JPH0278949A - Ultrasonic flaw detecting device - Google Patents

Ultrasonic flaw detecting device

Info

Publication number
JPH0278949A
JPH0278949A JP63230503A JP23050388A JPH0278949A JP H0278949 A JPH0278949 A JP H0278949A JP 63230503 A JP63230503 A JP 63230503A JP 23050388 A JP23050388 A JP 23050388A JP H0278949 A JPH0278949 A JP H0278949A
Authority
JP
Japan
Prior art keywords
echo
probe
probes
vertical probe
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63230503A
Other languages
Japanese (ja)
Inventor
Kuniharu Uchida
内田 邦治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63230503A priority Critical patent/JPH0278949A/en
Publication of JPH0278949A publication Critical patent/JPH0278949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To securely discriminate between a contact echo and a crack echo by finding ratio of the height of an echo which is oscillated by and received by a slanting probe and the height of an echo which is oscillated by the slanting probe and received by a vertical probe. CONSTITUTION:A couple of slanting probes 1a and 1b whose axes are directed slantingly inward and the vertical probe 2 whose axis is set the diameter direction of a holding ring W are so arranged as to cross one another at one point S in the inner peripheral surface of the holding ring W. Ultrasonic beam transmitters 10a, 10b, and 10c are coupled with the slanting probes 1a and 1b, and vertical probe 2 and a selector 11 selects the respective probes 1a, 1b, and 2 and determines the period of ultrasonic wave transmission. Further, the received signals of the slanting probes 1a and 1b are inputted to a receiver 13a through a switch 12 and the received signal of the vertical probe 2 is inputted to the receiver 13b; and they are inputted to a signal processor 15 through signal detectors 14a and 14b. Thus, the echo height ratio of the slanting probes and vertical probe is found to securely discriminate between the contact echo and crack echo.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、焼ばめにより一体的に構成したリング状の被
探傷体、例えばタービン発電機ロータのコイル端部に焼
ばめにより一体的に設けられている保持環を非破壊探傷
するようにした超音波探傷装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a ring-shaped flaw detection object integrally constructed by shrink fitting, such as a coil end of a turbine generator rotor. The present invention relates to an ultrasonic flaw detection device that performs non-destructive flaw detection on a retaining ring that is integrally provided by fitting.

(従来の技術) 一般に、タービン発電機ロータのコイル端部に焼ばめさ
れた保持環は、ロータの軸方向の移動を規制するための
ものであり、これは、非磁性体の材料で冷間拡管手段で
製造されるため、その材料組織は粗大化した金属結晶粒
を組成している。
(Prior Art) Generally, a retaining ring shrink-fitted to the coil end of a turbine generator rotor is used to restrict the axial movement of the rotor, and is made of a non-magnetic material and cooled. Since it is manufactured by means of tube expansion, its material structure consists of coarse metal crystal grains.

ここに、上記ロータのコイル端部に焼ばめされた保持環
が、ロータの高速回転に伴い、回転中に応力歪割れ(亀
裂)を生じて破損したり、脱落してしまうことがないよ
うにするため、焼ばめ終了後、非破壊探傷による傷の探
知手段として、超音波による探傷が一般に行われている
Here, the retaining ring shrink-fitted to the end of the coil of the rotor is designed to prevent it from being damaged or falling off due to stress strain cracks (cracks) during rotation as the rotor rotates at high speed. To achieve this, ultrasonic flaw detection is generally performed as a means of non-destructive flaw detection after shrink fitting.

従来、この種の超音波による探傷、例えば第8図に示す
ように、ロータのコイル端部に一体的に設けられ、外周
部に凹凸部A1が形成された短絡環Aの外周面に焼ばめ
された被探傷体としての保持環Wの内周面Waの近傍に
生じた応力腐蝕割れ等により亀裂Wcの探知は、一般に
超音波ビームを発振する送信器と、これを受波する受信
器とを内蔵した超音波探触子dを上記保持環Wの外周面
wbに接触させて移動させるとともに、上記超音波発振
子dから接触角に対して約35″〜45゜(経験値)の
軽斜角αで超音波ビームeを発振し、この超音波ビーム
eの反射波をこの受信器で受波し、これによって第9図
に示ように、保持環Wを組成する材料組織のノイズエコ
ー(エコー波)βを得る。そして、このようにして得ら
れたエコー波βを、図示しない超音波探傷分析装置で分
析して、上記保持環Wの亀裂Wcを探知するようなされ
ている。
Conventionally, in this type of ultrasonic flaw detection, for example, as shown in FIG. Detection of cracks Wc caused by stress corrosion cracks, etc. that occur near the inner circumferential surface Wa of the retaining ring W, which is the object to be inspected, is generally performed using a transmitter that emits an ultrasonic beam and a receiver that receives the ultrasonic beam. The ultrasonic probe d with a built-in is moved in contact with the outer circumferential surface wb of the holding ring W, and the ultrasonic transducer d is moved at an angle of about 35'' to 45° (empirical value) with respect to the contact angle. An ultrasonic beam e is oscillated at a light oblique angle α, and the reflected wave of the ultrasonic beam e is received by this receiver, thereby reducing noise in the material structure of the retaining ring W, as shown in FIG. An echo (echo wave) β is obtained.The echo wave β thus obtained is analyzed by an ultrasonic flaw detection/analysis device (not shown) to detect a crack Wc in the retaining ring W.

