JPS5986275A - Cryogenic temperature current leading device - Google Patents

Cryogenic temperature current leading device

Info

Publication number
JPS5986275A
JPS5986275A JP19596582A JP19596582A JPS5986275A JP S5986275 A JPS5986275 A JP S5986275A JP 19596582 A JP19596582 A JP 19596582A JP 19596582 A JP19596582 A JP 19596582A JP S5986275 A JPS5986275 A JP S5986275A
Authority
JP
Japan
Prior art keywords
superconductive
superconducting
conductors
heat
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19596582A
Other languages
Japanese (ja)
Inventor
Akihiko Miura
三浦 秋彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19596582A priority Critical patent/JPS5986275A/en
Publication of JPS5986275A publication Critical patent/JPS5986275A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a structure which has less invasion quantity of current leading heat of a superconductive coil by holding a partition plate by providing an interval at superconductive conductors which are covered with superconductive stabilizer in a cylinder, and constructing a helium gas cooling passage. CONSTITUTION:A plurality of superconductive conductors 10 which are covered with superconductive stabilizer such as copper or aluminum on superconductive strands are mounted at the ends on the upper and lower terminals 5, 7, and a plurality of partition plates 11 which hold the conductors 10 at an interval are arranged at the intermediate. Superconductive conductors 10a of the terminal 7 side are reduced in thickness of the stabilizer to decrease the quantity of the conductive material. Helium gas which is evaporated from liquid helium 8 in a helium vessel 2 in a cylinder 1 passes through a zigzag passage formed of cutouts 7a, 11a, 5a and is exhausted from an outlet 1a. Since the conductors 10a of low temperature side become those formed of the superconductive strands and the thermal conductivity of the superconductive material is very small, the heat invaded due to thermal conduction can be largely reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超電導装置の電流鴫入部である極低温電流リー
ド装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cryogenic current lead device which is a current feed part of a superconducting device.

〔発明の技術的背景〕[Technical background of the invention]

超電導装置は超箪編コイルを一269℃の液体ヘリウム
で冷却して超電導状態にし、これ(二通電することによ
ってほとんど無損失で強磁界を発生するものである。液
体ヘリウムは蒸発114熱が小さく蒸発し易いので、超
電導装置は具菫W1熱層を設けて熱伝導の距離を長くし
たり、助熱材を用いて極力侵入熱を少くしてヘリウム冷
凍機の負担を小さくしている。熱の侵入経路は超゛屯等
コイルを支持する支持部杓、ヘリウムの和排管からの熱
伝導経路、真空Wr熱層からの輻射伝熱経路、電流9−
ドからの熱伝導経路などがあるが、′電流リードからの
侵入熱は他に較べてかなり大きいため、その低減策が種
々試みら肚ている。
A superconducting device cools a super short knitted coil with liquid helium at -269 degrees Celsius to make it superconducting, and generates a strong magnetic field with almost no loss by applying electricity to it.Liquid helium has low heat of evaporation. Because superconducting equipment is prone to evaporation, a heat layer is provided in superconducting devices to lengthen the distance for heat conduction, and heat auxiliary materials are used to minimize the amount of heat that enters, thereby reducing the burden on the helium refrigerator. The entry routes are the support part that supports the coil, the heat conduction route from the helium exhaust tube, the radiation heat transfer route from the vacuum Wr heat layer, and the current 9-
Although there are heat conduction paths from the current leads, the amount of heat that enters from the current leads is considerably larger than from other sources, so various measures are being taken to reduce it.

電流リードは超電導装置の¥温である晶温部から真空断
熱層を貫通して同体ヘリウム容器内の超′セ錯コイルに
接続しているので、通常は銅相の導電部とスデンレスb
idの容器とを伝わる伝導熱お裏び導電部のジュール発
熱が侵入熱となる。従って大電流リードでは導電部の銅
の断面積が大きくなるので伝導熱が増加するため、従来
は液体ヘリウムの蒸発ガスで導゛屯部を冷却する構造を
用い、尋′屯部を出来るだけ良く冷却しXvlシJ−ド
の低温端に熱が伝わらないようにした品性1ii<の慈
父換器の(111造にしている。
The current lead is connected from the crystal temperature part of the superconducting device through the vacuum insulation layer to the super-complex coil in the homogeneous helium container.
The conduction heat transmitted through the id container and the Joule heat generated by the conductive part become the intrusion heat. Therefore, in large current leads, the cross-sectional area of the copper in the conductive part becomes large, which increases the amount of conduction heat.Conventionally, a structure was used in which the conductive part was cooled with evaporated gas of liquid helium, and the conductive part was cooled as much as possible. It is made of a 111-piece converter with a quality of 1ii<, which is cooled and prevents heat from being transmitted to the low temperature end of the Xvl side.

