, shift fork 45
Since the selector sleeve 26 is held in the forward position shown in FIG. 1 via the reverse gear train Gr, the reverse gear train Gr is placed in an inoperative state.

サーボモータSmのばね室42に通じる作動油路43か
らは、車速比例油圧発生装置即ちガノ(す弁V!Iの入
力ポートに連なる入口油路46が分岐し、抜弁Vfの出
力ポートからは第1信号油路4γ。
An inlet oil path 46 that connects to the input port of the vehicle speed proportional hydraulic pressure generator, that is, the valve V!I, branches from the hydraulic oil path 43 that leads to the spring chamber 42 of the servo motor Sm, and an inlet oil path 46 that connects to the input port of the valve V! 1 signal oil path 4γ.

が延出する。is extended.

ガバナ弁V、!7は公知のもので、差動装置Dfの大径
歯車28と噛合する歯車48により自身の回転軸49回
りに回転される。したがって、その回転速度は車速に比
例するので、ガノ(す弁vgは、そのスプール弁体50
0ウエイト51に働く遠心力の作用により車速に比例し
た油圧、即ちガバナ圧pgを第1信号油路4γ1に出力
することができる。
Governor valve V! Reference numeral 7 is of a known type, and is rotated around its own rotation axis 49 by a gear 48 meshing with the large-diameter gear 28 of the differential device Df. Therefore, since its rotational speed is proportional to the vehicle speed, the spool valve body 50
Due to the action of the centrifugal force acting on the zero weight 51, a hydraulic pressure proportional to the vehicle speed, that is, a governor pressure pg can be output to the first signal oil path 4γ1.

また、前記作動油路43からは、スロットル弁Vtの入
力ボートに連なる入口油路53が分岐し、抜弁Vtの出
力ボートからは第2信号油路41□が延出する。入口油
路53の途中には、スロットル弁Vtの入口圧力の上限
値を規定するモジュレータ弁54が介装される。
Further, an inlet oil passage 53 that connects to the input boat of the throttle valve Vt branches from the hydraulic oil passage 43, and a second signal oil passage 41□ extends from the output boat of the removal valve Vt. A modulator valve 54 is interposed in the middle of the inlet oil passage 53 to define an upper limit value of the inlet pressure of the throttle valve Vt.

スoニア)ル弁Vtは公知のもので、スプール弁体55
、該弁体55を左方へ押圧する制御ばね58、該弁体5
5を右方へ押圧する戻しばね51、制御ばね58の外端
を支承する制御ピストン59、前記エンジンEの絞弁の
開度増加に連動して回転し制御ピストン59を左動させ
る制御カム60、戻しばね51のセット荷重を調節し得
る調節ボルト61等を有する。制御ピストン59が左動
すると、その変位が制御ばね58を介してスプール弁体
55を左へ押すが、この左動に伴い第2信号油路4γ2
に出力される油圧がスプール弁体55を右へ押し戻すよ
うにスプール弁体55の左肩部55αに働くので、結局
、スロットル弁VtはエンジンEの絞弁開度に比例した
油圧、即ちスロットル圧ptを第2信号油路41□に出
力することができる。
The spool valve Vt is a known one, and the spool valve body 55
, a control spring 58 that presses the valve body 55 to the left, and a control spring 58 that presses the valve body 55 to the left.
5 to the right, a control piston 59 that supports the outer end of the control spring 58, and a control cam 60 that rotates in conjunction with an increase in the opening of the throttle valve of the engine E and moves the control piston 59 to the left. , has an adjustment bolt 61 etc. that can adjust the set load of the return spring 51. When the control piston 59 moves to the left, the displacement pushes the spool valve body 55 to the left via the control spring 58, but with this left movement, the second signal oil path 4γ2
Since the hydraulic pressure output from the spool valve body 55 acts on the left shoulder portion 55α of the spool valve body 55 to push the spool valve body 55 back to the right, the throttle valve Vt eventually becomes a hydraulic pressure proportional to the throttle valve opening of the engine E, that is, the throttle pressure pt. can be output to the second signal oil path 41□.

上記第1及び第2信号油路47.,4γ2は低−中速シ
フト弁V1及び中−高速シフト弁V2の各両端パイロッ
ト油圧室62,62’;63,63’にそれぞれ接続さ
れる。これにより、これらシフト弁Vl  + V2の
各スプール弁体64.65は両端面に前記ガバナ圧P!
l及びスロットル圧ptを受けて次のように作動される
The first and second signal oil passages 47. , 4γ2 are connected to pilot hydraulic chambers 62, 62'; 63, 63' at both ends of the low-medium speed shift valve V1 and the medium-high speed shift valve V2, respectively. As a result, each spool valve body 64, 65 of these shift valves Vl + V2 has the governor pressure P! on both end faces.
1 and throttle pressure pt as follows.