即ち、第8図及び第9図のグラフに示すように、上記超
音波ビームeの探傷路上に亀裂Weが存在すると、上記
受信器は、エコー波βとしてエコー高さを異にした異状
波(亀裂エコー)β□を受波するので、この亀裂エコー
β1の存在によって、経験的に亀裂Weと判定している
のである。
That is, as shown in the graphs of FIGS. 8 and 9, when a crack We exists on the flaw detection path of the ultrasonic beam e, the receiver generates an abnormal wave (with different echo heights) as an echo wave β. Since a crack echo β□ is received, the presence of this crack echo β1 is used to empirically determine that it is a crack We.

(発明が解決しようとする課題) しかしながら、上記従来例における超音波探傷において
は、探傷によって生じる雑音エコーに加え、焼ばめされ
た保持環Wの内周面Waの接触圧の高い部位で音響イン
ピーダンスの不連続を生じてしまう。特に、上記短絡環
Aにおける、凹凸部A の端部Aoで反射した超音波ビ
ームeを受波する際に、超音波受信器は疑似エコーを受
波することになり、あらかも亀裂Wcの異状波(亀裂エ
コー)β1と焼ばめによる接触エコーとを誤認混同して
しまうおそれがある。まして、この端部Aoの近傍に亀
裂Wcが生じている場合には、この誤認の恐れが更に強
(なってしまう。
(Problem to be Solved by the Invention) However, in the conventional ultrasonic flaw detection described above, in addition to the noise echoes generated by the flaw detection, acoustic This results in impedance discontinuity. In particular, when receiving the ultrasonic beam e reflected at the end Ao of the concavo-convex portion A in the short-circuit ring A, the ultrasonic receiver receives a false echo, which may indicate an abnormality in the crack Wc. There is a risk that the wave (crack echo) β1 may be mistakenly confused with the contact echo caused by shrink fitting. Furthermore, if a crack Wc occurs in the vicinity of this end Ao, the possibility of this misidentification becomes even stronger.

このため、上記従来例においては、超音波の減衰や材料
組織によるノイズエコーに妨げられて、上記保持環Wに
生じる数ミリ以下の亀裂WCを探知するには熟練を要し
、探傷検査の信頼性に欠けるといった問題点があった。
For this reason, in the conventional example described above, skill is required to detect cracks WC of several millimeters or less that occur in the retaining ring W due to the attenuation of ultrasonic waves and noise echoes caused by the material structure, and the flaw detection test is not reliable. There were problems such as a lack of sexuality.

本発明は上記に鑑み、受波した超音波音源が被探傷体の
焼ばめによる接触エコーか亀裂エコーかを確実に判別し
て、探傷の信頼性を向上させるとともに、被探傷体の内
部に生じる金属介在物等の有無や位置についても同時に
判定することができるものを提供することを目的とする
In view of the above, the present invention reliably determines whether the received ultrasonic sound source is a contact echo or a crack echo caused by shrink fitting of the object to be tested, thereby improving the reliability of flaw detection, and at the same time improving the reliability of flaw detection. It is an object of the present invention to provide an apparatus that can simultaneously determine the presence or absence and position of metal inclusions and the like.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため、本発明にかかる超音波探傷装
置は、焼ばめにより一体的に構成したリング状の被探傷
体を非破壊探傷するようにした超音波探傷装置において
、上記被探傷体の外周面に、軸心を斜め方向内方に向け
た少なくとも−っの斜角探触子と軸心を直径方向内方に
向けた垂直探触子とを両者の軸心の延長線の交点が上記
被探傷体の内周面の一点で交わるよう配置し、上記斜角
探触子からその軸心方向に発振した超音波ビームの反射
または拡散波を該斜角探触子及び上記垂直探触子で受波
するとともに、この両者で受波した信号レベルの比率を
求めるようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, an ultrasonic flaw detection apparatus according to the present invention non-destructively detects flaws in a ring-shaped flaw detection object integrally formed by shrink fitting. In the sonic flaw detection device, at least one oblique probe whose axis is directed inward in a diagonal direction and a vertical probe whose axis is directed inward in a diametrical direction are attached to the outer circumferential surface of the object to be tested. The intersection point of the extended line of both axes intersects at a point on the inner circumferential surface of the object to be tested, and the reflected or diffused wave of the ultrasonic beam oscillated from the bevel probe in the direction of its axis is detected. The wave is received by the oblique probe and the vertical probe, and the ratio of the signal levels received by both is determined.

(作 用) 上記のように構成した本発明によれば、焼ばめによる接
触エコーと亀裂エコーとでは、傾斜探触子から発振しこ
れで受波したエコーのエコー高さと、傾斜探触子から発
振し垂直探触子で受波したエコーのエコー高さの比率が
異なることから、この比率を求めることにより超音波音
源の判定を容易に行って、亀裂の有無を探知することが
できる。
(Function) According to the present invention configured as described above, contact echoes and crack echoes due to shrink fitting are determined by the echo height of the echo emitted from the tilted probe and received by the tilted probe. Since the ratio of the echo heights of the echoes emitted from the vertical probe and received by the vertical probe is different, by determining this ratio, it is possible to easily determine the source of the ultrasonic sound and detect the presence or absence of a crack.

また、垂直探触子により、被探傷体の肉厚を測定して、
接触探触子の適正な位置を調節することができるととも
に、被探傷体の内部に生じる金属介在物等の有無や位置
についても同時に判定することができる。
In addition, the wall thickness of the object to be tested is measured using a vertical probe.
It is possible to adjust the appropriate position of the contact probe, and at the same time, it is also possible to determine the presence or absence and position of metal inclusions, etc., occurring inside the object to be tested.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図乃至第6図は、タービン発電機ロータのコイル端
部に焼ばめして設けられた保持環を被探鍋体とした実施
例を示す。
FIGS. 1 to 6 show an embodiment in which a retaining ring shrink-fitted to the end of a coil of a turbine generator rotor is used as a probe body.

