JPS5987834A - Forming method of thin-film - Google Patents

Forming method of thin-film

Info

Publication number
JPS5987834A
JPS5987834A JP19819982A JP19819982A JPS5987834A JP S5987834 A JPS5987834 A JP S5987834A JP 19819982 A JP19819982 A JP 19819982A JP 19819982 A JP19819982 A JP 19819982A JP S5987834 A JPS5987834 A JP S5987834A
Authority
JP
Japan
Prior art keywords
film
thin film
thin
electrode
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19819982A
Other languages
Japanese (ja)
Inventor
Tsunetoshi Arikado
経敏 有門
Iwao Tokawa
東川 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19819982A priority Critical patent/JPS5987834A/en
Publication of JPS5987834A publication Critical patent/JPS5987834A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To flatten the surface of the thin-film such as an insulating film, and to form the thin-film by depositing the thin-film on a substrate, irradiating active seeds, which do not react with the thin-film, and sputtering-etching the surface. CONSTITUTION:The Si substrate 31 is coated with an SiO2 film 32, the film 32 is coated with aluminum films 33, and an SiO2 film 34 is deposited on the upper surface of a sample. O2 is introduced into a chamber 11, and the surface of the sample is treated. Only sputtering advances because O2 gas does not react with the SiO2 film 34, and the surface of the SiO2 film 34 is brought approximately to a flat state. The surface is coated with an aluminum film (second conductor layer) 35. The thickness of the foundation SiO2 film 34 is formed uniformly at that time because the surface of the film 34 is flattened, thus improving the reliability of the mutual insulation of the wiring conductor layers.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体製造技術に係わシ、詳しくは凹凸を有
す−る下地表面上に薄膜を平坦に形成する薄膜形成方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to semiconductor manufacturing technology, and more particularly to a thin film forming method for forming a flat thin film on an uneven underlying surface.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、集積回路等の半導体装置の素子の集積 −密度を
上げるために、基板上に複数の絶縁体層および導電体層
を積み重ねて形成させる所謂多層配線が用いられている
Conventionally, in order to increase the integration density of elements of semiconductor devices such as integrated circuits, so-called multilayer wiring has been used in which a plurality of insulator layers and conductor layers are stacked and formed on a substrate.

例えば、半導体素子を形成した基板上に多層配線を行な
う場合、第1図に示す様に、基板の表面保護と絶縁のた
めに酸化シリコン等の絶縁膜2で基板1上を覆い、基板
lとその上の絶縁被膜上に形成される配線導体との接続
に必要な部分の絶縁膜2を写真蝕刻法により除去[2、
これによって露出された基板1と絶縁膜2の全面上にア
ルミニウム等の導体金属を蒸着して、金属被膜を形成し
、とれに写真蝕刻法を用いて不要部分を除去して所定の
パターンの第1導電体層3を形成し、さらにこの上に絶
縁被膜4を気相成長法あるいは高周波スパッタ法等によ
って被着した後、その上に形成される配線導体との接続
に必要な部分の絶縁被膜4を写真蝕刻法で除去し、次い
で導体金属層を全面に蒸着した後、写真蝕刻法で所定の
配線パターンを有する第20線電体層5を形成する方法
が行なわれている。
For example, when performing multilayer wiring on a substrate on which semiconductor elements are formed, as shown in FIG. The portions of the insulating film 2 necessary for connection with the wiring conductor formed on the insulating film thereon are removed by photolithography [2,
A conductive metal such as aluminum is deposited on the entire surface of the exposed substrate 1 and insulating film 2 to form a metal film, and unnecessary parts are removed using photolithography to form a predetermined pattern. 1 A conductor layer 3 is formed, and an insulating film 4 is deposited thereon by a vapor phase growth method or a high frequency sputtering method, and then the insulating film is deposited on the portions necessary for connection with the wiring conductor formed thereon. 4 is removed by photolithography, then a conductive metal layer is deposited on the entire surface, and then a 20th wire conductor layer 5 having a predetermined wiring pattern is formed by photolithography.