即ち、低−中速シフト弁V1のスプール弁体64は、当
初はね66の力で図示の右動位置に留っているが、車速
か上昇してガバナ圧Pyが増加し、このガバナ圧Pgに
よるスプール弁体64の左動力がスロットル圧pt及び
ばね66による該弁体64の右動力に打勝つと、該弁体
64の右端部に設けたクリックモーション機構61にお
いて弁体64と共に移動するクリックボール68が固定
の位置決め突起69を乗り越えて、該弁体64は左動位
置に急速に切換わり、これまで、油圧ポンプPからの油
圧が低速段クラッチC1の油圧シリンダ40.にのみ送
られていたのが、作動油路10゜71.41□を通して
中速段クラッチ゛C2の油圧シリンダ402にも送られ
、両クラッチC,,(、“2が接続状態になるので、前
述のように中速段歯車列G2が確立する。
That is, the spool valve body 64 of the low-medium speed shift valve V1 initially remains in the rightward movement position shown in the figure due to the force of the spring 66, but as the vehicle speed increases, the governor pressure Py increases, and this governor pressure When the left power of the spool valve body 64 due to Pg overcomes the right power of the valve body 64 due to the throttle pressure pt and the spring 66, the click motion mechanism 61 provided at the right end of the valve body 64 moves together with the valve body 64. The click ball 68 rides over the fixed positioning protrusion 69, and the valve body 64 is rapidly switched to the left movement position, and the hydraulic pressure from the hydraulic pump P is transferred to the hydraulic cylinder 40. of the low gear clutch C1. The oil that was previously sent only to the hydraulic oil path 10°71.41□ is also sent to the hydraulic cylinder 402 of the middle speed clutch C2, and both clutches C,, (, 2 are connected, so the above-mentioned The middle speed gear train G2 is established as follows.

更に車速か上昇してくると、中−高速シフト弁V2でも
同様な作用が生じ、抜弁V2のスプール弁体65は増加
するガバナ圧Plのために左動して、作動油路412 
、γ1を油タンクRに開放する一方、作動油路γ0を、
今度は、高速段クラッチC3の油圧シリンダ40.に通
じる作動油路41、に連通させるので、中速段クラッチ
C2が遮断状態、低速段クラ、ツチC1及び高速段クラ
ッチC3が接続状態となって、前述のように高速段歯車
列G3が確立する。
When the vehicle speed further increases, a similar effect occurs in the medium-high speed shift valve V2, and the spool valve body 65 of the release valve V2 moves to the left due to the increasing governor pressure Pl, and the hydraulic oil passage 412
, γ1 to the oil tank R, while the hydraulic oil path γ0 is opened to the oil tank R.
This time, the hydraulic cylinder 40. of the high speed clutch C3. As a result, the medium speed clutch C2 is in the disconnected state, the low speed clutch C1, and the high speed clutch C3 are in the connected state, and the high speed gear train G3 is established as described above. do.

このときの変速ショックを緩和するためにアキュムレー
タ72,73、一方向弁14及びオリフィスコントロー
ル弁15等が設けられている。
In order to alleviate the shift shock at this time, accumulators 72, 73, one-way valve 14, orifice control valve 15, etc. are provided.

かくして、公知のように、第4図実線で区分けされる変
速マツプを描くことができる。実際には、各シフト弁V
、、V2に設けたクリックモーション機構6γのために
シフトアップ時とシフトダウン時とでは異る変速マツプ
となるが、このことは公知であり、且つ本発明上、それ
程大きな意味をもたないので、シフトアップ時のマツプ
のみ表わす。
Thus, as is well known, a shift map divided by solid lines in FIG. 4 can be drawn. Actually, each shift valve V
,, Due to the click motion mechanism 6γ provided in the V2, the shift map will be different during upshifting and downshifting, but this is well known and does not have much significance in terms of the present invention. , only the map during upshifting is shown.

マニュアル弁Vmをドライブ位置り以外のシフト位置、
例えば中速段保持位置■または後進位置Beヘシフトす
るときは、中速段歯車列G2または後進歯車列Grがそ
れぞれ確立するが、このことは本発明と特に重要な関わ
りをもたないので、これ以上の説明は省略する。尚、マ
ニュアル弁Vmのシフト位置中、Pkはバー1にグ位置
を示す。
Shift the manual valve Vm to a position other than the drive position,
For example, when shifting to the middle gear holding position ■ or the reverse gear position Be, the middle gear train G2 or the reverse gear train Gr is established, respectively, but this has no particularly important relationship with the present invention. The above explanation will be omitted. Incidentally, among the shift positions of the manual valve Vm, Pk indicates the shift position on the bar 1.

以上のような油圧回路は従来公知である。Hydraulic circuits as described above are conventionally known.

さて、本発明の直結クラッチCdの制御装置Dcを第2
図により続けて説明すると、そ゛の制御装置Dcはタイ
ミング弁Tv及びモジュレータ弁Mυより構成される。
Now, the control device Dc of the direct coupling clutch Cd of the present invention is
Continuing to explain with reference to the figures, the control device Dc is composed of a timing valve Tv and a modulator valve Mυ.

