JPS5987356A - Defect discriminating method adopting statistical processing - Google Patents

Defect discriminating method adopting statistical processing

Info

Publication number
JPS5987356A
JPS5987356A JP57196731A JP19673182A JPS5987356A JP S5987356 A JPS5987356 A JP S5987356A JP 57196731 A JP57196731 A JP 57196731A JP 19673182 A JP19673182 A JP 19673182A JP S5987356 A JPS5987356 A JP S5987356A
Authority
JP
Japan
Prior art keywords
signal
defect
flaw detection
overlay
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57196731A
Other languages
Japanese (ja)
Inventor
Kenichi Tanimoto
谷本 健一
Kazuteru Naruo
成尾 一輝
Yoshimichi Yoshida
吉田 好道
Koji Enami
榎並 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Mitsubishi Heavy Industries Ltd
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Mitsubishi Heavy Industries Ltd
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Mitsubishi Heavy Industries Ltd, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP57196731A priority Critical patent/JPS5987356A/en
Publication of JPS5987356A publication Critical patent/JPS5987356A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/449Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Abstract

PURPOSE:To improve the defect discriminating capacity, by measuring statistically high-noise level parts and low-noise level parts before examination because the noise is much generated in an overlay part and is less generated in a flat part and comparing this measured result with the measured result of actual examination. CONSTITUTION:A controller 9 controls the driving signal of a motor of a scanning device 8 and detects the position of a probe 4 and controls the whole of the system and inputs a control signal to a statistical signal processing circuit 6 and inputs a control signal and a position signal to a storage circuit 10. A level comparing circuit 7 compares the signal from the storage circuit 10 with the signal from an ultrasonic flaw detector 5 to output the presence or the absence of a defect as the discrimination result. The defect is discriminated in two stages. In the first stage, the noise level is inspected statistically; and in the second stage, the level of the actual flaw detection signal from the flaw detector 5 is compared with a threshold, and the presence of the defect is discriminated to output the discrimination result if the former exceeds the threshold. Thus, the reliability of the discrimination result is improved.

Description

【発明の詳細な説明】 本発明は、統計処理による欠陥判別方法に関する。[Detailed description of the invention] The present invention relates to a defect determination method using statistical processing.

一般にプラント容器に対しては、その健全性確保のため
定期的に超音波探傷が実施される。
Generally, ultrasonic flaw detection is carried out regularly on plant containers to ensure their integrity.

プラント容器としては、炭素鋼材製容器の内側にステン
レス鋼材でオーバーレイを施した構造のものがあるが、
このようなものに対しても勿論定期的に超音波探傷がな
される。ところが、このようなプラント容器に対して容
器外表面(炭素鋼材側)から超音波探傷を行なうと、容
器内面のオーバーレイ部から雑音が発生し、それが欠陥
検出の妨げとなる。
Some plant containers have a structure in which a stainless steel material is overlaid on the inside of a carbon steel container.
Of course, ultrasonic flaw detection is periodically performed on such items as well. However, when ultrasonic flaw detection is performed on such a plant container from the outer surface of the container (carbon steel material side), noise is generated from the overlay portion on the inner surface of the container, which interferes with defect detection.

第1図(a) 、 (b)に示すように、炭素鋼材2の
内表面に帯状にステンレス鋼材のオーバーレイ3を施し
てなる容器IVcその外表面から超音波探傷装置の探触
子4よシ超音波Uを発信して超音波探傷を行なうと、超
音波Uがオーバーレイ部で散乱し、それが探触子4で検
出されて雑音信号となるのである。雑音の発生要因とし
ては、オーステナイト系ステンレス鋼でオーバーレイを
施した場合にステンレス鋼中に生じる柱状晶によって音
波が減衰あるいは散乱されてしまうこと、オーバーレイ
部の凹凸によって音波が散乱されてしまうことが挙げら
れるが、後者は特にオーバーレイの重なシ部Eで発生し
やすい。
As shown in FIGS. 1(a) and 1(b), a probe 4 of an ultrasonic flaw detector is inserted from the outer surface of a container IVc made of a carbon steel material 2 with a belt-shaped overlay 3 of stainless steel material on the inner surface. When ultrasonic flaw detection is performed by transmitting ultrasonic waves U, the ultrasonic waves U are scattered at the overlay portion, which is detected by the probe 4 and becomes a noise signal. The causes of noise are that when an overlay is made of austenitic stainless steel, sound waves are attenuated or scattered by the columnar crystals that occur in the stainless steel, and sound waves are scattered due to the unevenness of the overlay. However, the latter is particularly likely to occur in the area E where the overlay overlaps.

