JPH03283678A - Current lead of superconducting magnet apparatus - Google Patents

Current lead of superconducting magnet apparatus

Info

Publication number
JPH03283678A
JPH03283678A JP2084252A JP8425290A JPH03283678A JP H03283678 A JPH03283678 A JP H03283678A JP 2084252 A JP2084252 A JP 2084252A JP 8425290 A JP8425290 A JP 8425290A JP H03283678 A JPH03283678 A JP H03283678A
Authority
JP
Japan
Prior art keywords
conductor
core material
low temperature
current
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2084252A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takita
滝田 清
Toshio Kamiide
俊夫 上出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2084252A priority Critical patent/JPH03283678A/en
Publication of JPH03283678A publication Critical patent/JPH03283678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To support an increase in current by a method wherein a rod-like steel material having high rigidity even at a low temperature and low temperature conductivity is used as a core material, an oxide superconductive body is wound in a spiral around the surface of the core, and this is inserted into a hollowed tube wherein low temperature helium gas is made flow into a space generated to make a superconductive state. CONSTITUTION:A conductor 31 is composed of a cylindrical rod or a hollowed rod made of stainless steel, manganese steel or nichrome steel having high rigidity even at a low temperature and low temperature conductivity, and this is used as a core material 32. An oxide superconductor 33 is spirally wound around the outer surface of the core with an interval 32 to form the conductor 31, and this structure is inserted into a hollowed tube 36 which has been similarly fabricated of stainless steel or the like while its outer periphery is enclosed by an insulating tube 37 if necessary. Thus a cooling path 38 is made between the core material 32 and the hollowed tube 36, and vaporized low temperature helium gas 1G is made flow into the path 38 from the upper end of a current lead 30 to cool the conductor 31. Thus it is possible to supply large current to the lead 30.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空断熱容器内で液体ヘリウム温度に冷却
された超電導コイルに、外部電源からの励磁電流を通流
するために超電導電磁石に設けられる直流リードに関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a superconducting electromagnet that is installed in a superconducting electromagnet in order to pass an excitation current from an external power source through a superconducting coil that has been cooled to liquid helium temperature in a vacuum insulated container. Regarding DC leads.

〔従来の技術〕[Conventional technology]

一般に超(4電磁石は、液体ヘリウム等の極低龜冷媒に
よって冷却されるため、液体窒素シールドや真望寺によ
って断熱された^空萌熱d器の内部に収納されている。
In general, super (4-electromagnets) are cooled by extremely low-temperature refrigerants such as liquid helium, so they are housed inside an air-heating device that is insulated by a liquid nitrogen shield or Shinbouji.

′#L訛り一ドは、極低幅に保持された超電導コイルに
常温部からの電力r通流するもので、−収に導体に発生
するジュール熱と外部の常温部から内部の極低編部へ伝
4により侵入する熱倉世減するために、液体ヘリウムが
蒸発した低温のヘリウムガスを用いて冷却する方式がと
られている。したがって侵入熱が大さ丁ざると高価な液
体へリクムの消費量が多大となるため、侵入熱およびジ
ュール熱の低減が求められるとともに、励磁電流のオ/
・オフ弄の電流変化に際して電流リード間に作用する電
磁機械力に耐える剛性が求められる。
'#L accent is a superconducting coil that is kept at an extremely low width and is passed through a superconducting coil from a normal temperature section. In order to reduce the amount of heat that enters the tank, a cooling method is used that uses low-temperature helium gas, which is evaporated from liquid helium. Therefore, if the amount of penetrating heat is too small, the amount of expensive liquid helicum will be consumed.Therefore, it is necessary to reduce the penetrating heat and Joule heat, and also to reduce the excitation current.
- Rigidity is required to withstand the electromagnetic mechanical force that acts between the current leads when the current changes during off-cycle.