同図において、保持環(被探傷体)Wは、ロータのコイ
ル端部に一体的に設けられ外周部に凹凸部A1を形成し
た短絡環への外周面に、焼ばめにより一体に取付けられ
ている。ここに、この保持環Wの内周面Waには、応力
腐蝕割れによる亀裂Wcが生じていると仮定する。
In the same figure, the holding ring (tested object) W is integrally attached to the outer peripheral surface of the shorting ring, which is integrally provided at the end of the coil of the rotor and has an uneven part A1 on the outer peripheral part, by shrink fitting. ing. Here, it is assumed that a crack Wc due to stress corrosion cracking has occurred on the inner circumferential surface Wa of this retaining ring W.

上記保持環Wの外周面wbには、これに接触して、軸心
を斜め内方に向けた一対の傾斜探触子la、lbと、軸
心を保持環Wの直径方向に向けた垂直探触子2が、この
垂直探触子2を中心として左右対称で、かつ全ての軸心
の延長線の交点が、保持環Wの内周面の一点Sで交わる
ように配置されている。
On the outer circumferential surface wb of the retaining ring W, there are a pair of inclined probes la and lb, which are in contact with the outer circumferential surface wb and whose axes are directed diagonally inward, and a pair of tilted probes la and lb whose axes are vertically oriented in the diametrical direction of the retaining ring W. The probe 2 is arranged symmetrically with respect to the vertical probe 2, and the extension lines of all axes intersect at a point S on the inner peripheral surface of the retaining ring W.

即ち、傾斜探触子1a、lbから発振された超音波ビー
ムBa、Bbは、この軸線に沿って斜め方向から交点S
に向かい、垂直探触子2から発振された超音波ビームは
、この軸線に沿って保持環Wの直径方向から交点Sに向
かうようなされている。
That is, the ultrasonic beams Ba and Bb emitted from the tilted probes 1a and lb are directed obliquely along this axis to the intersection point S.
The ultrasonic beam emitted from the vertical probe 2 is directed along this axis from the diametrical direction of the holding ring W toward the intersection S.

また、垂直探触子2には、モータ支持台3が固着されて
いるとともに、このそ−夕支持台3には、パルスモータ
等のモータ4が支持され、このモータ4の出力軸には、
歯車5が固着されている。
Further, a motor support stand 3 is fixed to the vertical probe 2, and a motor 4 such as a pulse motor is supported on the support stand 3.
A gear 5 is fixed.

一方、傾斜探触子1a、lbは、左右に夫々逆ねじとな
るねじ部6a、6bを設けたねじ棒6の各ねじ部と6a
、6bと夫々螺合する保持具7a。
On the other hand, the inclined probes 1a and lb are connected to each threaded portion 6a of a threaded rod 6, which is provided with threaded portions 6a and 6b having opposite threads on the left and right sides, respectively.
, 6b, respectively.

7bにばね8.8を介して常に保持環Wの方向に付勢さ
せた状態で取り付けられているとともに、ねじ棒6の中
央部には、上記歯車5と噛合うウオームホイール9が固
着されている。
7b through a spring 8.8 in a state where it is always urged in the direction of the retaining ring W, and a worm wheel 9 that meshes with the gear 5 is fixed to the center of the threaded rod 6. There is.

これにより、モータ4を回転させることにより、ねじ棒
6を回転させ、傾斜探触子1a、lbを互いに同期して
同量だけ逆方向に移動させて、各傾斜探触子1a、lb
と垂直探触子2との各距離りを調整するとともに、傾斜
探触子1a、lbが保持環Wがら離れてしまうことがな
いように構成されている。
Thereby, by rotating the motor 4, the threaded rod 6 is rotated, and the tilted probes 1a, lb are moved in opposite directions by the same amount in synchronization with each other, so that each tilted probe 1a, lb
The distances between the vertical probe 2 and the vertical probe 2 are adjusted, and the tilted probes 1a and lb are configured to not separate from the retaining ring W.

なお、傾斜探触子1a、lb及び垂直探触子2を保持環
Wから離れるのを防止するため、一般に使用されている
案内棒やスリーブ等を使用しても良いことは勿論である
Note that in order to prevent the inclined probes 1a, lb and the vertical probe 2 from separating from the retaining ring W, it is of course possible to use commonly used guide rods, sleeves, etc.

第2図に示すように、傾斜探触子1a、lb及。As shown in FIG. 2, tilted probes 1a, lb and.

び垂直探触子2には、超音波ビームを発振する送信器1
0a、10b及び10cが結合され、これらの送信器1
0a、10b及び10cは、選別器11により各探触子
1a、lb及び2の選定と超音波送信時期が決定される
ようなされている。
A transmitter 1 that emits an ultrasonic beam is attached to the vertical probe 2 and the vertical probe 2.
0a, 10b and 10c are combined and these transmitters 1
0a, 10b, and 10c are arranged so that the selection of each probe 1a, lb, and 2 and the ultrasonic transmission timing are determined by a selector 11.

また、傾斜探触子1a、lbの受信号は、切換器12に
入力された後受信器13aに、垂直探触子2の受信号は
受信器13bに夫々入力され、各信号は個々に信号検出
器14a、14bに入力されて後、信号処理器15に入
力されるようなされている。
Further, the received signals of the inclined probes 1a and 1b are inputted to the switch 12 and then inputted to the receiver 13a, and the received signals of the vertical probe 2 are inputted to the receiver 13b, and each signal is individually inputted to the receiver 13a. After being input to the detectors 14a and 14b, the signals are input to the signal processor 15.