この様な従来の製造方法においては第1層の配線編体1
によって生ずる段差、あるいは溝体層間の接続部におい
て絶縁被膜に設けた孔によって生ずる段差などによって
、第2の記報導体5が段の側面において断線しやすくな
ったり、また一層目の配線導体と二層目の配線導体が交
叉する様な箇所における絶縁被膜にはピンホールやクラ
ックが発生しやすくなって、この絶縁被膜をはさんで相
対する二つの配線導体が短絡しやすくなるといった欠点
がおった。さらに、素子の集積密度を上げるために配線
づ体の間隔および配線導体層間の接続孔を例えば3ミク
ロン以下と小さくする場合には、第1層の配線導体3お
よび配線9体層間の接続孔の周縁を急峻な段状にする必
要がある。
In such a conventional manufacturing method, the first layer wiring knitted body 1
The second recording conductor 5 may easily break at the side of the step, or the second recording conductor 5 may be easily disconnected from the first layer wiring conductor due to a step caused by a hole formed in the insulating coating at the connection between groove layers. Pinholes and cracks tend to occur in the insulating film at places where the wiring conductors of the layers intersect, and two wiring conductors facing each other across the insulating film are likely to short-circuit. . Furthermore, in order to increase the integration density of elements, when the spacing between wiring bodies and the connection holes between wiring conductor layers are made small, for example, 3 microns or less, the connection holes between the wiring conductors 3 and 9 wiring layers in the first layer are reduced. It is necessary to make the periphery steeply stepped.

しかし、この様に微細パターンでしかも段差が急峻に分
ると、第2図に示す様に、絶縁膜形成法においてその被
覆特性が侵れている減圧下における気相成長法あるいは
グロー放電を応用したプラズマ気相成長法によっても絶
縁被膜4は、段差の側面でうすくなるため配線導体層間
3と5の耐圧を低下させたシ、あるいは配線導体層間を
短絡させたシする。またこの絶縁被膜4上にスパッタあ
るいは電子ビーム蒸着法によシ形成されるアルミニウム
等の第2の配線導体層5は段差の部分には殆んど蒸着さ
れないため配線層間の接続抵抗を下げるために行なう4
50〜5001 ℃、 )での熱処理工程で配線導体層
5Vcクラツクが生じて断線したり、あるいはエレクト
ロマイグレーションに基づく断線等が生ずる。このため
、多層配線の微細化が困難であった。
However, when such a fine pattern has steep steps, as shown in Figure 2, it is necessary to apply a vapor phase growth method or glow discharge under reduced pressure, which destroys the coating properties of the insulating film. Even with the plasma vapor deposition method, the insulating film 4 becomes thinner on the side surfaces of the step, resulting in a lower withstand voltage between the wiring conductor layers 3 and 5, or a short circuit between the wiring conductor layers. In addition, the second wiring conductor layer 5 made of aluminum or the like is formed on the insulating film 4 by sputtering or electron beam evaporation, and is hardly deposited on the stepped portions, so it is necessary to reduce the connection resistance between the wiring layers. Do 4
In the heat treatment step at 50 to 5001° C.), cracks occur in the wiring conductor layer 5Vc, resulting in disconnection, or disconnection due to electromigration. For this reason, it has been difficult to miniaturize multilayer wiring.

この様な段差を生ずる製造工程に対して、所定のパター
ンの第1導電体層を形成した後、気相成長法により酸化
シリコン膜を形成し、その上にオルガノシラン等の有機
系物質を塗布したシ、あるいは先に有機系物質を塗布し
、その上に気相成長法により酸化シリコン膜を形成する
ことによシ絶縁腹の表面をなだらかにする方法が知られ
ている。
For manufacturing processes that cause such steps, after forming the first conductor layer in a predetermined pattern, a silicon oxide film is formed by vapor phase growth, and an organic material such as organosilane is coated on top of it. A known method is to first apply an organic material and then form a silicon oxide film thereon by vapor phase growth, thereby making the surface of the insulating layer smooth.