タイミング弁Tυは右方の第1切換位置と左方の第2切
換位置との間を移動するスプール弁体8゜と、この弁体
F!oの左端面が臨む第1パイロツト油圧室81と、弁
体8oの右端面が臨む第2パイロツト油圧室81′と、
弁体80に設けた絞り82を介して第1パイロツト油圧
室81と常時連通する第1人力ボート83と、第2パイ
ロツト油圧室81′と常時連通する第2人力ボート83
′と、出力ポート84とを有し、弁体80が右方の第1
切換位置にあるときは第1入力ボート83を出力ポート
84に連通し、弁体80が左方の第2切換位置に移動し
たときは第2人力ボート83′を出力ポーイ84に連通
ずるようになっている。第1入力ボート83には、中速
段クラッチC2の作動油路412より分岐した油路41
2′が接続され、また第2人力ボート831には高速段
クラッチC3の作動油路413より分岐した油路413
′が接続され、出力ポート84は出力油路85を介して
モジュレータ弁Mυの後記入力ボート89に接続される
The timing valve Tυ has a spool valve element 8° that moves between a first switching position on the right side and a second switching position on the left side, and this valve element F! A first pilot hydraulic chamber 81 facing the left end surface of the valve body 8o, and a second pilot hydraulic chamber 81' facing the right end surface of the valve body 8o.
A first human-powered boat 83 that constantly communicates with the first pilot hydraulic chamber 81 via a throttle 82 provided in the valve body 80, and a second human-powered boat 83 that constantly communicates with the second pilot hydraulic chamber 81'.
', and an output port 84, and the valve body 80 is located at the first port on the right side.
When in the switching position, the first input boat 83 is communicated with the output port 84, and when the valve body 80 moves to the second switching position on the left, the second manual boat 83' is communicated with the output port 84. It has become. The first input boat 83 has an oil passage 41 branched from the hydraulic oil passage 412 of the middle speed clutch C2.
2' is connected to the second human-powered boat 831, and an oil passage 413 branched from the hydraulic oil passage 413 of the high-speed clutch C3 is connected to the second human-powered boat 831.
' is connected, and the output port 84 is connected to the downstream input boat 89 of the modulator valve Mυ via the output oil passage 85.

モジュレータ弁Mvは、右方の閉じ位置と左方の開き位
置との間を移動するスプール弁体86と、この弁体86
を開き位置に向って押圧するばね8γと、弁体86の左
端面が臨む第1パイロツト油圧室8Bと、弁体86の右
端面が臨む第2パイロツト油圧室88′と、人、出力ポ
ート89.90とを有し、出力ポート90は出力油路9
1を介して直結クラッチCdの油圧シリンダ14に接続
される。
The modulator valve Mv includes a spool valve body 86 that moves between a closed position on the right and an open position on the left;
the first pilot hydraulic chamber 8B facing the left end surface of the valve body 86, the second pilot hydraulic chamber 88' facing the right end surface of the valve body 86, and the output port 89. .90, and the output port 90 is the output oil path 9
1 to the hydraulic cylinder 14 of the direct coupling clutch Cd.

また第1パイロツト油圧室88は弁体86に設けた絞り
92を介して常時入力ボート89と連通し、第2パイロ
ツト油圧室88′には前記第1信号油路47、より分岐
した信号油路411′が接続され、この油路411′の
途中に絞り93が設けられる。
The first pilot hydraulic chamber 88 is always in communication with the input boat 89 via a throttle 92 provided in the valve body 86, and the second pilot hydraulic chamber 88' is connected to the first signal oil passage 47 and a signal oil passage branched from the first signal oil passage 47. 411' is connected, and a throttle 93 is provided in the middle of this oil passage 411'.

さらに第2パイロツト油圧室88′には絞り94を介し
て、油タンクRに連なる排出油路95が接続され、上記
絞り94を開閉するための弁装置としての電磁弁96が
モジュレータ弁Mυに隣接して設置される。電磁弁96
は絞り94を開閉する針弁9Tと、この針弁9γを閉じ
側に付勢する弁ばね98と、針弁91を囲繞するソレノ
イド99とよりなり、ソレノイド99はアイドル位置検
知スイッチ100を介して電源101に接続される。
Further, a discharge oil passage 95 connected to the oil tank R is connected to the second pilot hydraulic chamber 88' via a throttle 94, and a solenoid valve 96 as a valve device for opening and closing the throttle 94 is adjacent to the modulator valve Mυ. will be installed. Solenoid valve 96
consists of a needle valve 9T that opens and closes the throttle 94, a valve spring 98 that biases the needle valve 9γ toward the closing side, and a solenoid 99 that surrounds the needle valve 91. It is connected to a power source 101.

アイドル位置検知スイッチ100は、エンジンEの絞弁
を開閉操作するアクセルペダル102に連動していて、
絞弁がアイドル開度領域に戻されたとき閉じるようにな
っている。尚、排出油路95の絞り94は信号油路4γ
、′の絞り93より小さい開度に設定される。
The idle position detection switch 100 is linked to an accelerator pedal 102 that opens and closes the throttle valve of the engine E.
It is designed to close when the throttle valve is returned to the idle opening range. Note that the throttle 94 of the discharge oil passage 95 is connected to the signal oil passage 4γ.
, ' is set to a smaller opening than the aperture 93 of '.

次に上記制御装置Dcの作用を説明する。Next, the operation of the control device Dc will be explained.