ここに、上記切換器12及び信号検出器14a。Here, the above-mentioned switch 12 and signal detector 14a.

14bは、選別器11からの信号により動作するように
なされており、この選別器11は予めコンピュータ16
に組込まれたプログラムによって動作し、信号処理器1
5の出力は、コンピュータ16に入力され、このコンピ
ュータ16の出力は記録表示器17に人力される。また
、信号検出器14a、14bの信号検出条件は、コンピ
ュータ16からの信号によって決定される。
14b is configured to operate in response to a signal from the sorter 11, and this sorter 11 is preliminarily operated by the computer 16.
The signal processor 1 operates according to a program embedded in the
The output of 5 is input to a computer 16, and the output of this computer 16 is manually input to a record display 17. Furthermore, signal detection conditions for the signal detectors 14a and 14b are determined by signals from the computer 16.

上記構成における探傷の原理の第3図以下を参照して説
明する。
The principle of flaw detection in the above configuration will be explained with reference to FIG. 3 and subsequent figures.

第3図に示すように、各々の探触子1a、lb及び2の
超音波送受波点をCI、C2及びC3とすれば、C1と
C3及びC2とC3の間隔りは等しく、保持環Wの外半
径をR8、肉厚をTとすると、この間隔りは次の式で表
される・。
As shown in FIG. 3, if the ultrasonic transmitting/receiving points of the probes 1a, lb, and 2 are CI, C2, and C3, the intervals between C1 and C3 and between C2 and C3 are equal, and the intervals between the retaining ring W Assuming that the outer radius is R8 and the wall thickness is T, this spacing is expressed by the following formula.

なお、この角度θは、保持環Wの内周面Waへの超音波
ビームの入射角であり、斜角探触子1a。
Note that this angle θ is the angle of incidence of the ultrasonic beam on the inner circumferential surface Wa of the holding ring W, and is the angle of incidence of the ultrasonic beam on the inner peripheral surface Wa of the angled probe 1a.

1bとして横波のものを使用する場合には、一般にθ−
45″近傍をなるようこの屈折角並びに配置を決定する
ことが望ましく、このように配置すると、亀裂Wcが生
じている場合に、比較的高いコーナ反射エコーを得るこ
とができる。
When using a transverse wave as 1b, generally θ-
It is desirable to determine the refraction angle and arrangement so that the refraction angle is near 45'', and with this arrangement, a relatively high corner reflection echo can be obtained when a crack Wc occurs.

こ・のよらに配置された3つの探触子1a、lb及び2
は、相互の位置関係を保ったまま、保持環Wの外周面w
b上を円周方向またはこの軸方向に移動することはこと
は勿論であり、この移動中にも下記の探傷を行うことが
できる。
Three probes 1a, lb and 2 placed in this corner
is the outer peripheral surface w of the retaining ring W while maintaining the mutual positional relationship.
It goes without saying that it can be moved on b in the circumferential direction or in this axial direction, and the flaw detection described below can be performed even during this movement.

そして、上記斜角探触子1a、lb及び垂直探触子2は
、時系列的に順次超音波ビームが発振されるものであり
、選別器11は、順次送信器10a、10bまたは10
cを選別する。即ち、垂直探触子2を選別した場合には
、受信器13bで信号増幅、検波等を実施した後、信号
検出器14bで受信号波形にゲート及びディスクリレベ
ルを設定したことで得られる信号を検出して信号処理器
15に入力される。なお、この場合には、切換器12は
、いずれの傾斜探触子1a、1bも受信器13aと結合
させず、従って信号も検出しない。
The oblique probes 1a, 1b and the vertical probe 2 emit ultrasonic beams sequentially in time series, and the selector 11 sequentially oscillates ultrasonic beams from the transmitters 10a, 10b or 10.
Select c. That is, when the vertical probe 2 is selected, the receiver 13b performs signal amplification, detection, etc., and then the signal detector 14b sets the gate and discret level to the received signal waveform, thereby generating a signal. is detected and input to the signal processor 15. In this case, the switch 12 does not couple either of the tilted probes 1a, 1b with the receiver 13a, and therefore does not detect any signal.

また、一方の傾斜探触子1aを選別器11で選別した場
合には、切換器12はこの探触子1aを受信器13aと
結合させ、信号検出器14aに入力させるとともに、垂
直探触子2の受信号を、受信器13bから信号検出器1
4bに入力させ、これによって、信号検出器14a、1
4bで検出された信号は信号処理器15に入力される。
Further, when one of the tilted probes 1a is selected by the sorter 11, the switch 12 connects this probe 1a to the receiver 13a and inputs it to the signal detector 14a, and also selects the vertical probe 1a. 2 received signal from the receiver 13b to the signal detector 1.
4b, thereby causing the signal detectors 14a, 1
The signal detected at 4b is input to the signal processor 15.

なお、他方の傾斜探触子1bを選別した場合には、上記
と同様な作用が行われる。
Note that when the other inclined probe 1b is selected, the same effect as described above is performed.