しかしながらオルガノシラン等の有機物質を焼結したガ
ラス膜は多孔質で吸湿性が大きく、また有機物も残存し
ているために配線導体層の相互の絶縁は信頼性に欠ける
欠点がある。
However, a glass film made by sintering an organic substance such as organosilane is porous and highly hygroscopic, and since organic substances remain, the mutual insulation of wiring conductor layers is unreliable.

又、450〜500 C’C,)の熱処理工程において
、ガラス膜および気相成長法による酸化シリコン膜にク
ラックが生じゃすく、導体層間の短絡が生じたシ、ある
いは配線導体層にアルミニウムを用いた場合にはガラス
膜の吸湿性が大きいためにアルミニウムが腐食されて断
線したシする欠点がある。
In addition, during the heat treatment process at 450 to 500 C'C, the glass film and the silicon oxide film formed by vapor phase growth may develop cracks, short circuits may occur between the conductor layers, or if aluminum is used in the wiring conductor layer. If the glass film is hygroscopic, the aluminum may be corroded and wires may break.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、凹凸を有する基板表面上に薄膜を平坦
に形成することができ、この薄膜上に形成する4体層の
断線や短絡等の防止に寄与することができ、微細パター
ンの多層配線を形成するのに有利な薄膜形成方法を提供
することにある。
An object of the present invention is to be able to form a flat thin film on the surface of a substrate having irregularities, to contribute to the prevention of disconnections and short circuits in the four layers formed on this thin film, and to be able to contribute to the prevention of disconnections and short circuits in the four layers formed on this thin film. It is an object of the present invention to provide a thin film forming method that is advantageous for forming wiring.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、凹凸を有する基板上に酸化シリコン等
の絶縁性薄膜を堆積したのち、この薄膜表面にイオンや
ラジカル等の活性種を作用させ、薄膜の凸部を迅速に蝕
刻する如きエツチングを施すことにある。すなわち、平
行平板電極を備えたチェンバ等の内部に02ガス等を導
入すると共に、各電極間に高周波電力を印加すると、試
料載置の電極表面に生じた自己バイアスにより加速され
たイオンが試料表面を衝撃する。薄膜として酸化シリコ
ンを用いた場合、02ガスハ薄膜と反応しないため、ス
パッタリングのみ進行する。スパッタ率はイオンの入射
角度に依存し、通常45度で最大値を示す。
The gist of the present invention is to deposit an insulating thin film such as silicon oxide on a substrate with unevenness, and then apply active species such as ions and radicals to the surface of this thin film to rapidly etch away the convex portions of the thin film. The goal is to do the following. In other words, when 02 gas or the like is introduced into a chamber or the like equipped with parallel plate electrodes, and high frequency power is applied between each electrode, ions accelerated by the self-bias generated on the surface of the electrodes on which the sample is placed will be transferred to the surface of the sample. shock. When silicon oxide is used as the thin film, only sputtering proceeds because the 02 gas does not react with the thin film. The sputtering rate depends on the incident angle of ions, and usually shows a maximum value at 45 degrees.

それ故、45度に近い角度を持つステップエツジは平坦
部に比して速くエツチングされ、エツジに大きな傾斜が
形成される。さらに、イオン衝撃を続けると、見かけ上
傾斜部が後退するようにスパッタエツチングが進行し、
その結果薄膜表面が平坦となる。
Therefore, step edges with angles close to 45 degrees are etched faster than flat areas, creating a large slope in the edge. Furthermore, as ion bombardment continues, sputter etching progresses so that the slope appears to recede.
As a result, the thin film surface becomes flat.