先ず、低速段歯車列G1の確立によって車両が走行して
いる場合を考えると、この場合は低速段クラッチCIが
作動しているから、中、高速段クラッチC2pC3の作
動油路412’、413は油タンクRに連通しており、
したがってタイミング弁Tvの第1.第2人力ボート8
3 、83’及び出力ボート84、並びにモジュレータ
弁Mvの第1パイロット油圧室8Bも油タンクRに連通
し、モジュレータ弁Mvの弁体86は、ばね81の弾発
力と第2パイロツト油圧室88′に信号油路471′を
通して導入されるガバナ圧Pダによる押圧力とによって
、図示の開弁位置に保持されるので、直結クラッチCc
lの油圧シリンダ14内は大気圧となっている。
First, considering the case where the vehicle is running due to the establishment of the low gear train G1, in this case the low gear clutch CI is operating, so the hydraulic oil passages 412' and 413 of the middle and high gear clutches C2pC3 are It communicates with oil tank R.
Therefore, the first timing valve Tv. 2nd human powered boat 8
3, 83', the output boat 84, and the first pilot hydraulic chamber 8B of the modulator valve Mv are also communicated with the oil tank R, and the valve body 86 of the modulator valve Mv is connected to the elastic force of the spring 81 and the second pilot hydraulic chamber 88. The direct coupling clutch Cc
The inside of the hydraulic cylinder 14 is at atmospheric pressure.

一方、トルクコンバータTの内部には絞り33を介して
ライン圧ptの一部が導入されているから、直結クラッ
チCdのピストン13はトルクコンバータTの内圧によ
り左動して該グラツチCdを解除状態にしている。
On the other hand, since a part of the line pressure pt is introduced into the torque converter T through the throttle 33, the piston 13 of the direct coupling clutch Cd is moved to the left by the internal pressure of the torque converter T to release the clutch Cd. I have to.

この状態から車速か上昇し、中速段歯車列G2を確立す
べく中速段クラッチC2が作動油路412から作動油圧
を供給されて作動すると、その油圧は同時に油路412
′及び第1入力ボート83を経てタイミング弁Tυの第
1パイロツト油圧室81に導入され、その導入油圧によ
り弁体80が右方の第1切換位置へ移行するので第1人
力ボート83の油圧は出力ポート84を通り、更に出力
油路85から開弁状態のモジュレータ弁MvO人、出カ
ポ−)89.90を通り、そして出力油路91を経て直
結クラッチCdの油圧シリンダ14に導入される。
When the vehicle speed increases from this state and the middle gear clutch C2 is operated by being supplied with hydraulic pressure from the hydraulic oil passage 412 in order to establish the middle gear train G2, the oil pressure is simultaneously applied to the oil passage 412.
' and the first input boat 83 to the first pilot hydraulic chamber 81 of the timing valve Tυ, and the introduced hydraulic pressure moves the valve body 80 to the first switching position on the right, so that the hydraulic pressure of the first human-powered boat 83 is It passes through the output port 84, then through the open modulator valve MvO (output capo) 89,90 from the output oil path 85, and is introduced into the hydraulic cylinder 14 of the direct coupling clutch Cd via the output oil path 91.

これと同時にモジュレータ弁yυでは入力ボートB9の
油圧が絞り92を介して第1パイロツト油圧室88にも
作用し、その油圧が弁体86に右動力を与え、その右動
力が、ばね81と第2パイロツト油圧室88′に導入さ
れるガバナ圧Pgとの弁体86に対する左動力に打勝つ
と、弁体86は出力ポート90を閉じるように右動し、
またそれ車速に比例したガバナ圧Pyから1定レベルに
嵩上げされたモジュレータ圧73m(第3図参照)に制
御され、この嵩上げレベルはばね87の七ット荷重によ
り決定される。
At the same time, in the modulator valve yυ, the hydraulic pressure of the input boat B9 also acts on the first pilot hydraulic chamber 88 via the throttle 92, and the hydraulic pressure applies right power to the valve body 86, and the right power is applied to the spring 81 and the first pilot hydraulic chamber 88. When the governor pressure Pg introduced into the two-pilot hydraulic chamber 88' overcomes the left force against the valve body 86, the valve body 86 moves to the right to close the output port 90.
Further, the governor pressure Py, which is proportional to the vehicle speed, is controlled to a modulator pressure of 73 m (see FIG. 3), which is raised to a constant level, and this raised level is determined by the 7-ton load of the spring 87.

したがって、第3図において、車速V、以下ではトルク
コンバータTの内圧に対してモジュレータ圧pmが低い
ため、直結クラッチCdは油圧シリンダ14にモジュレ
ータ圧p mを導入されても作動(接続)するKは至ら
ず、ドルクコ、ンバータTのトルク増幅機能を何等損わ
ない。このことがら、例えば第2図において、マニュア
/l/ 弁V m カ後進位置Reや中速段保持位置I
NK、セ′ットされていて中速段クラッチC2が最初か
ら作動(接続)状態になっている場合でも、トルクコン
バータTが通常通り作動して発進を可能にすることが理
解できよう。
Therefore, in FIG. 3, when the vehicle speed is V or lower, the modulator pressure pm is lower than the internal pressure of the torque converter T, so the direct coupling clutch Cd operates (connects) even if the modulator pressure pm is introduced into the hydraulic cylinder 14. However, the torque amplification function of Dorkuco and Converter T is not impaired in any way. For example, in FIG. 2, the manual /l/valve V
It will be understood that even if NK is set and the middle speed clutch C2 is activated (connected) from the beginning, the torque converter T operates normally to enable starting.