〔背景技術の間届点〕[Background technology point]

しかしながら、かかる構造のものはrLDL9−ドの7
5メ電部の1iii’を度勾配は商7hA端から低ん(
〜161まで約300’kから4,2°Kまで非1μ梅
的に変化し、熱交換特性にもよるが品温側での変化力鷲
トシしく、低温側では変化か小さい。これは鋼の′電気
抵抗が低l晶側で1 / 100以下(ニー、λ少′す
゛ることと熱伝廊率が20’に@;J+xで篩l晶11
ケよりもかなり人きくなることに起因する。’4流リー
ドの侵入熱、IJ先は29竜部の低77、H端での温度
勾配と熱伝尋率とLυrila積とによって決まるから
、電流リードに銅を用い抽向積を高温端、低温端とも同
一にしているので熱侵入↓fiを大11」に臥少させる
ことかできない欠点があった。
However, those with such a structure are
The gradient of 1iii' in the 5th electric section is lower from the quotient 7hA end (
~161, it changes in a non-1 μm manner from about 300'K to 4.2°K, and although it depends on the heat exchange characteristics, the change is strong on the product temperature side, and the change is small on the low temperature side. This is because the electric resistance of the steel is less than 1/100 on the low crystal side (ne, λ is small and the heat conductivity is 20';
This is due to the fact that he is much more personable than Ke. '4 The intrusion heat of the current lead, the IJ tip is determined by the temperature gradient at the low 77, H end, the heat conductivity, and the Lυrila product, so use copper for the current lead and set the extraction product at the high temperature end. Since the low-temperature end is also the same, there was a drawback that the heat intrusion ↓fi could only be reduced to 11".

〔発明の目的〕[Purpose of the invention]

本発明は超″屯擲コイルの電流リ−Fを熱侵入爾か少な
い構造にした極低温゛屯vfLリード装Litを提供す
ることを目的とする。
An object of the present invention is to provide an ultra-low-temperature VFL lead device Lit in which the current lead F of the ultra-low-temperature VFL coil has a structure with less heat penetration.

〔発明の概要〕[Summary of the invention]

すなわち、筒体内に奄tAt 9−ドを超mm安定化相
を被覆した複数本の超電編線を間隔を設けて榎数個の仕
切板で保持し、ヘリウムガスの冷却通勤を構成したもの
である。
In other words, a plurality of superelectric braided wires coated with an ultra-mm-thick stabilizing phase of At 9-d in a cylinder are held at intervals by several partition plates, and a helium gas cooling system is constructed. It is.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を同曲に示す一実施例について説明する。図
において、筒体(1)は超箪得装置、のヘリウム容器(
2)およびヘリウム容器(2)の外側の真窒容器(3)
をH通して固着して上方に排出口(la)を設け、同体
(1)の上部には絶縁部祠(4)を介して上部端子(5
)(1) が貫通して固着している。筒体(親のビ]側には板状の
絶縁部拐(6)を内張して固着し、下方に絶(i ?’
rb 44(6)を介して固着する下部端子(’7)に
液体ヘリウム(:幻に浸偵する超?fi寺装り本体の口
出k (9)を接続して、いる。
An embodiment of the present invention will be described below. In the figure, the cylinder (1) is a helium container (
2) and a true nitrogen container (3) outside the helium container (2)
A discharge port (la) is provided at the upper part of the body (1), and an upper terminal (5) is connected to the upper part of the body (1) through an insulating part (4).
)(1) is penetrated and fixed. A plate-shaped insulating part (6) is lined and fixed to the cylindrical body (main part) side, and an insulating part (6) is attached downwardly.
The lower terminal ('7) fixed via the RB44 (6) is connected to the outlet K (9) of the body of the temple outfit using liquid helium.