本発明はこのような点に着目し、凹凸を有する基板表面
に薄膜を形成するに際し、上記基板上に薄膜を堆積した
のち、薄膜表面に該薄膜と反応しない活性種を照射して
スパッタエツチングするようにした方法である。
The present invention focuses on this point, and when forming a thin film on the surface of a substrate having irregularities, after depositing the thin film on the substrate, sputter etching is performed by irradiating the thin film surface with active species that do not react with the thin film. This is how I did it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、凹6を有する基板表面上に絶縁膜等の
薄膜を表面平坦化して形成することができるので、この
薄膜上に形成する導体層の断線や短絡等の発生を極めて
少なくすることが可能である。このため、微細パターン
の多層配線構造を形成する際に極めて有効な効果を発揮
する。
According to the present invention, since a thin film such as an insulating film can be formed on the surface of the substrate having the recess 6 by flattening the surface, the occurrence of disconnections, short circuits, etc. in the conductor layer formed on this thin film is extremely reduced. Is possible. Therefore, it exhibits an extremely effective effect when forming a multilayer wiring structure with a fine pattern.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例方法に使用した処理装置を示
す概略構成図である。図中11はチェンバで、このチェ
ンバ11内には上部電極12及び下部電極13からなる
平行平板電極が配置されている。上部電極12の下面に
はターゲット14が取着され、下部電極13の上面には
試料15が載置される。上部電極12はマツチング回路
16及びスイッチ回路17を介して高周波電源18に接
続され、下部電極13はマツチング回路19及びスイッ
チ回路2oを介して高周波電源に接続されている。そし
て、スイッチ回路17.19が81側のとき、上部電極
12に高周波電力が印加されると共に下部電極12が接
地される。このとき、試料15上にターゲット14と同
材料の薄膜が堆積される。また、スイッチ回路17.2
0を82側に切り換えたとき、上部電極12が接地され
ると共に下部′電極13に高周波電力が印加される。こ
のとき、試料1591スパツタエツチングされるものと
なっている。なお、図中21はチェンバ11内にOl等
のガスを導入するだめのバルブであシ、チェンバll内
は図示しない真空ポンプによシ真空排気されるものとな
っている。また、図中22は絶縁物を示している。
FIG. 3 is a schematic diagram showing a processing apparatus used in a method according to an embodiment of the present invention. In the figure, reference numeral 11 denotes a chamber, and within this chamber 11 parallel plate electrodes consisting of an upper electrode 12 and a lower electrode 13 are arranged. A target 14 is attached to the lower surface of the upper electrode 12, and a sample 15 is placed on the upper surface of the lower electrode 13. The upper electrode 12 is connected to a high frequency power source 18 via a matching circuit 16 and a switch circuit 17, and the lower electrode 13 is connected to a high frequency power source via a matching circuit 19 and a switch circuit 2o. When the switch circuits 17 and 19 are on the 81 side, high frequency power is applied to the upper electrode 12 and the lower electrode 12 is grounded. At this time, a thin film of the same material as the target 14 is deposited on the sample 15. In addition, the switch circuit 17.2
0 to the 82 side, the upper electrode 12 is grounded and high frequency power is applied to the lower electrode 13. At this time, sample 1591 was sputter etched. In the figure, reference numeral 21 is a valve for introducing a gas such as Ol into the chamber 11, and the inside of the chamber 11 is evacuated by a vacuum pump (not shown). Further, 22 in the figure indicates an insulator.