また、第3図において、車速Vがυ1≦υ≦v2の領域
にあるときは、車速の上昇と共に連続的にモジュレータ
圧pmが高まって直結クラッチCdの結合力が漸次強め
られ、これにより第4図に砂地部で示した直結jラッチ
Cdの弱接続領域が得られる。したがって、この領域で
はエンジンEの出力トルクが直結クラッチCdの結合力
を超えて増大すると、直結クラッチCdに滑りが生じ、
直結クラッチCdの結合力に相当する分のトルクは該ク
ラッチCrtを含む機械伝動系を経由し、また直結クラ
ッチCdの結合力を上回った分のトルクはトルクコンバ
ータT内の流体を含む流体伝動系を経由してトルク増幅
作用にあずかるので、結局、一定車速においては、エン
シイの出力トルクの増大に伴い流体伝動系のトルク分担
率が増加する可変率の動力分割運転が行われる。
In addition, in FIG. 3, when the vehicle speed V is in the region of υ1≦υ≦v2, the modulator pressure pm increases continuously as the vehicle speed increases, and the coupling force of the direct coupling clutch Cd is gradually strengthened. A weak connection area of the direct connection j latch Cd is obtained, which is shown as a sandy area in the figure. Therefore, in this region, when the output torque of the engine E increases beyond the coupling force of the direct coupling clutch Cd, slipping occurs in the direct coupling clutch Cd.
The torque corresponding to the coupling force of the direct coupling clutch Cd is passed through the mechanical transmission system including the clutch Crt, and the torque exceeding the coupling force of the direct coupling clutch Cd is transmitted to the fluid transmission system containing the fluid in the torque converter T. As a result, at a constant vehicle speed, a variable rate power split operation is performed in which the torque sharing ratio of the fluid transmission system increases as the output torque of the engine increases.

車速Vがυ(v、の高速領域に入ると、モジュレータ弁
Mυの第2パイロツト油圧室88’に導入されるガバナ
圧Pgが充分に上昇して弁体86を全開状態とするので
、モジュレータ圧pmは中速段クラッチC2の作動油圧
、即ちライン圧ptまで高められ、直結クラッチCdの
結合力を最大に増強し、これにより第4図に斜線で示し
た直結クラッチCdの強接続領域が得られる。したがっ
て、この領域では直結クラッチCdは滑りを起こさず、
エンジンEの全出力トルクを効率良く伝達することがで
きる。
When the vehicle speed V enters the high speed region of υ(v), the governor pressure Pg introduced into the second pilot hydraulic chamber 88' of the modulator valve Mυ rises sufficiently to fully open the valve body 86, so that the modulator pressure increases. pm is increased to the working oil pressure of the middle speed clutch C2, that is, the line pressure pt, and the coupling force of the direct coupling clutch Cd is increased to the maximum, thereby achieving the strong connection region of the direct coupling clutch Cd shown with diagonal lines in FIG. Therefore, in this region, the direct coupling clutch Cd does not slip;
The full output torque of engine E can be efficiently transmitted.

この状態から車速か上昇し、高速段歯車列G3を確立す
べく、中速段クラッチC2の作動油圧を油タンクHに解
放し、代わって高速′段りラッチC3が作動油路413
から作動油圧を受けて作動すると、つまりシフトアップ
が行われると、上記油圧は同時に油路41.!及び第2
人力ポート83′を経てタイミング弁Tυの第2パイロ
ツト油圧室81′に導入され、その導入油圧により弁体
80は左方の第2切換位置へ移行するが、絞り82の遅
延作用によりこの弁体80の切換動作は緩徐に制御され
、弁体80には一定の切換時間が与えられる。
From this state, the vehicle speed increases, and in order to establish the high-speed gear train G3, the hydraulic pressure of the middle-speed clutch C2 is released to the oil tank H, and the high-speed gear latch C3 is activated in the hydraulic oil passage 413 instead.
When the oil pressure is received from the oil passage 41. ! and second
The hydraulic pressure is introduced into the second pilot hydraulic chamber 81' of the timing valve Tυ through the manual port 83', and the introduced hydraulic pressure moves the valve body 80 to the second switching position on the left. The switching operation of 80 is controlled slowly, and the valve body 80 is given a constant switching time.

仁の間に直結クラッチCdの作動油圧は既に油タンクR
に連通された油路412′を介して一旦解放されるので
、直結クラッチcdの作動は一時解除され、変速ショッ
クの発生が防止される。
The working oil pressure of the direct clutch Cd is already in the oil tank R.
Since the direct coupling clutch CD is temporarily released via the oil passage 412' communicating with the direct coupling clutch CD, the operation of the direct coupling clutch CD is temporarily released, and the occurrence of a shift shock is prevented.

タイミング弁Tυの弁体80が左方の第1切換位置まで
移行すると、今度は第2人力ポート83’の油圧が先刻
の中速段歯車列G2の確立時と同様にモジュレータ弁M
vを介して直結クラッチCd。
When the valve element 80 of the timing valve Tυ moves to the first switching position on the left side, the hydraulic pressure of the second manual port 83' is applied to the modulator valve M in the same way as when the middle speed gear train G2 was established earlier.
Direct coupling clutch Cd via v.

の油圧シリンダ14に供給され、その油圧も先刻と同様
にモジュレータ弁Mttによって制御される。
The hydraulic pressure is also controlled by the modulator valve Mtt as before.

また、このような作用は高速段歯車列G3から中速段歯
車列G2に作動が切換わるシフトダウン時でも同様に行
われる。
Further, such an action is similarly performed during downshifting when the operation is switched from the high speed gear train G3 to the middle speed gear train G2.