第2図は超電導磁石装置の一般的な構造を簡略化して示
′t″四断面図でめる。図において、真空断熱容器1は
Jc堕d指1Aと、その蓋板部分にブービスボー)ID
倉介して連結されたヘリウム谷器1B、!−,A全答器
全人61人ウム容器1Bとで画成された高真空空間内に
配されて液体窓AINによって冷却される液体窒素シー
ルドICを持ち、かつ液体窒素シールド1Cやヘリウム
容器1Bが図示しない多層断熱層で覆われて真窒容器1
人側からの輻射熱全遮断することにより、ヘリウム容器
1Bへ・の侵入熱が極めて僅かになり、ヘリウム容器I
K収啓された液体ヘリウム1Hの気化損失が最小限に保
持される。
Figure 2 shows the general structure of a superconducting magnet device in a simplified manner and is shown in four cross-sectional views.
Helium valley device 1B connected through Kurasuke! -, A complete answering device for 61 people. It has a liquid nitrogen shield IC that is placed in a high vacuum space defined by a liquid nitrogen shield 1C and a helium container 1B and is cooled by a liquid window AIN. is covered with a multi-layer heat insulating layer (not shown).
By completely blocking radiant heat from the person's side, the amount of heat entering the helium container 1B becomes extremely small.
Vaporization loss of K-evaporated liquid helium 1H is kept to a minimum.

超電導コイル2はヘリウム容器1B内に液体ヘリウム1
HK浸漬した状態で収納されて液体ヘリウム温度(約4
.2K)に保持され、その両端末#′i接続リード4を
介して一対の電流リード6の下端部に接続される。電流
リード6はサービスボー)IDt−通シ、その蓋板1E
に絶縁支持された状態でその上端部が外部に引き出され
、端子板3Aが図太しない外部電源に導電I!続され、
電流リード3を介して超電導コイル2に直流入電tlL
を供給して励磁すれば、超電導コイルは高磁界を発生す
るとともに、この状態で超電導コイル2の両端末を短絡
すれば、超電導コイルには永久電流が流れ、大きな電力
を磁気エネルギーとして蓄える超電導磁石装置としての
機能′fr発揮する。
The superconducting coil 2 has liquid helium 1 in the helium container 1B.
It is stored in the HK immersed state and the temperature of liquid helium (approx.
.. 2K), and is connected to the lower ends of a pair of current leads 6 via connection leads 4 at both terminals #'i. Current lead 6 is service board) IDt-through, its cover plate 1E
Its upper end is pulled out while being insulated and supported by the terminal board 3A, and the terminal board 3A is conductive to the external power supply. continued,
Direct current tlL to the superconducting coil 2 via the current lead 3
When the superconducting coil is supplied and excited, the superconducting coil generates a high magnetic field, and if both terminals of the superconducting coil 2 are short-circuited in this state, a persistent current flows through the superconducting coil, creating a superconducting magnet that stores a large amount of electric power as magnetic energy. It performs the function 'fr' as a device.

第6図は第2図における電流リード3に示す横断面図で
あり、[fi’J−ド3は、金I4製の中空管60内部
には複数条の導体5をちゅう密に挿入し、中空管6の外
周1#は絶縁層7によって被接される。
FIG. 6 is a cross-sectional view of the current lead 3 in FIG. , the outer periphery 1# of the hollow tube 6 is covered with an insulating layer 7.

また、複数の導体5相互間の縁間および導体と中空管と
の間の隙間はヘリウムガス1Gによる冷却通路8として
利用され、ヘリウム容器1B中で気化した低温のヘリウ
ムガス1Gが、電流リード3の下端から冷却通路8に入
シ、電流リードの上端から外部に放出されるか、あるい
は回収されることにより、導体5は低温のヘリウムガス
1Gによって冷却され、導体5内に励磁電流によって発
生するジュール熱が低減され、かつ外部からの侵入熱お
よびジュール熱の液体ヘリウム1B@への伝導が阻止さ
れることによシ、液体ヘリウム1Hの気化狽失を低減す
ることができる。
In addition, the gaps between the edges of the plurality of conductors 5 and between the conductors and the hollow tube are used as cooling passages 8 by 1G of helium gas, and the low-temperature helium gas 1G vaporized in the helium container 1B is used as a cooling path 8 for the current leads. The conductor 5 is cooled by 1G of low-temperature helium gas, which enters the cooling passage 8 from the lower end of the current lead and is discharged to the outside from the upper end of the current lead or is collected. By reducing the Joule heat generated by the liquid helium 1H and preventing the heat from entering from the outside and the conduction of the Joule heat to the liquid helium 1B@, it is possible to reduce the loss of vaporization of the liquid helium 1H.