第4図(a)〜(C)は本発明の一実施例に係わる半導
体装置製造工程を示す断面図である。まず、第4図(a
)に示す如く素子形成工程が施されたSi基板31上に
気相成長法によりsto、膜32を被着したのち、必要
な接続孔を開けこの孔を含め5i02膜32上にアルミ
ニウム膜(第1の導体層)33を仮着した。アルミニウ
ム膜33の被着はスパッタ或いは電子ビーム蒸着法で行
い、そのパターニングには燐酸を生成分とした溶液メい
はCaZ4とCI!2との混合ガスを反応ガスとする反
応性イオンエツチング法を用いた。次いで、前記第3図
に示した装置を用い、ターゲット14として5i02.
導入ガスとしてSiN4とN20 との混合ガス、スイ
ッチ回路17,20をS1側に切り換え、グロー放電を
利用したプラズマ気相成長法によシ試料上面にSiO□
膜(絶縁膜)34を堆積した。
FIGS. 4(a) to 4(C) are cross-sectional views showing the manufacturing process of a semiconductor device according to an embodiment of the present invention. First, Figure 4 (a
) After depositing the sto film 32 by vapor phase growth on the Si substrate 31 which has been subjected to the element forming process as shown in FIG. 1 conductor layer) 33 was temporarily attached. The aluminum film 33 is deposited by sputtering or electron beam evaporation, and patterned using a solution containing phosphoric acid or CaZ4 and CI! A reactive ion etching method using a mixed gas of 2 and 2 as a reactive gas was used. Next, using the apparatus shown in FIG. 3, 5i02.
Using a mixed gas of SiN4 and N20 as the introduced gas, switching the switch circuits 17 and 20 to the S1 side, SiO□ is deposited on the top surface of the sample by plasma vapor deposition using glow discharge.
A film (insulating film) 34 was deposited.

次に、第3図に示す装置のチェンバ11内を1度真空引
きしたのち、チェンバ11内にOlを溝入しガス圧を0
.1 [Torr ]程度に保ちスイッチ回路17.2
0を82側に切り換え、試料の表面処理を行った。ここ
で、試料側の電極J3に高周波電力を印加した場合、先
にも説明したように電極13の表面に生じた自己バイア
スによシ加速されたイオンが試料表面を衝撃する。0□
ガスはS i 02膜34と反応しないため、単にスパ
ッタリングのみ進行する。スパッタ率はイオンの入射角
度に依存し、通常45度で最大値を示す。それ故、シー
ス内の電位勾配に沿って入射するイオンに対しては、4
5度に近いステップエツジが平坦部に比して速くスパッ
タエツチングされ、エツジに大きな傾斜が形成される。
Next, after evacuating the chamber 11 of the device shown in FIG.
.. 1 Torr Switch circuit 17.2
0 was switched to the 82 side, and the surface treatment of the sample was performed. Here, when high frequency power is applied to the electrode J3 on the sample side, ions accelerated by the self-bias generated on the surface of the electrode 13 bombard the sample surface as described above. 0□
Since the gas does not react with the S i 02 film 34, only sputtering proceeds. The sputtering rate depends on the incident angle of ions, and usually shows a maximum value at 45 degrees. Therefore, for ions incident along the potential gradient inside the sheath, 4
Step edges close to 5 degrees are sputter etched faster than flat areas, creating a large slope in the edges.

そして、イオン衝撃を続けると見かけ上傾斜部が後退す
るようにスパッタエツチングが進行し、5i01膜34
0表面は第4図(b)に示す如く略平坦なものとなる。
Then, as the ion bombardment continues, the sputter etching progresses so that the apparent slope recedes, and the 5i01 film 34
The zero surface is approximately flat as shown in FIG. 4(b).

なお、主ガスをOlとし、添加ガスとしてC,H,等の
ようなプラズマ重合を行うガスを使用すると、平坦面上
にプラズマ重合膜が堆積し、平坦部の実効的スパッタ率
が低下するため、平坦部の膜厚を低下させることなく凸
部のエツチングのみを行うことも可能である。
Note that if the main gas is Ol and a gas that performs plasma polymerization such as C, H, etc. is used as the additive gas, a plasma polymerized film will be deposited on the flat surface and the effective sputtering rate on the flat area will decrease. It is also possible to perform etching only on the convex portions without reducing the film thickness on the flat portions.

次に、第4図(C)に示す如(8i 0H膜34上にア
ルミニウム膜(第2の1体層)35を被層した。この場
合、下地5i01膜340表面が平坦化されているので
、アルミニウム膜35はその膜厚が一様に形成されるこ
とになる。
Next, as shown in FIG. 4(C), an aluminum film (second monolithic layer) 35 was coated on the 8i 0H film 34. In this case, since the surface of the base 5i01 film 340 was flattened, , the aluminum film 35 is formed to have a uniform thickness.