第1図(a) 、 (b)に示した容器に対し、オーバ
ーレイ施工方向に直角に超音波を出し、図中X方向(オ
ーバーレイ施工方向に直角な方向)に超音波探触子4を
移動させながら、オーバーレイ部からの雑音の発生状況
を調べた結果を第1図(C)に示す。図中Yで示す方向
はオーバーレイの施工方向である。この図かられかるよ
うに、オーバーレイ部での発生雑音は、オーバーレイ重
なシ部Eでは大きく、平坦部Fでは比較的少ないという
傾向が見られる。尚、この傾向が顕著かどうかは探傷条
件によって変わる。
Ultrasonic waves are emitted perpendicular to the overlay construction direction to the containers shown in Figures 1 (a) and (b), and the ultrasonic probe 4 is moved in the X direction in the figure (perpendicular to the overlay construction direction). FIG. 1(C) shows the results of investigating the noise generation situation from the overlay section while the overlay is being controlled. The direction indicated by Y in the figure is the construction direction of the overlay. As can be seen from this figure, there is a tendency for the noise generated in the overlay area to be large in the edge area E where the overlay overlaps, and to be relatively small in the flat area F. Note that whether this tendency is significant or not depends on the flaw detection conditions.

ところで、従来よ)超音波探傷による欠陥判別方法とし
て、起こシ得る最大の雑音レベル(Nmax)を想定し
、探傷信号レベル(,9)が例えばS)2Nmaxのと
き欠陥ありと判定する方法が実施されている。しかしこ
の方法を前記のような被検体に適用すると、オーバーレ
イ部のような雑音レベルの低い部分も高い判定レベルで
欠陥検出を行なうこととなシ、正確な欠陥検出ができな
・◇なってしまう。
By the way, as a defect determination method using ultrasonic flaw detection (conventionally), a method has been implemented in which the maximum possible noise level (Nmax) is assumed and a defect is determined when the flaw detection signal level (,9) is, for example, S)2Nmax. has been done. However, if this method is applied to the above-mentioned object, defects will be detected at a high judgment level even in areas with low noise levels such as overlay areas, resulting in inaccurate defect detection. .

本発明は、内側にオーバーレイ部を有する部材の欠陥検
出には従来の超音波探傷による判別方法〃S適用できな
いことにかんがみてなされたもので、上記のような部材
にはオーバーレイの重なシ部で雑音発生が大きく、平坦
部では比較的少ないという特性がおることに着目し、雑
音レベルの高い部分及び低い部分を本探傷前に統計的に
測定しておき、その値と本探傷による測定結果とを比較
して欠陥判別を行ない、判別性能の向上を図ることを目
的とする。
The present invention was developed in view of the fact that the conventional ultrasonic flaw detection method (S) cannot be applied to detect defects in members that have overlay parts on the inside. Focusing on the characteristic that noise generation is large in flat areas and comparatively low in flat areas, we statistically measured areas with high and low noise levels before the main flaw detection, and compared those values with the measurement results from the main flaw detection. The purpose is to improve the discrimination performance by performing defect discrimination by comparing the

上記目的を達成するだめの本発明の要旨は、位置によっ
て超音波に対する雑音発生に差が生じる被検体に対し超
音波によって欠陥判別をする方法であって、予め被検体
の位置とその位置に対する雑音の発生状態とを統計的に
調べて記憶しておき、実際の検査時には探傷位置からの
探傷信号レベルとその位置に対応して記憶されている雑
音発生状態とを比較し、欠陥判別を行なうことを特徴と
する統計処理による欠陥判別方法に存する。
To achieve the above object, the gist of the present invention is to provide a method for determining defects using ultrasonic waves for a test object whose noise generation with respect to ultrasound waves differs depending on the position. The noise generation state is statistically investigated and memorized, and during actual inspection, the flaw detection signal level from the flaw detection position is compared with the noise generation state stored corresponding to that position to determine defects. The present invention resides in a defect discrimination method using statistical processing characterized by the following.

次に、本発明に係る欠陥判別方法を図面に示す一実施例
に基づき詳細に説明する。
Next, a defect discrimination method according to the present invention will be explained in detail based on an embodiment shown in the drawings.

第2図には一実施例の系統図を示す。1は被検体で、本
実施例では炭素鋼材2の内側面にステンレス鋼材でオー
バーレイ3を施してなる容器部材である。4は探触子、
5は超音波探傷器で、探触子4は被検体1の外表面にセ
ットされる。
FIG. 2 shows a system diagram of one embodiment. Reference numeral 1 designates a specimen, which in this embodiment is a container member made of a carbon steel material 2 with an overlay 3 made of stainless steel material on the inner surface thereof. 4 is a probe;
5 is an ultrasonic flaw detector, and a probe 4 is set on the outer surface of the object 1 to be inspected.