また導体5としては、ステンレス鋼朦、マンガン綱巌、
あるいはニッケルクロム@−などの高剛性、低熱伝導性
を有する金属線材を心材として、その表面を綱や銅合金
などの熱的、電気的良導体号公報参照)。また、高剛性
、低熱伝導性金属線と熱的、電気的良導体からなる導体
とを互いに混合して中全・θ内に挿入した電流リードが
同−出願人等によってすでに虎来されている。(%開昭
62−142379号公報参照)。
Further, as the conductor 5, stainless steel rod, manganese rope,
Alternatively, the core material is a metal wire with high rigidity and low thermal conductivity, such as nickel chromium@-, and the surface is made of a good thermal and electrical conductor such as steel or copper alloy. In addition, a current lead in which a high-rigidity, low-thermal-conductivity metal wire and a conductor made of a good thermal and electrical conductor are mixed together and inserted into the middle .theta. has already been developed by the same applicant. (Refer to Japanese Patent Publication No. 1983-142379).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術においては、中空管に収納する導体を複数条に
分muしs相互の間#!1111を低温のヘリウムガス
の冷却通路として利用したことにより、導体の冷R1六
面積が増大し、したがって導体の冷却効率を改善してジ
ュール熱の発生量そのものを低減できるとともに、常m
1tt++から極低温側への侵入熱を低減することがで
きる。また、導体の−tfllk jll IImとし
て′#L流リードの剛性を増したことにより、電流リー
ドの耐゛鉦4JR機械力性症ケ同上できる利点が得られ
る。しかしながら、Mi電導コイルの励磁電流が増力口
した場合、必要な冷却表面積を確保する定めに導体数を
増す必要があるが、多数条の導体を中空管にちゅう密に
挿入することが困難になるため、導体の条数に制約が生
じ、実際には冷却前面積を十分大きくすることが困難に
なり、これに伴って常温側から極低温側への侵入熱が増
大し、液体ヘリウムの気化損失が増力口してfi4隣的
不利益を生ずる欠点があった。また機械的剛性を増すた
めに鋼材の使用量を増した場合、これを4体とともに収
納する中空管の径が大型化するという問題が生ずる。
In the prior art, the conductor housed in the hollow tube is divided into multiple strips, and the conductor is separated from each other. By using 1111 as a cooling path for low-temperature helium gas, the cold R16 area of the conductor is increased, which improves the cooling efficiency of the conductor and reduces the amount of Joule heat generated.
It is possible to reduce heat intrusion from 1tt++ to the cryogenic temperature side. In addition, by increasing the rigidity of the current lead as a conductor, an advantage can be obtained that the current lead can withstand 4JR mechanical damage. However, when the excitation current of the Mi conductive coil increases, the number of conductors needs to be increased to ensure the necessary cooling surface area, but it is difficult to insert a large number of conductors tightly into the hollow tube. As a result, the number of conductor strips is limited, making it difficult to make the area before cooling sufficiently large, and as a result, heat intrusion from the room temperature side to the cryogenic side increases, causing the vaporization of liquid helium. There is a drawback that the loss becomes a power increaser, resulting in a fi4-adjacent disadvantage. Furthermore, if the amount of steel used is increased in order to increase mechanical rigidity, a problem arises in that the diameter of the hollow tube that houses the steel along with the four bodies increases.