かくして本実施例方法によれば、多層配線を行った第4
図(clと従来法によシ多層配線を行なつた前記第2図
との比較から明らかな様に、第2の嬌電体層35の厚さ
がほぼ一様になるため、450〜500[’C,)での
熱処理工程で導電体層35にクラックが生じて断線した
り、エレクトロマイクレージョンに基づく断線を防止す
ることができ、また1層目の配線導体33と2層目の配
線導体35とが交叉する様な箇所においても配線導体層
間の絶縁膜の厚さが充分厚いためにピンホールやクラッ
クは発生せず、配線導体層間の短絡や耐圧の低下を防止
することができ、多層配線を行なった半導体装置の信頼
性を著しく向上することができる。また1本実施例方法
では、配線導体層間の絶縁膜として、有機ガラス系物質
を用いる必要がないため、配線導体層の相互の絶縁の信
頼性は高く、また、アルミニウムの腐食を防止すること
ができる。
Thus, according to the method of this embodiment, the fourth
As is clear from the comparison between Figure (cl) and Figure 2 above, in which multilayer wiring is performed by the conventional method, the thickness of the second dielectric layer 35 is approximately uniform, It is possible to prevent cracks from occurring in the conductor layer 35 and disconnection due to the heat treatment step ['C,), or disconnection due to electromicration. Even at locations where the wiring conductor 35 intersects, the insulating film between the wiring conductor layers is sufficiently thick, so pinholes and cracks do not occur, and short circuits between the wiring conductor layers and reduction in withstand voltage can be prevented. , the reliability of a semiconductor device with multilayer wiring can be significantly improved. In addition, in the method of this embodiment, there is no need to use an organic glass-based material as an insulating film between the wiring conductor layers, so the mutual insulation of the wiring conductor layers is highly reliable, and corrosion of aluminum can be prevented. can.

さらに、本発明では、配線のパターンが微細でしかも急
峻な段差に対してよシ効果を発揮する庭め多層配線の微
細化が可能となシ素子の集積密度を上げることができる
Further, according to the present invention, it is possible to increase the integration density of elements, which makes it possible to miniaturize multilayer wiring, which has a fine wiring pattern and exhibits a good effect on steep steps.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記スパッタエツチング時に用いるガスは
02に限らず、N、、H。
Note that the present invention is not limited to the embodiments described above. For example, the gas used during the sputter etching is not limited to 02, but may also be N, , H.

、希ガス、その他エツチングすべき薄膜と反応しないも
のであればよい。また、絶縁膜として酸化シリコン膜を
用いたが、他の絶R膜例えば燐、硼素、砒素等の不純物
を含んだガラス膜、窒素及びシリコンを含むシリコンオ
キシナイト2イド膜、金属酸化物およびこれらの絶縁膜
を2柾類以上竺層した膜に対しても本発明は有効である
。さらに、配線導体層として、アルミニウムを用いたが
、他の導体暦年えばモリブデン、タングステン、チタン
、白金、および前記金属の硅化物、多結晶シリコンに対
しても本発明が適用されることはいうまでもない。また
、実施例では配ms体層を2層に設けた場合について説
明したが%3層以上の配線導体層を設けた多層配線も、
上記実施例で述べた方法なくシ返し行なうことによシ得
られ1本発明は有効である。
, rare gas, or any other material that does not react with the thin film to be etched. Although a silicon oxide film was used as the insulating film, other insulating films such as glass films containing impurities such as phosphorus, boron, and arsenic, silicon oxynitride films containing nitrogen and silicon, metal oxides, and The present invention is also effective for films made of two or more layers of insulating films. Further, although aluminum is used as the wiring conductor layer, it goes without saying that the present invention is also applicable to other conductor materials such as molybdenum, tungsten, titanium, platinum, silicides of the above metals, and polycrystalline silicon. Nor. In addition, in the example, the case where the wiring conductor layer is provided in two layers was explained, but multilayer wiring in which three or more wiring conductor layers are provided is also applicable.
The present invention is effective because it can be obtained by repeating the process without using the method described in the above embodiments.