第4図は、以上の作用例を図示したもので、垂直探触子
2の送波及び受波に受信波形を同図(a)に示す。この
図(a)において、信号検出器14bは、波形18に対
して欠陥の有無を判別するディスクリレベル19を保持
環Wの内部のビーム伝播路程中に付したゲート20の間
に設定し、保持環Wの内周面Wa位置近傍に相当するビ
ーム伝播路程位置にゲート21を付し、このゲート21
内(7)底面反射エコーB のレベルSoを検出すると
ともに、ディスクリレベル19を越える高さHと路程長
T1を検出している。
FIG. 4 illustrates an example of the above operation, and FIG. 4(a) shows the waveforms of the waves transmitted and received by the vertical probe 2. In this figure (a), the signal detector 14b sets a discretization level 19 for determining the presence or absence of a defect with respect to the waveform 18 between the gates 20 attached in the beam propagation path inside the holding ring W, A gate 21 is provided at a beam propagation path position corresponding to the position of the inner peripheral surface Wa of the retaining ring W, and this gate 21
(7) The level So of the bottom reflection echo B is detected, and the height H and path length T1 exceeding the discretization level 19 are detected.

一方、同図(b)は、一方の斜角探触子1aまたは1b
が選別された時の垂直探触子2により受信波形22を示
している。この波形22には、斜角探触子1aまたは1
bから超音波ビームが送波され、垂直探触子2で受波さ
れる間のビーム経路長にほぼ相当するビーム伝播経路位
置にゲート23を付し、このゲート23内のエコーレベ
ルS1を信号検出器14bで検出している。
On the other hand, in the same figure (b), one of the angle probes 1a or 1b
The waveform 22 received by the vertical probe 2 is shown when the vertical probe 2 is selected. This waveform 22 includes the angle probe 1a or 1
A gate 23 is provided at a beam propagation path position approximately corresponding to the beam path length between when the ultrasonic beam is transmitted from b and received by the vertical probe 2, and the echo level S1 within this gate 23 is set as a signal. It is detected by the detector 14b.

また、同図(c)は、同一の傾斜探触子1aまたは1b
で受波された波形24を示しており、保持環Wの内周面
Waで反射した波形が受波されるビーム経路長に相当す
る位置にゲート25を付し、このゲート25内のエコー
レベルS2を信号検出器14aで検出している。
In addition, in the same figure (c), the same tilted probe 1a or 1b is used.
A gate 25 is attached at a position corresponding to the beam path length where the waveform reflected by the inner peripheral surface Wa of the retaining ring W is received, and the echo level inside this gate 25 is S2 is detected by the signal detector 14a.

上記において、各信号検出器14a、14bの各ゲート
20,21.23及び25の位置及び区間は、コンピュ
ータ16からの信号によって決定されるものであり、信
号処理器15は上記検出された信号を受け、選別器11
の信号に基づき、各々の検出信号を識別してコンピュー
タ16への入力信号とするとともに、上記エコーレベル
S1と82の比率を算出してコンピュータ16への入力
信号としている。
In the above, the position and section of each gate 20, 21, 23, and 25 of each signal detector 14a, 14b are determined by a signal from the computer 16, and the signal processor 15 processes the detected signal. Receiver, sorter 11
Based on the signals, each detection signal is identified and used as an input signal to the computer 16, and the ratio of the echo levels S1 and 82 is calculated and used as an input signal to the computer 16.

なお、この実施例においては、受信器13aを切換器1
2の後に配置しているが、傾斜探触子1a及び1bの後
に夫々前お増幅器を配置し、その後に切換器12に入力
させるようにしても良い。
In this embodiment, the receiver 13a is connected to the switch 1.
Although the amplifiers are placed after the tilting probes 1a and 1b, it is also possible to place the front amplifiers after the tilting probes 1a and 1b, and then input the signals to the switch 12.

また、上記のように垂直探触子2により、保持環Wの肉
厚Tを計測することも容易にあり、この計測値に基づい
て、上記のようにモータ4を介して傾斜探触子1a、l
bの位置を調節することができる。この時の傾斜探触子
1a又は1bと垂直探触子2との間隔りの変化に伴い、
上記第4図に示すビーム伝播中に付したゲート20,2
1゜23及び25の設定位置も変化するのであるが、こ
の間隔りを知れば、コンピュ−タ16でゲート設定位置
に相当するビーム点源経路を演算し、信号検出器14a
、14bに信号を入力して、容易に所定のゲート位置を
設定することができる。
In addition, the wall thickness T of the retaining ring W can be easily measured using the vertical probe 2 as described above, and based on this measurement value, the inclined probe 1a is transmitted via the motor 4 as described above. ,l
The position of b can be adjusted. At this time, as the distance between the inclined probe 1a or 1b and the vertical probe 2 changes,
Gates 20, 2 attached during beam propagation shown in Fig. 4 above
The setting positions of 1° 23 and 25 also change, but once this interval is known, the computer 16 calculates the beam point source path corresponding to the gate setting position, and the signal detector 14a
, 14b, a predetermined gate position can be easily set.

第5図は、傾斜探触子1a、lbからの超音波ビームB
a、Bbが、保持環Wの内周面Waの焼ばめ部の短絡環
Aの凹凸部A の端部Aoに入射工 され、この端部Aoに生じる応力集中をこれに伴う局部
的変形に応じて、反射及び散乱波エコーSl及び縦波散
乱波エコーS2が生じていることを示している。
FIG. 5 shows the ultrasonic beam B from the tilted probes 1a and lb.
a and Bb are inserted into the end Ao of the concavo-convex part A of the short-circuit ring A of the shrink-fitted part of the inner circumferential surface Wa of the retaining ring W, and the stress concentration generated at this end Ao is caused by the local deformation caused by this. It is shown that a reflected and scattered wave echo Sl and a longitudinal scattered wave echo S2 are generated in accordance with .