この発明の目的は、熱損失および侵入熱が少く、耐電磁
機械力性能に優れ、かつ構成が簡素な導体部を有する電
流リードを得ることにある。
An object of the present invention is to obtain a current lead having a conductor portion with low heat loss and heat intrusion, excellent electromagnetic mechanical force resistance, and simple structure.

〔課題をM決するための手段〕[Means for deciding issues]

上記課題を解決するために、この発明によれば、A窒断
熱谷器内に設けられたへりラム8器にサービスポートを
介して挿入され、前記ヘリウム容器に液体ヘリウムとと
もに収納された超電導コイルに外部電源からの励磁電流
を通流する電流リードであって、剛性t′有する低熱伝
導性金属材からなる棒状の心材、およびこの心材の表面
にら旋状に巻装された酸化物系超電導体とからなる導体
部と、この導体部との間にヘリウムガスの冷却通路とな
る間隙を保持して前記心材と同軸状に配された中空管と
を備えてなるものとする。
In order to solve the above-mentioned problems, according to the present invention, the superconducting coil is inserted into eight hem rams provided in the A-nitrogen insulation valley via the service port, and is inserted into the superconducting coil housed in the helium container together with liquid helium. A current lead through which an excitation current from an external power supply flows, the rod-shaped core material being made of a low thermal conductive metal material having a rigidity t', and an oxide-based superconductor wound spirally on the surface of this core material. and a hollow tube disposed coaxially with the core material while maintaining a gap between the conductor section and the helium gas cooling passage.

〔作用〕[Effect]

この発明の構成において、ステンレス鋼、マンガン鋼、
ニクロム鋼など低温でも高い剛性と低熱伝導性を有する
1本の棒状の鋼材を心材とし、その表面に酸化物超電導
体をら旋状に巻装して導体部を構成し、かつこの導体部
を憶う中空管との間に低温のヘリウムガスが流通する冷
却通路を保持するよう構成したことにより、超電尋挽象
を示す臨界温度Tcが液体窒素の洲点温度(約77K)
程度と高い酸化物超電導体の温度を冷却通路を通る低温
のヘリウムガスによって臨界温度以下に冷却することが
可能にな夛、常電導体を用いた従来の導体部に比べてジ
ュール熱が大幅に低減され、したがって大電流化に対応
して従来増力口した侵入熱を大幅に低減する機能が得ら
れる。また、導体部を支持する心材が剛性の高い棒状ま
た杖中臣の棒状に形成されることにより、大電流化に対
応して増大する電磁機械力に十分耐える機能を容易に得
ることができるとともに、導体部の構造が簡素化され几
ことによって導体部を中空管に容易に挿入できる組立加
工の容易性が得られる。
In the configuration of this invention, stainless steel, manganese steel,
The core material is a rod-shaped steel material such as nichrome steel that has high rigidity and low thermal conductivity even at low temperatures, and an oxide superconductor is spirally wound around the surface of the core material to form the conductor section. By maintaining a cooling passage through which low-temperature helium gas flows between the hollow tube and the storage tube, the critical temperature Tc that exhibits superelectrometry is the point temperature of liquid nitrogen (approximately 77K).
The high temperature of the oxide superconductor can be cooled below the critical temperature by low-temperature helium gas passing through the cooling passage, and the Joule heat is significantly reduced compared to the conventional conductor using a normal conductor. Therefore, it is possible to obtain a function of significantly reducing the intrusion heat, which has conventionally been amplified, in response to increased current. In addition, by forming the core material supporting the conductor part into a highly rigid rod shape or a rod shape, it is possible to easily obtain a function that can sufficiently withstand electromagnetic mechanical force that increases in response to large currents. Since the structure of the conductor part is simplified and slender, it is possible to easily insert the conductor part into the hollow tube, thereby facilitating the assembly process.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例になる超電導磁石装置の電流
リードの要部を示す破砕断面図である。
FIG. 1 is a fragmentary sectional view showing the main part of a current lead of a superconducting magnet device according to an embodiment of the present invention.