次に、車両を減速すべ(アクセルペダル102から操作
力を解除すると、アイドル位置検知スイッチ100が閉
じられて\旭ソレノイド99を励磁し、針弁91を開放
するので、モジュレータ弁−Mυの第2パイロツト油圧
室88′内の圧油は絞り94を通して排出油路95へ流
出する。一方、第2パイロツト油圧室88′には絞り9
3を通して信号油路4T1′から圧油が供給されるが、
両絞り93゜940大きさの前述のような違いにより第
2パイロツト油圧室88′に供給される油量よりも排出
油路95へ排出される油量の方が多いので、結局、第2
パイロツト油圧室88′の圧力は略大気圧となる。した
がって、モジュレータ弁Mυは第3図に一点鎖線で示す
低圧のモジュレータ圧pmを出力し、且つこのときの圧
力は、意想で示すトルクコンバータTの内圧より低いの
で、直結クラッチCdはピストン13を後退させられ、
解除状態とされる。−第4図で絞弁開度のアイドル領域
が白く抜かれているのはこのためである。かくして、車
両の減速運転に伴い生じる逆負荷は、直結クラッチCd
のロー215の空転作用に頼ることなく、トルクコンバ
ータTを介してエンジンEへ流体力学的に伝達されるか
ら、騒音や振動が軽減される。
Next, when the vehicle is decelerated (when the operating force is released from the accelerator pedal 102, the idle position detection switch 100 is closed, the Asahi solenoid 99 is energized, and the needle valve 91 is opened. The pressure oil in the pilot hydraulic chamber 88' flows out to the discharge oil passage 95 through the throttle 94. On the other hand, the pressure oil in the second pilot hydraulic chamber 88' flows through the throttle 94.
Pressure oil is supplied from signal oil passage 4T1' through 3,
Due to the above-mentioned difference in the size of the two orifices 93°940, the amount of oil discharged to the discharge oil passage 95 is greater than the amount of oil supplied to the second pilot hydraulic chamber 88'.
The pressure in the pilot hydraulic chamber 88' is approximately atmospheric pressure. Therefore, the modulator valve Mυ outputs the low modulator pressure pm shown by the dashed line in FIG. made to do,
It is considered to be in a released state. - This is why the idle region of the throttle valve opening is highlighted in white in Fig. 4. Thus, the reverse load that occurs as the vehicle decelerates is applied to the direct coupling clutch Cd.
Since the torque is transmitted to the engine E via the torque converter T hydrodynamically without relying on the idling action of the row 215, noise and vibration are reduced.

第5図は本発明の別の実施例を示し、それは絞弁開度の
アイドル領域でモジュレータ弁M vの第2パイロツト
油圧室88/から油圧を解放する手段として、アクセル
ペダル102と連動するスロットル弁VtまたはV t
/を利用したものである。即ち、スロットル弁Vtまた
はV、tlに、これが図示のアイドル位置に戻されたと
き開かれる弁装置としての開閉弁103を設け、モジュ
レータ弁Mυの第2パイロツト油圧室88′に連なる信
号油路411′から分岐した排出油路95に上記開閉弁
103を介入させ、排出油路95の分岐部より上流の信
号油路4111に絞り93を設けると共に、この絞り9
3よりも開度の大きい絞り94を排出油路95に設けた
ものであり、その他の構成は前実施例と同様であり、第
5図中、前実施例と同じように機能するものには同一符
号を付した。尚、排出油路95の絞り94は省略するこ
ともできる。
FIG. 5 shows another embodiment of the present invention, in which a throttle operated in conjunction with an accelerator pedal 102 is used as a means for releasing hydraulic pressure from the second pilot hydraulic chamber 88/ of the modulator valve Mv in the idle region of the throttle valve opening. Valve Vt or Vt
/ is used. That is, the throttle valve Vt, V, tl is provided with an on-off valve 103 as a valve device that is opened when it is returned to the illustrated idle position, and a signal oil passage 411 is connected to the second pilot hydraulic chamber 88' of the modulator valve Mυ. The on-off valve 103 is interposed in the discharge oil passage 95 branched from the discharge oil passage 95, and a throttle 93 is provided in the signal oil passage 4111 upstream from the branch part of the discharge oil passage 95.
A throttle 94 with a larger opening than 3 is provided in the discharge oil passage 95, and the other configurations are the same as in the previous embodiment. The same symbols are given. Note that the throttle 94 of the discharge oil path 95 can also be omitted.

而して、スロットル弁VtまたはV t’がアイドル位
置に戻されれば開閉弁103が開かれるので、モジュレ
ータ弁Aiυの第2パイロツト油圧室88′の圧油は排
出油路95へ排出され、したがって前実施例と同様にモ
ジュレータ弁Mυの出方油圧は低下し、直結クラッチC
dは解除状態となる。
When the throttle valve Vt or Vt' is returned to the idle position, the on-off valve 103 is opened, and the pressure oil in the second pilot hydraulic chamber 88' of the modulator valve Aiυ is discharged to the discharge oil passage 95. Therefore, as in the previous embodiment, the output oil pressure of the modulator valve Mυ decreases, and the direct coupling clutch C
d becomes a released state.