前記超音波探傷器5は、検査部位の最大信号レベルを統
計信号処理回路6及びレベル比較回路7に送るようにな
っている。8は探触子4を被検体10表面上で二次元的
に走査させるためのスキャニング装置である。9はスキ
ャニング装置8のモータの駆動信号の制御、探触子4の
位置検出、システム全体の制御を行なう制御装置で、前
記統計信号処理回路6に制御信号を入力し、記憶回路1
0に制御信号及び位置信号を入力する。前記統計信号処
理回路6は、前記制御装置9からの制御信号と前記超音
波探傷器5からの探傷信号とから平均値、標準偏差を求
め、前記記憶回路10に入力する。平均値、標準偏差を
記憶する記憶回路10は前記レベル比較回路7に接続し
ておシ、前記制御装置9からの位置信号等に応じて判定
値を出力するようになっている。前記レベル比較回路7
は前記記憶回路10からの信号と前記超音波探傷器5か
らの信号とを比較し、欠陥のあるなしを判定結果として
出力するものである。
The ultrasonic flaw detector 5 is configured to send the maximum signal level of the inspection site to a statistical signal processing circuit 6 and a level comparison circuit 7. 8 is a scanning device for two-dimensionally scanning the probe 4 over the surface of the subject 10. Reference numeral 9 denotes a control device that controls the driving signal of the motor of the scanning device 8, detects the position of the probe 4, and controls the entire system.
Input the control signal and position signal to 0. The statistical signal processing circuit 6 calculates an average value and standard deviation from the control signal from the control device 9 and the flaw detection signal from the ultrasonic flaw detector 5, and inputs them into the storage circuit 10. A storage circuit 10 for storing average values and standard deviations is connected to the level comparison circuit 7 and outputs a determination value in response to a position signal etc. from the control device 9. The level comparison circuit 7
compares the signal from the memory circuit 10 and the signal from the ultrasonic flaw detector 5, and outputs a determination result as to whether there is a defect or not.

上記構成の当該欠陥判別装置は二段階で機能する。The defect determination device having the above configuration functions in two stages.

第一段階は雑音レベルを統計的に調べるもので、容器等
の被検体1の製造時又は使用前の無欠陥時に行なう。超
音波探傷器5の探触子4の走査は、第3図(a)に示す
ように、オーバーレイ3の施工方向(Y方向)には連続
的に、オーバーレイ3の施工方向に直角な方向(X方向
)にはステップ状に行なう。即ち、′g、触子4のY方
向走査時に探傷し、探触子4のX方向移動によって探触
子4の位置つまシ探傷位置を変えるのである。Y方向1
ライン走査時に探傷信号は統計信号処理回路6に送られ
訴触子4が一定位置Y方向へ移動するごとに信号レベル
がサンプリングされる。この値から、統計信号処理回路
6でY方向1ラインについての平均値(μ)及び標準偏
差(α)か算出される。このような#f算は、りUえば
マイクロコンピュータ等を使えば容易にできる。1ライ
ンの走査が終わると、平均値μ及び標準偏差αが統計信
号処理回路6から記憶回路10に送られ、又そのときの
X方向の位置信号が制御装置9から記憶回路lOに送ら
れ、これらの値が記憶される。このような探傷、信号処
理、記憶を各走査ライン(第3図(a)中のXI、X2
・・・)(n)ととに実施し、第一段階を終わる。
The first step is to statistically investigate the noise level, and is carried out when the test object 1, such as a container, is manufactured or when there are no defects before use. As shown in FIG. 3(a), the probe 4 of the ultrasonic flaw detector 5 scans continuously in the construction direction (Y direction) of the overlay 3 and in the direction perpendicular to the construction direction (Y direction) of the overlay 3. (X direction) in a stepwise manner. That is, flaws are detected when the probe 4 is scanned in the Y direction, and the position of the probe 4 is changed by moving the probe 4 in the X direction. Y direction 1
During line scanning, the flaw detection signal is sent to the statistical signal processing circuit 6, and the signal level is sampled every time the probe 4 moves to a fixed position in the Y direction. From this value, the statistical signal processing circuit 6 calculates the average value (μ) and standard deviation (α) for one line in the Y direction. Such #f calculation can be easily performed using a microcomputer or the like. When one line of scanning is completed, the average value μ and standard deviation α are sent from the statistical signal processing circuit 6 to the storage circuit 10, and the position signal in the X direction at that time is sent from the control device 9 to the storage circuit IO. These values are stored. Such flaw detection, signal processing, and storage are carried out on each scanning line (XI, X2 in Fig. 3(a)).
...) (n) and then complete the first stage.