上?ISl’1lii子(:i)を1・都蟻子(7)と
には超゛も郭素緑に銅またはアルミニウドなどの超?a
 醇驚定化祠な被伝した複数本の超箱、堺線tllの端
部をそオtぞれろう付けまたはかしめなどの方法で取付
け、中間部は超電導D1. Lltl)をl1il k
iiを設けて保持する仕切板aυが複数個配設さIして
いる。そして−ト部端子(7)の欠切部分(7a)  
、仕切板0Dの切欠tjlS分(lla)、上g15 
’+l+i子(5)の切欠部分(5a)をそれぞれジク
ザグに配設し、下部端子(7)側の超?t4.提線(1
oa)は超電へ線曲の被覆した超71!尋安矩化拐を硝
酸などで俗解して薄くし、恨゛屯杓料のhlを少l[<
シである。
Up? Isl'1liii child (:i) 1. Doanzi (7) also super ゛ also super green copper or aluminum etc.? a
The ends of the multiple super-boxes that were transmitted to the Sakai Line tll were each attached by brazing or caulking, and the middle part was made of superconducting D1. Lltl) l1il k
A plurality of partition plates aυ are provided and held. And the cutout part (7a) of the terminal (7)
, Notch tjlS of partition plate 0D (lla), upper g15
The cutout portions (5a) of the '+l+i terminals (5) are arranged in a zigzag pattern, and the upper terminal (7) side is placed on the lower terminal (7) side. t4. Line (1)
oa) is a super 71 covered with a line curve to the super electric! By using nitric acid, etc., to dilute the ``jin'an'', the amount of hl in the grudge was reduced to a little [<
It is shi.

伏に作用をili?、明する。ft1〕休(1)内はヘ
リウム容器(2)内のztK体ヘリウム(8)の蒸発す
るヘリウムガスが切欠部分(7a)、(lia)、(5
a)で形成するジクザグの辿路乞通りυ1出口(1a)
から排出される。超電轡線uIは超”i4E S安定比
相の被位置は電流リードの性能を満足するに足るだけの
61を0右し、超電JQ素線は電流リードの演スi5に
はネーに寄与を期待してぃない。電流リードの低温端で
ある超″4〜線(10a)は蒸発ヘリウムガスで冷却さ
匙て10°に以下となり超電導状態となるから、この部
分でのジュール発熱はなくなる。
Does it work on the side? , reveal. ft1] In the rest (1), the helium gas that evaporates from the ztK body helium (8) in the helium container (2) is in the notched parts (7a), (lia), (5
Zigzag path formed by a) Exit υ1 (1a)
is discharged from. The superelectric wire uI is super "i4E. The position of the S stability ratio phase is 61 to 0, which is enough to satisfy the performance of the current lead, and the superelectric JQ wire is negated to the current lead performance i5. We do not expect any contribution.The ultra-high wire (10a), which is the low-temperature end of the current lead, is cooled with evaporated helium gas and becomes less than 10 degrees, becoming superconducting, so the Joule heat generation in this part is It disappears.

一力、′4流リーM O) 、!i0′lLA側からO
J熱伝編ハ低?9A端側の超電導線(10a)が超電導
素線によるもののみとなり、超電導相の熱伝編率は一般
に銅やアルミニウムに比較して数百分の1から数十分の
1と非電に小さいため、熱伝編による侵入熱は大巾に減
少する。しかもこの部分はジュール発熱がないから゛従
来の電流リードに比較して大中C二熱侵入量は絨少する
Ichiriki, '4th Ryu Lee MO),! i0′l O from LA side
J Netsuden Hen Ha low? The superconducting wire (10a) on the 9A end side is made only of superconducting strands, and the thermal conductivity of the superconducting phase is generally a few hundredths to several tenths of that of copper or aluminum, which is non-electrically small. Therefore, the intrusion heat due to heat transfer is greatly reduced. Moreover, since there is no Joule heat generation in this part, the amount of heat intrusion between large and medium C is much smaller than in the conventional current lead.

なお上記において、下NIS端子(7)側の超電導線(
10a)は超電棉線四の仮位した尋゛屯材料をl、す離
し除去しても同様の作用が得られる。
In the above, the superconducting wire (
In 10a), the same effect can be obtained even if the temporary layer material of the superelectric wire 4 is separated and removed.