図において、電流リード5oは、丸い棒状の心材52お
よび心材32の外周に密接してら旋状に巻装された酸化
物系超電導体33とからなる導体部51と、導体部31
との間にヘリウムガス1Gによる冷却通wI38となる
間隙を保持して心材62と同軸状に配された中空管56
とで構成され、中金管36の外周面は必要に応じて絶縁
層56によって被覆される。
In the figure, the current lead 5o includes a conductor portion 51 consisting of a round rod-shaped core material 52 and an oxide-based superconductor 33 wound tightly and spirally around the outer periphery of the core material 32;
A hollow tube 56 is arranged coaxially with the core material 62 while maintaining a gap for cooling passage wI38 by 1G of helium gas.
The outer peripheral surface of the inner brass tube 36 is covered with an insulating layer 56 as required.

心材31としては、低温においても高い剛性と低熱伝導
性とを保持するステンレスm、マンカン鋼、あるいはニ
クロム鋼などの丸棒または中仝の丸棒が用いられ、その
径はt流す−ドに作用する機械的な外力や電磁機械力を
考慮して許容たわみ量以下となるよう決められる。また
、酸化物超電導体33としては、イツトリウム系、ビス
マス系などの銅酸化物高温超電導体や、バリウム系酸化
物超電導体など、臨界温度Tcが80Kに近い高Tc材
料が適している。さらに、中空管36は心材32と同様
にステンレス鋼管が用いられ、冷却通路38内には心材
32と中空管36とに係合して間隙長を保持する図示し
ない間隔材が設けられる。
As the core material 31, a round bar or a medium round bar made of stainless steel, mankan steel, or nichrome steel, which maintains high rigidity and low thermal conductivity even at low temperatures, is used, and its diameter affects the flow rate. The amount of deflection is determined to be less than the allowable amount by considering external mechanical force and electromagnetic mechanical force. Further, as the oxide superconductor 33, a high Tc material with a critical temperature Tc close to 80K is suitable, such as a high temperature copper oxide superconductor such as yttrium-based or bismuth-based superconductor, or a barium-based oxide superconductor. Further, the hollow tube 36 is made of stainless steel like the core material 32, and a spacer (not shown) is provided in the cooling passage 38 to engage the core material 32 and the hollow tube 36 to maintain the gap length.

上述のように構成された電流リード50を第2図につい
て丁でに説明した超電導磁石装置に取り付けた場合、ヘ
リウム容alBが包蔵する液体ヘリウム1Hが気化する
ことKよって生じた低温のヘリウムガス1Gが電流リー
ド30の下端から冷却通路38に入り、低温のガス流に
よって導体部51が酸化物超電導体33の臨界湯度To
以下に効率よく冷却され、酸化*超電導体33の電気抵
抗はほとんど零に近くなる。したがって、この状!虎で
外部電源から超電導コイル2に励磁型R,を供給すると
、励磁電流のほとんどが導体部31の酸化物超電導体5
5t−通って流れることになり、常電導導体を用いた従
来の電流リード3に比べて導体部で発生するジュール熱
を顕著に低減でき、その分ヘリウムd器1Bの他低温部
への侵入熱を低減し、したがって液体ヘリウム1Hの気
化損失を低減することができる。また、ヘリウムガス1
Gが一時的に不足するなどの通流異常があっても、熱容
量の大きい心材32がジュール熱および侵入熱を吸収し
て酸化物超電導体33をその臨界温度Tc以下に保持す
るよう機能するので、励磁電流の通流状態を安定して保
持する機能が得られる。
When the current lead 50 configured as described above is attached to the superconducting magnet device described in detail with reference to FIG. enters the cooling passage 38 from the lower end of the current lead 30, and the low temperature gas flow causes the conductor portion 51 to reach the critical temperature To of the oxide superconductor 33.
As a result, the electrical resistance of the oxidized* superconductor 33 becomes almost zero. Therefore, this situation! When an excitation type R is supplied from an external power source to the superconducting coil 2, most of the excitation current flows through the oxide superconductor 5 of the conductor portion 31.
5T-, the Joule heat generated in the conductor section can be significantly reduced compared to the conventional current lead 3 using a normal conductor, and the heat intruding into other low-temperature parts of the helium d-container 1B can be reduced accordingly. Therefore, the vaporization loss of liquid helium 1H can be reduced. Also, helium gas 1
Even if there is a flow abnormality such as a temporary shortage of G, the core material 32 with a large heat capacity functions to absorb Joule heat and intrusion heat and maintain the oxide superconductor 33 below its critical temperature Tc. , the function of stably maintaining the excitation current flowing state can be obtained.