以上のようにして記憶回路10に記憶された値は今後の
探傷(第二段階)のために残される。
The values stored in the memory circuit 10 as described above are left for future flaw detection (second stage).

次に第二段階(供用期間中の検査による探傷、欠陥検出
)での機能、動作について説明する。
Next, we will explain the functions and operations in the second stage (flaw detection and defect detection through inspection during the service period).

スキャニング装置8は第一段階で探傷したときと同一の
個所にセットされる。探傷(探触子4の走査)は、第1
段階と同−乗件で第3図(a)のように行なう。各走査
ライン(Xl、X2・・・Xn)ごとに走査ラインに対
応した平均値(μ)及び標準偏差値(α)が記憶回路1
oで読み出され、記憶回路10は判定値としてμ十mα
(ただしmは記憶回路10に事前にセットされた定数)
の値をレベル比較回路7に出力する。そして、レベル比
較回路7では、判定値μ十mαの値と超音波探傷器5か
らの実際の探傷信号のレベルとの比較がなされ、探傷信
号レベルが判定値μ十mαを越えると「欠陥あシ」と判
定結果が出力されるのである。
The scanning device 8 is set at the same location as when the flaw was detected in the first stage. Flaw detection (scanning of probe 4)
The steps are the same as those shown in Fig. 3(a). The average value (μ) and standard deviation value (α) corresponding to each scanning line (Xl, X2...Xn) are stored in the memory circuit 1.
o, and the memory circuit 10 stores μ0mα as the judgment value.
(However, m is a constant set in advance in the memory circuit 10)
The value of is output to the level comparison circuit 7. Then, in the level comparison circuit 7, the value of the judgment value μ0mα is compared with the level of the actual flaw detection signal from the ultrasonic flaw detector 5, and when the flaw detection signal level exceeds the judgment value μ0mα, “There is a defect. The judgment result is output as "".

尚、本実施例では、探触子4による超音波の方向をオー
バーレイ3の施工方向に直角としたが平行方向でもか1
わない。
In this embodiment, the direction of the ultrasonic waves emitted by the probe 4 was set at right angles to the construction direction of the overlay 3, but it may also be parallel to the construction direction.
No.

尚、本発明では、内面にオーバーレイを施しであるプラ
ント容器に限らず、位置によって超音波に対する雑音発
生が見られるものすべてを検査対象とすることができる
In the present invention, the inspection target is not limited to plant containers whose inner surfaces are overlaid, but any container in which noise generation in response to ultrasonic waves is observed depending on the position.

以上、実施例に基づ@詳細に説明したように、本発明に
係る超音波を使った欠陥判別方法によれハ、雑音レベル
の高い走査ラインと低い走査ラインについて別個に雑音
レベルを測定することから、よ)合理的な判定が可能で
あシ、欠陥検出性能特に雑音レベルの低い部分について
の欠陥検出性能を向上させることができる。又。
As described above in detail based on the embodiments, according to the defect discrimination method using ultrasonic waves according to the present invention, noise levels are measured separately for scanning lines with high noise levels and scanning lines with low noise levels. It is possible to make rational judgments (from 2 to 3), and it is possible to improve defect detection performance, especially for parts with low noise levels. or.