また筒体(1)内のヘリウムガスの通路は仕切板0υを
用いてジクザグに構成したが、要旨を変更しない範囲で
熱交換の−良い他の構造にしてもよいことは勿島δであ
る。
In addition, the helium gas passage inside the cylinder (1) was configured in a zigzag pattern using partition plates 0υ, but it is also possible to use other structures with good heat exchange as long as the main idea is not changed. .

〔発明の効果〕〔Effect of the invention〕

以上のようじ木うれ明(二よatは、極低温゛屯訛り一
ド装置dにおいて超′屯i41装置の容器に貫イjする
面体の中を助る電b’r 9−ドを超’i4 jM安定
化伺を仮覆した?!、l数木の超′r@、導線を用い液
体へリワムの蒸発するヘリワムガヌでtj7却するよう
にしたので、篩温側からの伝榊熱が誠少し、しかも低1
ota ’[1!llは超゛屯桿状態となってジュール
発熱がなくなり、液体へリクムの侵入熱を大中(二菖少
Jることができる。従って超電j!4装置C′1”、の
熱侵入1註の大半を占める屯υICリード装U1の熱侵
入L(は太「1」(ニアJ1表少することにより、超?
ii睨装置のl′1(洩装置自の負萄を大中には少して
全体的にMi’1−1h的な設備を実現できルすぐれた
効果がある。
The above-mentioned toothpick (20 at) is the electric current b'r 9- at which the electric current that is pierced through the container of the ultra-low temperature i41 device in the ultra-low temperature i4 I temporarily reversed the jM stabilization question?!, I made it so that tj7 was rejected by Heliwam Ganu, which evaporates into liquid using a conductive wire, so that the transmission heat from the sieve temperature side is truly A little, and low 1
ota' [1! ll enters a superconductor state and Joule heat generation disappears, and the heat intrusion into the liquid helicum can be greatly reduced. Therefore, the heat intrusion 1 of the superelectric j!4 device C'1'' is The heat intrusion L of the tun υ IC lead device U1, which accounts for the majority of the notes, is ``1'' (near J1).
ii) It is possible to realize a Mi'1-1h-like facility as a whole with a small burden on the l'1 (leakage device) of the glaring device, which has an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の極低温電流リード装置C1の一実施例を示
す縦Wr面図である。 (1)・・・fi、]休       (1a)・・・
排出口(2)・・・ヘリワム容器   (3)・・・輿
望容器(4)・・・絶縁部杓     (5)・・・上
部端子(13)・・・絶縁=1<拐     (7)・
・・下部端子(8)・・・液体へリクム   (9)・
・・1」出線(10) 、 (10a)・・・超電等線
 aυ・・・仕切板代理人 弁理士 井 上 −男
The figure is a vertical Wr side view showing an embodiment of the cryogenic current lead device C1 of the present invention. (1)...fi,] rest (1a)...
Discharge port (2)...Heliwam container (3)...Transportation container (4)...Insulation part scoop (5)...Top terminal (13)...Insulation = 1 < removal (7)
・・Lower terminal (8)・Liquid helicum (9)・
...1" Output line (10), (10a)...Superelectric line aυ...Partition plate agent Patent attorney Inoue -Male

Claims (1)