以上二つの実施例では、中、高速段゛の両歯車列G2 
、G3の確立に跨がって直結クラッチCdを作動させる
ようにしたが、高速段歯車列G3の確立時のみそれを作
動させる場合には、タイミング弁Tvを廃止し、モジュ
レータ弁Mυの入力ポート89に、高速段クラッチC3
の作動油路41゜を接続すればよい。
In the above two embodiments, both gear trains G2 of medium and high speed stages are
, the direct coupling clutch Cd is operated across the establishment of G3, but if it is to be operated only when the high speed gear train G3 is established, the timing valve Tv is abolished and the input port of the modulator valve Mυ is operated. 89, high speed clutch C3
It is only necessary to connect the hydraulic oil passage 41° of .

以上のように本発明によれば、1本のモジュレータ弁に
よって、車速の変化に応じて直結クラッチの結合力を制
御することと、エンジン絞弁のアイドル状態で直結クラ
ッチを解除することの二様の直結制御を行うことができ
、その結実装置を著しく簡素化できるのみならず、弁か
らの圧油の漏洩損失を少なく抑えることができる等の効
果を有する。
As described above, according to the present invention, one modulator valve can be used to control the coupling force of the direct coupling clutch according to changes in vehicle speed, and to release the direct coupling clutch when the engine throttle valve is in an idling state. Direct control can be performed, and not only can the fruiting device be significantly simplified, but also the leakage loss of pressure oil from the valve can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する車両用自動変速機の概要図、
第2図は本発明制御装置を含む、上記自動変速機の油圧
制御回路図、第2A図は第2図の直結クラッチの要部展
開図、第3図は直結クラッチの作動油圧特性線図、第4
図は篤楠繁へX文■1゛・・クランク軸、2・・・ポン
プ翼車、3・・・タービン翼車、5・・・入力軸、6・
・・出力軸、14・・・油圧シリンダ、80・・・弁体
、8γ・・・ばね、88・・・第1パイロツト油圧室、
88′・・・第2パイロツト油圧室、89・・・入力ポ
ート、90・・・出力ボート、91・・・出力油路、9
3・・・絞り、96・・・弁装置としての電磁弁、10
0・・・アイドル位置検知スイッチ、102・・・アク
セルペダル、103・・・弁装置としての開閉弁 C1、C,、C3・・・低、中、高速段クラッチ、cd
・・・直結クラッチ、Dc・・・制御装置、E・・・エ
ンジン、G□ 、G2 、G3・・・低、中、高速段歯
車列、M・・・補助変速機、A1υ・・・モジュレータ
弁、P・・・油圧源としての油圧ポンプ、R・・・油タ
ンク、V9・・・車速比例油圧発生装置としてのガバナ
弁、W 、 F’・・・駆動車輪 特許出願人 本田技研工業株式会社 第1図
FIG. 1 is a schematic diagram of a vehicle automatic transmission to which the present invention is applied;
FIG. 2 is a hydraulic control circuit diagram of the automatic transmission including the control device of the present invention, FIG. 2A is an exploded view of the main parts of the direct coupling clutch shown in FIG. 2, and FIG. 3 is a hydraulic pressure characteristic diagram of the direct coupling clutch. Fourth
The diagram is written by Shigeru Atsukusu ■1... Crankshaft, 2... Pump wheel, 3... Turbine wheel, 5... Input shaft, 6...
... Output shaft, 14... Hydraulic cylinder, 80... Valve body, 8γ... Spring, 88... First pilot hydraulic chamber,
88'... Second pilot hydraulic chamber, 89... Input port, 90... Output boat, 91... Output oil path, 9
3... Throttle, 96... Solenoid valve as a valve device, 10
0...Idle position detection switch, 102...Accelerator pedal, 103...Opening/closing valve C1, C,, C3...Low, middle, high speed stage clutch, cd
...Direct clutch, Dc...Control device, E...Engine, G□, G2, G3...Low, middle, high speed gear train, M...Auxiliary transmission, A1υ...Modulator Valve, P...Hydraulic pump as a hydraulic power source, R...Oil tank, V9...Governor valve as a vehicle speed proportional hydraulic generator, W, F'...Drive wheel patent applicant Honda Motor Co., Ltd. Company diagram 1

Claims (1)