ここで、この端部Aoの代わりに亀裂Wcに超。Here, the crack Wc instead of this end Ao.

音波ビームを入射しても、これを同様な反射及び散乱波
エコーS1及び縦波散乱波エコーS2が生じる。
Even when a sound wave beam is incident, similar reflected and scattered wave echoes S1 and longitudinal scattered wave echoes S2 are generated.

一方、端部A。に超音波ビームBaを入射し、斜角探触
子1aで受波される端部A。からの波のエコー高さS2
をPa、同時に垂直探触子2で受波される端部Aoから
の波のエコー高さSlをP’ aとし、亀裂We部で同
様にして得られる斜角探触子1aによるエコー高さS2
をQ a s垂直探触子2によるエコー高さSlをQ′
 aとすると、次の式の関係が認められる。
On the other hand, end part A. An end portion A where the ultrasonic beam Ba is incident and received by the angle probe 1a. echo height S2 of waves from
At the same time, Pa is the echo height Sl of the wave from the end Ao that is received by the vertical probe 2, and P'a is the echo height obtained by the oblique probe 1a at the crack We. S2
Q a sEcho height Sl due to vertical probe 2 is Q'
Assuming that a, the relationship of the following equation is recognized.

この関係は、第5図に示す接触探触子1bによる超音波
Bbを用いた場合も同様であるが、焼ばめによる面圧を
受ける側から探傷することになるため、一般にエコー高
さの比率S1/S2の値が不安定となりバラツキが多い
。このため、本実施例においては、垂直探触子1を挾ん
で2つ接触探触子1a、lbを備えることにより、端部
Aoを常に面圧を受けない側から探傷し、安定な判定を
行えるように構成しているのである。
This relationship is the same when using the ultrasonic wave Bb from the contact probe 1b shown in FIG. The value of the ratio S1/S2 becomes unstable and has many variations. For this reason, in this embodiment, by providing two contact probes 1a and lb with the vertical probe 1 in between, the end Ao is always tested from the side that does not receive surface pressure, and stable judgments can be made. It is configured so that it can be done.

なお、端部Aoに亀裂Wcが生じ、両者が重なった場合
には、上式の分母が大きくなり、これによって亀裂We
の存在を検知することができる。
Note that if a crack Wc occurs at the end Ao and the two overlap, the denominator of the above equation becomes larger, and this causes the crack We
can detect the presence of

以上のようにして、検出されたエコーが焼ばめによる端
部Aoによるものか、亀裂Wcによるものかを容易に判
定することができるが、更に第6図に、探触子群1a、
lb及び2を保持環Wの外周面上で移動させつつ、その
位置と上記エコー比率を取って、例えば予め定められた
エコー比率より低い場合を黒塗りにした時のデータを示
す。この図より、端部Aoからの工、コ一部E1と、亀
裂Weが生じているため黒塗りとなったこの亀裂Wcか
らのエコ一部E2を視角的に判定することができ、評価
精度も向上する。
As described above, it is possible to easily determine whether the detected echo is due to the end Ao due to shrink fitting or the crack Wc.
The data is shown when lb and 2 are moved on the outer peripheral surface of the retaining ring W, and their positions and the above echo ratios are taken, and cases where the echo ratio is lower than a predetermined value are blacked out, for example. From this figure, it is possible to visually judge the crack E1 from the end Ao and the eco part E2 from the crack Wc, which is blacked out because of the crack We, and the evaluation accuracy. It also improves.

なお、端部Ao及び亀裂Wc以外の部分では、材料組織
に起因する程度の低いエコーであり、エコー比率を求め
る対象とならない領域であることは勿論である。
It should be noted that in areas other than the end Ao and the crack Wc, the echoes are of a low degree due to the material structure, and it goes without saying that these areas are not targets for determining the echo ratio.

更に、上記実施例によれば、垂直探触子2による底面エ
コーBoの高さSoも測定しているため、焼ばめ面圧の
高い領域では、この底面エコー高さSoが低く、焼ばめ
面圧の作用していない領域では、この底面エコー高さS
oが高いことを利用して、焼ばめ領域であるか否かの判
定が容易となり、焼ばめ面圧が高いと、斜角探触子1a
または1bにより受波エコー高さS2及び垂直探触子2
による受光エコー高さSlの値も高くなるという性質か
ら、損傷中に得られたエコーが各探触子1a。
Furthermore, according to the above embodiment, since the height So of the bottom echo Bo by the vertical probe 2 is also measured, the bottom echo height So is low in the area where the shrink fit surface pressure is high, and the shrink fit In the area where surface pressure is not acting, this bottom echo height S
By taking advantage of the fact that o is high, it is easy to determine whether or not it is in the shrink fit region, and if the shrink fit surface pressure is high, the angle probe 1a
Or by 1b, the receiving echo height S2 and the vertical probe 2
Due to the property that the value of the received echo height Sl also increases due to the damage, the echoes obtained during damage are reflected in each probe 1a.

1b及び2と保持環Wの外周面wbとの接触不良に起因
していないこを確認することができる。
It can be confirmed that this is not due to poor contact between 1b and 2 and the outer peripheral surface wb of the retaining ring W.

なお、上記平施例においては、垂直探触子2の両側に同
一特性の斜角探触子1a及び1bを配置したが、第7図
に示すように、互いに異なる特性の斜角探触子1a及び
1cを配置し、各々の探触って、上記実施例、を同様に
、エコー押生部が焼ばめによる端部Aoのものか;亀裂
W、cにjるものかを容易に判定することができ“る。
In the above-mentioned plain example, the bevel probes 1a and 1b with the same characteristics were arranged on both sides of the vertical probe 2, but as shown in FIG. 1a and 1c, and each probe is used to easily determine whether the echo-embossed portion is at the end Ao due to shrink fit or whether it is located in the cracks W and c in the same manner as in the above embodiment. can do.