【特許請求の範囲】 1、 超電導装置本体を液体ヘリウムに浸偵する容器の
上部にYi岩し上方に排出口を設ける同体と、この同体
の上部に絶縁部杓を介して貝看する上部端子と、削記簡
体の下部に絶縁部杓な介して取付は前記超電導装置本体
に接続する下部端子と、この下部端子と前記上部端子と
の間を接続する超電堺安定化拐を被覆した複数本のAl
!L電棉線と、この蝮数本の超電導線を間隔を設けて保
持し前記1;d体内にヘリウムガスの通るコ1(1路を
形成する複数量の仕切板とからなる極低温電流リード装
置flS1.。 2、超箪桿線の下部端子側の超電尋安定化拐を薄くした
ことを特徴とする特許請求の範囲第1項記載の極低温″
電流リード装置。 3、超電導線の下部端子側の超電桿安定化杓を剥離して
なくしたことを特徴とする特W日+7求の範囲第1項記
載の極低/lla i上流リード製麹。
[Scope of Claims] 1. A body in which the main body of the superconducting device is immersed in liquid helium is placed on top of a container, and a discharge port is provided above, and an upper terminal is connected to the top of this body through an insulating member. A lower terminal connected to the superconducting device main body, and a plurality of superelectric stabilizing wires connected between the lower terminal and the upper terminal are attached to the lower part of the insulating part via a scoop. Book Al
! A cryogenic current lead device consisting of an L electric cotton wire and a plurality of partition plates that hold several of these superconducting wires at intervals and form a path through which helium gas passes through the body. flS1.. 2. The ultralow temperature according to claim 1, characterized in that the superelectric stabilizing layer on the lower terminal side of the super short rod wire is made thinner.
Current lead device. 3. The extremely low/lla i upstream lead koji described in item 1 of the special W day + 7 request range, characterized in that the superconducting rod stabilizing ladle on the lower terminal side of the superconducting wire is peeled off and removed.
JP19596582A 1982-11-10 1982-11-10 Cryogenic temperature current leading device Pending JPS5986275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19596582A JPS5986275A (en) 1982-11-10 1982-11-10 Cryogenic temperature current leading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19596582A JPS5986275A (en) 1982-11-10 1982-11-10 Cryogenic temperature current leading device

Publications (1)

Publication Number Publication Date
JPS5986275A true JPS5986275A (en) 1984-05-18

Family

ID=16349927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19596582A Pending JPS5986275A (en) 1982-11-10 1982-11-10 Cryogenic temperature current leading device

Country Status (1)

Country Link
JP (1) JPS5986275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021642A1 (en) * 1992-04-10 1993-10-28 Trustees Of Boston University Composite lead for conducting an electrical current between 75-80 k and 4.5 k temperatures
US5324891A (en) * 1991-07-01 1994-06-28 Wisconsin Alumni Research Foundation Superconducting connecting leads having thermal plug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134707U (en) * 1974-09-06 1976-03-15
JPS56134785A (en) * 1980-03-26 1981-10-21 Hitachi Ltd Super conductive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134707U (en) * 1974-09-06 1976-03-15
JPS56134785A (en) * 1980-03-26 1981-10-21 Hitachi Ltd Super conductive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324891A (en) * 1991-07-01 1994-06-28 Wisconsin Alumni Research Foundation Superconducting connecting leads having thermal plug
WO1993021642A1 (en) * 1992-04-10 1993-10-28 Trustees Of Boston University Composite lead for conducting an electrical current between 75-80 k and 4.5 k temperatures

Similar Documents

Publication Publication Date Title
Buck The cryotron-a superconductive computer component
US9305691B2 (en) Superconducting magnet apparatus
JP4142754B2 (en) Permanent magnet system
US20030154734A1 (en) Device used in superconductor technology
JPS5986275A (en) Cryogenic temperature current leading device
US5183965A (en) Ceramic superconducting downlead
JPS6123306A (en) Cooling device of superconductive coil
JP2929622B2 (en) How to use oxide superconductor
US20080293577A1 (en) Method for Operating a Superconductor at a Temperature Higher than the Superconductive Temperature Tc
JP3377350B2 (en) Thermoelectric cooling type power lead
JPH0727814B2 (en) Forced cooling superconducting coil device
JP3450318B2 (en) Thermoelectric cooling type power lead
JP2581283B2 (en) Current lead for superconducting coil
JPH0548156A (en) Current lead for superconducting magnet device
JPS6025202A (en) Superconductive electromagnet apparatus
Schoen et al. Glass Dewars for Optical and Other Studies at Low Temperatures
JP3766448B2 (en) Superconducting current lead
JP3860070B2 (en) Thermoelectric cooling power lead
Lange The theoretical minimum for the heat influx in cryostats caused by current leads
JPH05315129A (en) Cryostat
JPH0955545A (en) Current lead for superconductive apparatus
JP4019014B2 (en) Thermoelectric cooling power lead
JP2599269B2 (en) Superconducting wire
Fitch et al. Paramagnetic Effect in Superconductors: IV. Measurements on Aluminum
JPH03283678A (en) Current lead of superconducting magnet apparatus