また、1本の棒状に形成した心材が外力や!磁機械力に
耐える機械的強度を保持するとともに、導体部!+1を
中空管に挿入する作業を容易化する機能を発揮する。こ
とに図示しない間隔片を例えば棒状の心材32にねじ止
めするなど容易に形成でき、かつ導体部31′ft中空
’1156に挿入する際。
In addition, the core material, which is formed into a single rod shape, can resist external forces! In addition to maintaining mechanical strength to withstand magneto-mechanical forces, the conductor part! It functions to facilitate the work of inserting +1 into a hollow tube. In particular, the spacing piece (not shown) can be easily formed by screwing it to the rod-shaped core member 32, for example, and when inserted into the hollow '1156 of the conductor part 31'ft.

酸化物超電導体33が中空管36と接触して損傷するこ
とを間隔片が防ぐ機能をはたすなどの利点も得られる。
Advantages are also obtained, such as the spacer serving to prevent the oxide superconductor 33 from coming into contact with the hollow tube 36 and being damaged.

C発明の効果〕 この発#JII′i前述のように、低源でも高い剛性お
よび低熱伝導性を持つ棒状の鋼材を心材とし、その表面
にら旋状に巻装した酸化物超電導体を導体として導体部
を構成し、かつ中空管との隙間を冷却通路として低温の
ヘリウムガスによシ導体部を冷却するよう構成した。そ
の結果、高TO材料である酸化物超電導体が低温のヘリ
ウムガスで効率よく冷却されて超電導状態となり、その
電気抵抗がほとんど零になることによって導体部に生ず
るジュール熱を常電導導体を用いた従来技術のそれに比
べて著しく低減することが可能になり、その分極低温部
への侵入熱全低減でき、かつヘリウムガスの通流量が一
時的に減少するようなことがあっても#積熱容量の大き
い棒状の心材が熱を吸収して酸化物、St導体を超電導
状態に保持するので、液体ヘリウムの気化損失が少く、
かつ大電流の通流を安定して保持する機ltl!全備え
た超電導磁石装置tを提供することができる。
C Effects of the Invention] This invention #JII'i As mentioned above, the core material is a rod-shaped steel material that has high rigidity and low thermal conductivity even at a low source, and the conductor is an oxide superconductor wound spirally on the surface of the core material. The conductor part was constructed as a cylindrical conductor, and the gap between the conductor part and the hollow tube was used as a cooling passage, and the conductor part was cooled by low-temperature helium gas. As a result, the oxide superconductor, which is a high-TO material, is efficiently cooled with low-temperature helium gas and becomes superconducting, and its electrical resistance becomes almost zero, and the Joule heat generated in the conductor is absorbed using a normal conductor. It is possible to significantly reduce heat intrusion into the polarized low-temperature part compared to that of conventional technology, and even if the flow rate of helium gas temporarily decreases, the #product heat capacity can be reduced. The large rod-shaped core absorbs heat and maintains the oxide and St conductor in a superconducting state, so there is little vaporization loss of liquid helium.
And a machine that stably maintains the flow of large current! A fully equipped superconducting magnet device t can be provided.