さらに、スパッタリング法にょシ絶縁膜の表面層を除去
した後、その残存した絶縁膜上に配線導体層を設けたが
、絶縁iの表面層を除去した後、その上に再度絶縁膜を
被着するか、または。
Furthermore, after removing the surface layer of the insulating film by sputtering, a wiring conductor layer was provided on the remaining insulating film. Or.

この工程を何度かくシ返して形成した絶縁膜上に配線導
体層を設けても有用である。その他、本発明の要旨を逸
脱しない範囲で、種々変形して実施することができる。
It is also useful to provide a wiring conductor layer on the insulating film formed by repeating this process several times. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ従来の多層配線構造を示す
断面図、第3図は本発明の一実施例に使用した処理装置
を示す概略構成図、第4図t8)〜(C)は同実施例方
法を説明するための工程断面図である。 11・・・チェンバ、xx、xs・・・[極、J4・・
・ターゲット、15・・・試料、16.19・・・マツ
チング回路、17.20・・・スイッチ回路、18・・
・高周波電源、31・・・8i基板、32.34・・・
2の導体層)。
1 and 2 are cross-sectional views showing conventional multilayer wiring structures, FIG. 3 is a schematic configuration diagram showing a processing device used in an embodiment of the present invention, and FIG. 4 t8) to (C) are It is a process sectional view for explaining the same Example method. 11...Chamber, xx, xs...[pole, J4...
・Target, 15... Sample, 16.19... Matching circuit, 17.20... Switch circuit, 18...
・High frequency power supply, 31...8i board, 32.34...
2 conductor layer).

Claims (4)

【特許請求の範囲】[Claims] (1)凹凸を有する基板表面上にその凸部に対応する突
出部を有する薄膜を堆積する工程と、上記薄膜表面に該
薄膜と反応しない活性種を照射してスパッタエツチング
し、前記薄膜と同材質の前記突出部を除去して前記薄膜
を平担化する工程とを具備してなることを特徴とする薄
膜形成方法。
(1) A step of depositing a thin film having protrusions corresponding to the convex portions on the surface of the substrate having irregularities, and sputter etching the thin film surface by irradiating active species that do not react with the thin film to form the same layer as the thin film. A method for forming a thin film, comprising the step of flattening the thin film by removing the protrusion of the material.
(2)  前記薄膜を堆積する工程として、プラズマ気
相成長法、スパッタリング法或いはイオンブレーティン
グ法を用いることを特徴とする特許請求の範囲第1項記
載の薄膜形成方法。
(2) The thin film forming method according to claim 1, characterized in that the step of depositing the thin film uses a plasma vapor deposition method, a sputtering method, or an ion blasting method.
(3)  前記薄膜を堆積する工程及びスパッタエツチ
ングする工程を、平行平板電極を備えた同一チェンバ内
で行い、薄膜の堆積時には基板側の電極を接地す雇と共
に他方のターゲット側電極に高周波電力を印加し、スパ
ッタエツチング時には基板側の電極に高周波電力を印加
すると共に他方の電極を接地することを特徴とする特許
請求の範囲第1項記載の薄膜形成方法。
(3) The process of depositing the thin film and the process of sputter etching are performed in the same chamber equipped with parallel plate electrodes, and when depositing the thin film, the electrode on the substrate side is grounded and the other electrode on the target side is supplied with high frequency power. 2. The thin film forming method according to claim 1, wherein during sputter etching, high frequency power is applied to an electrode on the substrate side and the other electrode is grounded.
(4)前記活性種として、酸素、窒素、水素若しくは希
ガスのうち少なくとも1つのガスのラジカル及びイオン
を用いることを特徴とする特許請求の範囲第1項記載の
薄膜形成方法。
(4) The thin film forming method according to claim 1, wherein radicals and ions of at least one gas among oxygen, nitrogen, hydrogen, or a rare gas are used as the active species.
JP19819982A 1982-11-11 1982-11-11 Forming method of thin-film Pending JPS5987834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19819982A JPS5987834A (en) 1982-11-11 1982-11-11 Forming method of thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19819982A JPS5987834A (en) 1982-11-11 1982-11-11 Forming method of thin-film