統計的に処理することから5判定結果の信頼性も向上す
る。
Since the statistical processing is performed, the reliability of the 5 determination results is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は被検体の表面で探触子をオ
ーバーレイの施工方向に直角な方向に走査させる様子を
示す平面図と断面図、第1図(C)はオーバーレイの施
工方向に直角な方向に沿う雑音発生の変化を示すグラフ
、第2図は本発明に係る欠陥判別方法の一実施例の系統
図、第3図(a) 、 (b)は本発明方法による探触
子の走査方向を示す説明図である。 図面中、 1は被検体、 2は炭素鋼材、 3はオーバーレイ、 4は探触子、 5は超音波探傷器、 6は統計信号処理回路、 7はレベル比較回路、 8はスキャニング装置、 9け制御装置、 10は記憶回路 である。 特許出願人 動力炉・核燃料開発事業団 三菱重工業株式会社 復代理人 弁理士 光 石 士 部 (他1名) 第1図 乙 第2図 第3図
Figures 1 (a) and (b) are a plan view and a cross-sectional view showing how the probe is scanned on the surface of the object in a direction perpendicular to the overlay construction direction, and Figure 1 (C) is the overlay construction. FIG. 2 is a system diagram of an embodiment of the defect discrimination method according to the present invention, and FIGS. 3(a) and (b) are graphs showing changes in noise generation along the direction perpendicular to the direction. It is an explanatory view showing the scanning direction of a feeler. In the drawings, 1 is the object to be inspected, 2 is the carbon steel material, 3 is the overlay, 4 is the probe, 5 is the ultrasonic flaw detector, 6 is the statistical signal processing circuit, 7 is the level comparison circuit, 8 is the scanning device, 9 In the control device, 10 is a memory circuit. Patent applicant Power Reactor and Nuclear Fuel Development Corporation Mitsubishi Heavy Industries, Ltd. Sub-agent Patent Attorney Shibu Mitsuishi (and 1 other person) Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 位置によって超音波に対する雑音発生に差が生じる被検
体に対し超音波によって欠陥判別をする方法であって、
予め被検体の位置とその位置に対する雑音の発生状態と
を統計的に調べて記憶しておき、実際の検査時には探傷
位置からの探傷信号ンペルとその位置に対応して記憶さ
れている雑音発生状態とを比較し、欠陥判別を行なうこ
とを特徴とする統計処理による欠陥判別方法。
A method for determining defects using ultrasonic waves for a subject whose noise generation in response to ultrasonic waves differs depending on the position,
The position of the object to be inspected and the noise generation state corresponding to that position are statistically investigated and stored in advance, and during actual inspection, the flaw detection signal from the flaw detection position and the noise generation state stored corresponding to that position are used. A defect determination method using statistical processing, characterized in that the defect determination method is performed by comparing and determining defects.
JP57196731A 1982-11-11 1982-11-11 Defect discriminating method adopting statistical processing Pending JPS5987356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57196731A JPS5987356A (en) 1982-11-11 1982-11-11 Defect discriminating method adopting statistical processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57196731A JPS5987356A (en) 1982-11-11 1982-11-11 Defect discriminating method adopting statistical processing

Publications (1)

Publication Number Publication Date
JPS5987356A true JPS5987356A (en) 1984-05-19

Family

ID=16362647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57196731A Pending JPS5987356A (en) 1982-11-11 1982-11-11 Defect discriminating method adopting statistical processing

Country Status (1)

Country Link
JP (1) JPS5987356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515632A (en) * 1997-02-28 2000-11-21 バースタイン ラボラトリーズ,インコーポレイティド Discs, devices for performing assays, assay elements, and assay components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515632A (en) * 1997-02-28 2000-11-21 バースタイン ラボラトリーズ,インコーポレイティド Discs, devices for performing assays, assay elements, and assay components

Similar Documents

Publication Publication Date Title
Liao et al. An automated radiographic NDT system for weld inspection: Part II—Flaw detection
US20060137451A1 (en) Method and system for inspecting flaws using ultrasound scan data
JP5868198B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welds
JP2005156305A (en) Evaluation method of internal defect
JPH059744B2 (en)
JP4871656B2 (en) Ultrasonic probe and ultrasonic flaw detector
JPS5987356A (en) Defect discriminating method adopting statistical processing
JPH06501105A (en) How to inspect heat exchanger pipes inside a heat exchanger
JP7425409B2 (en) Damage evaluation device and damage evaluation method
JP2002243703A (en) Ultrasonic flaw detector
JP4699242B2 (en) Ultrasonic probe coupling check method and computer program
JPS5847252A (en) Detecting method for flaw in welded part of reaction tube by ultrasonic flaw detection
JPH09229909A (en) Method and device for inspecting moving object to be inspected
WO2020250583A1 (en) Inspection system
US6408695B1 (en) Ultrasonic inspection method and system for detecting critical flaws
KR102623914B1 (en) Phased array ultrasonic testing scan system and the method of thereof
JP2962194B2 (en) Plate wave ultrasonic inspection method and apparatus
WO2023048271A1 (en) Information processing device, determination region setting method, and determination region setting program
US3929005A (en) Ultrasonic inspection recess in heat exchanger and nuclear steam generator tubesheets
JP2002090306A (en) Self-diagnostic method for surface inspection device
JPH0278949A (en) Ultrasonic flaw detecting device
JPS6126857A (en) Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe
JPH09264880A (en) Plate wave ultrasonic flaw detection method
JPS5860253A (en) Ultrasonic flaw detector
JPH02138864A (en) Ultrasonic flaw detector