更に、上記実施例においては、各探触子を順次送波する
ことで、各々の送波ビームによる受波エコー高さの特性
を求め、所望の効果□を得ているが、これらの探触子か
らの送波を同時とし、その時の受波エコー特性を求めて
、当初の効果を得るようにすることもできる。
Furthermore, in the above embodiment, by sequentially transmitting waves from each probe, the characteristics of the received echo height due to each transmitted beam were determined, and the desired effect □ was obtained. It is also possible to obtain the original effect by transmitting waves from the slave at the same time and determining the received wave echo characteristics at that time.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のような構成であるので゛、超”音−音源
が焼ばめによる接触エコーか亀裂による”亀裂“エコー
かを容易に判定して、探傷検平の信頼性禿高めることが
でき名とともに、垂直探触子を倫え 。
Since the present invention has the above-described configuration, it is possible to easily determine whether the ultra-sound source is a contact echo caused by shrink fitting or a "crack" echo caused by a crack, thereby increasing the reliability of flaw detection. Place the vertical probe along with the name.

rt、txh″″・關neons“2鳩2”1°、1を
同時に探知することができ、被探傷体の検査に必要な時
間を大幅に短縮することができる。
rt, txh″″ and neons “2 pigeons 2” 1°, 1 can be detected at the same time, and the time required for inspecting the object to be detected can be significantly shortened.

また、垂直探触子を挾んで2個の傾斜探触子を配置する
ことにより、焼ばめ面の影響を受けない適正な傾斜探触
子を選択して、上記効果を得゛るようにすることができ
る。
In addition, by arranging two tilted probes with a vertical probe in between, it is possible to select an appropriate tilted probe that is not affected by the shrink fit surface and obtain the above effect. can do.

しかも、垂直探触子の送受波で得られる被探傷体の肉厚
測定値により、垂直探触子と傾斜探触子との適正な間隔
を調節するとともに、傾斜探触子並びに垂直探触子のビ
ーム路程中に付加するゲート設定位置を常時安定に設定
するようにすることができる。
In addition, the proper spacing between the vertical probe and the tilted probe can be adjusted based on the wall thickness measurement value of the tested object obtained by transmitting and receiving waves with the vertical probe. The gate setting position added during the beam path can be set stably at all times.

更に、傾斜探触子と垂直探触子のエコーの比率の分布を
画像化して表示することにより、この分布状態から亀裂
の発生の有無を容易に判定できばかりでなく、各探触子
の被探傷体への接触状態の良、不良の判定も行うように
することができるといった効果がある。
Furthermore, by displaying the distribution of the ratio of echoes from the tilted probe and the vertical probe as an image, it is not only possible to easily determine the presence or absence of cracks from this distribution state, but also to determine whether each probe is exposed to damage. This has the effect that it is possible to determine whether the contact state to the flaw detection object is good or bad.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明の一実施例を示し、第1図は
概略正面図、第2図はブロック図、第3図は各探触子の
配置関係の説明に付する図、第4図は各検出信号の波形
を示す図、第5図は超音波ビームの送受波の説明に付す
る図、第6図は記録データを示す図、第7図は他の実施
例を示す第1図相当図、第8図は従来例を示す概略正面
図、第9図は第8図のエコー曲線を示す図である。 la、lb、lc・・・傾斜探触子、2・・・垂直探触
子、4・・・モータ、6・・・ねじ棒、9・・・ウオー
ムホイール、10a、10b、  10cm・・送信器
、11−・・選別器、12・・・切換器、13a、13
b・・・受信器、14a、14b・・・信号検出器、1
5・・・信号処理器、16・・・コンピュータ、17・
・・記録表示器、18゜22.24・・・波形、20.
21.23.25・・・ゲート、W・・・保持環(被探
傷体)。 出願人代理人  佐  藤  −雄 第1 図 M 2 回 ^性 3 j 目 円周方向 、第 θ 図 エコー高5
1 to 6 show an embodiment of the present invention, FIG. 1 is a schematic front view, FIG. 2 is a block diagram, and FIG. 3 is a diagram explaining the arrangement relationship of each probe. FIG. 4 is a diagram showing the waveform of each detection signal, FIG. 5 is a diagram for explaining the transmission and reception of ultrasonic beams, FIG. 6 is a diagram showing recorded data, and FIG. 7 is a diagram showing another embodiment. FIG. 1 is a diagram corresponding to FIG. 1, FIG. 8 is a schematic front view showing a conventional example, and FIG. 9 is a diagram showing an echo curve of FIG. 8. la, lb, lc...tilt probe, 2...vertical probe, 4...motor, 6...threaded rod, 9...worm wheel, 10a, 10b, 10cm...transmission device, 11-... sorter, 12... switching device, 13a, 13
b...Receiver, 14a, 14b...Signal detector, 1
5... Signal processor, 16... Computer, 17.
...Record display, 18°22.24...Waveform, 20.
21.23.25... Gate, W... Holding ring (object to be tested). Applicant's representative: Sato -Yo Figure 1 M 2 times 3 Circumferential direction, Figure θ Echo height 5

Claims (1)