Publications (1)

Publication Number Publication Date
JPS5987834A true JPS5987834A (en) 1984-05-21

Family

ID=16387116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19819982A Pending JPS5987834A (en) 1982-11-11 1982-11-11 Forming method of thin-film

Country Status (1)

Country Link
JP (1) JPS5987834A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110244A (en) * 1984-06-15 1986-01-17 ノーザン・テレコム・リミテッド Method of depositing dielectric layer on semiconductor wafer
JPS6448425A (en) * 1987-08-18 1989-02-22 Semiconductor Energy Lab Forming method of insulating film
JPH04340748A (en) * 1991-05-17 1992-11-27 Nec Corp Manufacture of semiconductor device
JPH0774146A (en) * 1990-02-09 1995-03-17 Applied Materials Inc Improved flattening method of integrated circuit structure using low-melting point inorganic material
US5855970A (en) * 1986-09-09 1999-01-05 Semiconductor Energy Laboratory Co., Ltd. Method of forming a film on a substrate
US6013338A (en) * 1986-09-09 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110244A (en) * 1984-06-15 1986-01-17 ノーザン・テレコム・リミテッド Method of depositing dielectric layer on semiconductor wafer
US5855970A (en) * 1986-09-09 1999-01-05 Semiconductor Energy Laboratory Co., Ltd. Method of forming a film on a substrate
US6013338A (en) * 1986-09-09 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
JPS6448425A (en) * 1987-08-18 1989-02-22 Semiconductor Energy Lab Forming method of insulating film
JPH0774146A (en) * 1990-02-09 1995-03-17 Applied Materials Inc Improved flattening method of integrated circuit structure using low-melting point inorganic material
JPH04340748A (en) * 1991-05-17 1992-11-27 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US6815825B2 (en) Semiconductor devices having gradual slope contacts
US5725740A (en) Adhesion layer for tungsten deposition
US20070278611A1 (en) Modified Facet Etch to Prevent Blown Gate Oxide and Increase Etch Chamber Life
US6860275B2 (en) Post etching treatment process for high density oxide etcher
JPS5987834A (en) Forming method of thin-film
JPH04264729A (en) Flattening and formation method of metal thin film
JPH0226055A (en) Manufacture of semiconductor device
KR100220933B1 (en) Forming method for metal wiring of semiconductor device
JPS61185928A (en) Pattern forming method
US7488681B2 (en) Method for fabricating Al metal line
JPH09162172A (en) Method for removing etching damage
JP2603989B2 (en) Method for manufacturing semiconductor device
KR100628216B1 (en) method for forming metal line of semiconductor device
JP3288010B2 (en) Method for forming metal wiring of semiconductor device
KR100274748B1 (en) Method for forming barrier metal film of semiconductor device
JPS63156340A (en) Manufacture of semiconductor device
JPS6258663A (en) Manufacture of semiconductor device
KR960008523B1 (en) Metal wiring method of semiconductor device
KR910010223B1 (en) Multi-layer wiring method of semiconductor elements
WO2009066997A2 (en) Contact etch for ams products
JPS61135125A (en) Manufacture of semiconductor device
KR20000003354A (en) Method of forming titanium film of semiconductor device
JPH1174252A (en) Semiconductor device and manufacturing method therefor
JP2000150482A (en) Dry etching method
JPS5933832A (en) Manufacture of semiconductor device