【特許請求の範囲】 ポンプ翼車を含む入力部材及びタービン翼車を含む出力
部材を有する流体式トルクコンバータと、1段または複
数段の歯車列を有し、それを介して前記出力部材のトル
クを駆動車輪に伝達する補助変速機とを備えた自動変速
機において、前記入。 出力部材間に設けられ、これら両部材を機械的に結合す
るよう作動し得る、滑り特性な゛もった油圧式直結クラ
ッチと、この直結クラッチの油圧シリンダと油圧源とを
結ぶ油路に介装されたモジュレータ弁とよりなり、この
モジュレータ弁は前記油路を開閉する弁体と、この弁体
な開弁方向に付勢するばねと、該モジュレータ弁の入力
ボート側から前記弁体を閉弁方向に付勢するパイロット
油圧を導入する第1パイロツト油圧室と、前記弁体を開
弁方向に付勢するパイロット油圧を導入1する第2パイ
ロツト油圧室とより構成され、前記第2パイロツト油圧
室に、車速に比例して変化する油圧を出力する車速比例
油圧発生装置の出力側を絞りを介して接続し、さらにエ
ンジン絞弁のアイドル状態を検知して該第2パイロツト
油圧室を大気に開放する弁装置を接続した、車両用自動
変速機におけるトルクコンバータの直結制御装置。
[Scope of Claims] A hydraulic torque converter having an input member including a pump impeller and an output member including a turbine impeller, and a gear train of one or more stages, through which the torque of the output member is transmitted. In an automatic transmission equipped with an auxiliary transmission that transmits the information to the driving wheels, A hydraulic direct-coupled clutch with a slipping characteristic that is provided between the output members and can be operated to mechanically connect these two components, and an oil passage that connects the hydraulic cylinder of this direct-coupling clutch and a hydraulic power source. This modulator valve consists of a valve body that opens and closes the oil passage, a spring that biases the valve body in the valve opening direction, and a spring that biases the valve body in the valve opening direction from the input boat side of the modulator valve. The second pilot hydraulic chamber is composed of a first pilot hydraulic chamber that introduces pilot hydraulic pressure that biases the valve body in the opening direction, and a second pilot hydraulic chamber that introduces pilot hydraulic pressure that biases the valve body in the valve opening direction. The output side of a vehicle speed proportional hydraulic pressure generator that outputs hydraulic pressure that changes in proportion to the vehicle speed is connected to the engine through a throttle, and the second pilot hydraulic chamber is opened to the atmosphere by detecting the idle state of the engine throttle valve. A direct control device for a torque converter in a vehicle automatic transmission, which is connected to a valve device that operates.
JP19850482A 1982-11-12 1982-11-12 Device for controlling direct coupling of torque converter in vehicle automatic transmission Granted JPS5989862A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP19850482A JPS5989862A (en) 1982-11-12 1982-11-12 Device for controlling direct coupling of torque converter in vehicle automatic transmission
GB8329947A GB2132710B (en) 1982-11-12 1983-11-10 Torque converter lock-up clutch control
FR838317909A FR2550140B1 (en) 1982-11-12 1983-11-10 DEVICE FOR CONTROLLING THE LOCKING OF A TORQUE CONVERTER FOR AUTOMATIC TRANSMISSION OF MOTOR VEHICLE
US06/551,739 US4589537A (en) 1982-11-12 1983-11-14 Lock-up control device for torque converter in automatic transmission for vehicle
DE19833341160 DE3341160A1 (en) 1982-11-12 1983-11-14 LOCK CONTROL DEVICE FOR A TORQUE CONVERTER IN A VEHICLE AUTOMATIC TRANSMISSION
GB8529288A GB2166504B (en) 1982-11-12 1985-11-28 Lock-up control device for torque converter in automatic transmission for vehicle
GB8529289A GB2166818B (en) 1982-11-12 1985-11-28 Lock-up control device for torque converter in automatic transmission for vehicle
US06/839,259 US4693347A (en) 1982-11-12 1986-03-13 Lock-up control device for torque converter in automatic transmission for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19850482A JPS5989862A (en) 1982-11-12 1982-11-12 Device for controlling direct coupling of torque converter in vehicle automatic transmission

Publications (2)

Publication Number Publication Date
JPS5989862A true JPS5989862A (en) 1984-05-24
JPS6148023B2 JPS6148023B2 (en) 1986-10-22

Family

ID=16392229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19850482A Granted JPS5989862A (en) 1982-11-12 1982-11-12 Device for controlling direct coupling of torque converter in vehicle automatic transmission

Country Status (1)

Country Link
JP (1) JPS5989862A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147513A (en) * 1986-12-11 1988-06-20 Matsushita Electric Ind Co Ltd Air cleaner

Also Published As

Publication number Publication date
JPS6148023B2 (en) 1986-10-22

Similar Documents

Publication Publication Date Title
US4051932A (en) Fluid pressure control system for a hydraulic transmission with a lock-up clutch
JPH0232500B2 (en)
JPS6211230B2 (en)
US4565267A (en) Direct-coupling clutch control device for a torque converter in vehicular automatic transmission
JPS5989862A (en) Device for controlling direct coupling of torque converter in vehicle automatic transmission
US4662493A (en) Direct-coupling control system for torque converter in automatic transmission for vehicles
US4660690A (en) Direct-coupling control device for torque converter for automatic vehicular transmission
JPS6148024B2 (en)
US4628767A (en) Direct-coupled control for a torque converter including a two stage speed responsive valve control
JPS59151662A (en) Control device for direct coupling of torque converter in vehicle automatic transmission
JPH0510426A (en) Hydraulic controller for vehicular continuously variable transmission
JPS6091059A (en) Direct-coupled torque converter controller for automatic car speed changer
JPH0236826B2 (en) SHARYOYOJIDOHENSOKUKINIOKERUTORUKUKONBAATANOCHOTSUKETSUSEIGYOSOCHI
JPS58184352A (en) Direct coupling controller of torque converter for automatic speed change gear for car
JPS6211229B2 (en)
JPS5969567A (en) Control device for direct coupling of torque converter in vehicle automatic transmission
JPS60104863A (en) Directly coupled control equipment of fluid transmission device in automatic speed change gear for car
JPH0155704B2 (en)
JPS5965662A (en) Direct-coupling control device for torque convertor of automatic transmission for vehicle
JPH0238824B2 (en)
JPS6149534B2 (en)
JPS6247735B2 (en)
JPS58184353A (en) Direct coupling controller of torque converter for automatic speed change gear for car
JPH07109236B2 (en) Direct coupling control device for torque converter in automatic transmission for vehicle
JPS6313069B2 (en)