【特許請求の範囲】[Claims] 焼ばめにより一体的に構成したリング状の被探傷体を非
破壊探傷するようにした超音波探傷装置において、上記
被探傷体の外周面に、軸心を斜め方向内方に向けた少な
くとも一つの斜角探触子と軸心を直径方向内方に向けた
垂直探触子とを両者の軸心の延長線の交点が上記被探傷
体の内周面の一点で交わるよう配置し、上記斜角探触子
からその軸心方向に発振した超音波ビームの反射または
拡散波を該斜角探触子及び上記垂直探触子で受波すると
ともに、この両者で受波した信号レベルの比率を求める
ようにしたことを特徴とする超音波探傷装置。
In an ultrasonic flaw detection device that performs non-destructive flaw detection on a ring-shaped object to be detected that is integrally formed by shrink fitting, at least one hole is provided on the outer circumferential surface of the object to be tested, the axis of which is directed diagonally inward. Two bevel probes and a vertical probe whose axes are oriented diametrically inward are arranged so that the extension lines of their axes intersect at a point on the inner circumferential surface of the object to be tested. The reflected or diffused wave of the ultrasonic beam oscillated from the angle probe in its axial direction is received by the angle probe and the vertical probe, and the ratio of the signal level received by both. An ultrasonic flaw detection device characterized by being designed to detect.
JP63230503A 1988-09-14 1988-09-14 Ultrasonic flaw detecting device Pending JPH0278949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63230503A JPH0278949A (en) 1988-09-14 1988-09-14 Ultrasonic flaw detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63230503A JPH0278949A (en) 1988-09-14 1988-09-14 Ultrasonic flaw detecting device

Publications (1)

Publication Number Publication Date
JPH0278949A true JPH0278949A (en) 1990-03-19

Family

ID=16908783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63230503A Pending JPH0278949A (en) 1988-09-14 1988-09-14 Ultrasonic flaw detecting device

Country Status (1)

Country Link
JP (1) JPH0278949A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452552B1 (en) * 2002-12-06 2004-10-14 삼성전자주식회사 Detecting apparatus of development cartridge for image forming machine
WO2007004303A1 (en) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing
WO2007135782A1 (en) * 2006-05-23 2007-11-29 Central Research Institute Of Electric Power Industry Ultrasonic flaw detector and ultrasonic flaw detection program
WO2009084508A1 (en) * 2007-12-27 2009-07-09 Showa Denko K.K. Ultrasonic flaw detection method for cast stick and ultrasonic flaw detection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452552B1 (en) * 2002-12-06 2004-10-14 삼성전자주식회사 Detecting apparatus of development cartridge for image forming machine
WO2007004303A1 (en) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing
JPWO2007004303A1 (en) * 2005-07-06 2009-01-22 財団法人電力中央研究所 Scratch height measuring method and apparatus in ultrasonic flaw detection test
JP4747172B2 (en) * 2005-07-06 2011-08-17 財団法人電力中央研究所 Scratch height measuring method and apparatus in ultrasonic flaw detection test
US8051717B2 (en) 2005-07-06 2011-11-08 Central Research Institute Of Electric Power Industry Method and apparatus for measuring flaw height in ultrasonic tests
WO2007135782A1 (en) * 2006-05-23 2007-11-29 Central Research Institute Of Electric Power Industry Ultrasonic flaw detector and ultrasonic flaw detection program
JP2007315820A (en) * 2006-05-23 2007-12-06 Central Res Inst Of Electric Power Ind Ultrasonic flaw inspection device and ultrasonic flaw inspection program
US8100014B2 (en) 2006-05-23 2012-01-24 Central Research Institute Of Electric Power Industry Ultrasonic flaw detection apparatus and ultrasonic flaw detection program
WO2009084508A1 (en) * 2007-12-27 2009-07-09 Showa Denko K.K. Ultrasonic flaw detection method for cast stick and ultrasonic flaw detection device
JP2009156755A (en) * 2007-12-27 2009-07-16 Showa Denko Kk Method and device for ultrasonically detecting flaw in cast rod

Similar Documents

Publication Publication Date Title
US5085082A (en) Apparatus and method of discriminating flaw depths in the inspection of tubular products
US7010982B2 (en) Method of ultrasonically inspecting airfoils
US8104347B2 (en) Ultrasonic inspection method and device for plastics walls
JPS61283864A (en) Ultrasonic measurement method and detector for defect in metallic medium
JP2007163470A (en) Apparatus and method for ultrasonically detecting flaw of tube
WO1995027897A1 (en) Ultrasonic flaw detection device
JP2005156305A (en) Evaluation method of internal defect
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
JPH0278949A (en) Ultrasonic flaw detecting device
CA2012374C (en) Ultrasonic crack sizing method
JP3033438B2 (en) Ultrasonic flaw detection method for piping
JP2021047091A (en) Method and device for ultrasonic inspection
US3140600A (en) Liquid immersion ultrasonic apparatus and method for the non-destructive testing of solid bodies
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
CN105116057B (en) Small-bore pipe rolling defect ultrasonic probe and matching used test block
JP2609647B2 (en) Ultrasonic flaw detector
KR20050082981A (en) A reference block for ultrasonic testing
JP6274957B2 (en) Coupling monitoring method of oblique angle ultrasonic probe
JPH09304363A (en) Method for ultrasonically detecting flaw in austenitic steel casting
JP3916603B2 (en) Ultrasonic oblique angle flaw detection method and apparatus
JPH01145565A (en) Ultrasonic flaw detector
WO2018135242A1 (en) Inspection method
JP2001004602A (en) Ultrasonic flaw detecting method and apparatus
JP2000028588A (en) Ultrasonic flaw detecting method
JPS6365362A (en) Ultrasonic flaw detection device