また、1本の棒状に形成された心材が高い剛性全保持す
るので、*aの線材で構成される従来の導体部では得ら
れない機械的にIjIi園な導体部を備えた電流リード
t−提供できるとともに、飯化物超゛1導体の断面積が
常電導体からなる従来のそれに比べて著しく小さいので
、中空管の径を大きくすることなく大電流を通流できる
電流リード’t”提供でき、したがって電流リードの大
電流化に貢献できる利点が得られる。
In addition, since the core material formed in the shape of a single rod maintains high rigidity, it can be used as a current lead t- with a conductor part that is mechanically perfect, which cannot be obtained with a conventional conductor part made of *a wire. In addition, since the cross-sectional area of the hyphenide superconductor is significantly smaller than that of conventional conductors made of normal conductors, it is possible to provide current leads that can pass large currents without increasing the diameter of the hollow tube. Therefore, there is an advantage that the current lead can contribute to a large current.

さらに、導体部が1本の棒状に形成されることによル、
複数の線材で構成される電流リードに比べて中空管への
挿入作業を大幅に容易化することができ、経断的利点が
得られるとともに、従来このことが原因で阻害されてい
た電流リードの大電流化を推進できる利点が得られる。
Furthermore, since the conductor part is formed into a single rod shape,
Compared to current leads made of multiple wires, it is much easier to insert them into hollow tubes, and this provides a transversal advantage. This has the advantage of promoting larger currents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の夾m例になる超電導磁石装置の電流
リードの要部を示す破砕断面図、第2図#i、超電導磁
石装置の一般的な構造を簡略化して示す断面図、第3図
は従来の電流リードを示す慣断面図である。 1・・・真空断熱容器、1人・・・真空容器、lB・・
・ヘリウム容器、1C・・・液体窒素シールド、1D・
・・サービスボー)、IE・・・蓋板、iG・・・ヘリ
ウムガス1H・・・液体ヘリウム、IN・・・液体窒素
、2・・・超電導コイル、3.30・・・電流リード、
4川接続リード、5・・・導体、6.56・・・中空管
、7.37・・・絶縁層、8.58・・・冷却通路、3
1・・・導体部、32・・・心材、33・・・酸化物超
電導体。 第 図
FIG. 1 is a fragmented cross-sectional view showing the main parts of a current lead of a superconducting magnet device that is an example of the present invention, FIG. FIG. 3 is a conventional cross-sectional view showing a conventional current lead. 1...Vacuum insulated container, 1 person...Vacuum container, 1B...
・Helium container, 1C...Liquid nitrogen shield, 1D・
... service board), IE ... lid plate, iG ... helium gas 1H ... liquid helium, IN ... liquid nitrogen, 2 ... superconducting coil, 3.30 ... current lead,
4 River connection lead, 5... Conductor, 6.56... Hollow tube, 7.37... Insulating layer, 8.58... Cooling passage, 3
1... Conductor part, 32... Core material, 33... Oxide superconductor. Diagram

Claims (1)

【特許請求の範囲】[Claims] 1)真空断熱容器内に設けられたヘリウム容器にサービ
スポートを介して挿入され、前記ヘリウム容器に液体ヘ
リウムとともに収納された超電導コイルに外部電源から
の励磁電流を通流する電流リードであって、剛性を有す
る低熱伝導性金属材からなる棒状の心材、およびこの心
材の表面にら旋状に巻装された酸化物系超電導体とから
なる導体部と、この導体部との間にヘリウムガスの冷部
通路となる間隙を保持して前記心材と同軸状に配された
中空管とを備えてなることを特徴とする超電導磁石装置
の電流リード。
1) A current lead that is inserted into a helium container provided in a vacuum insulated container via a service port and passes an excitation current from an external power source to a superconducting coil housed in the helium container together with liquid helium, A conductor section consisting of a rod-shaped core material made of a rigid and low thermal conductive metal material and an oxide-based superconductor wound spirally on the surface of this core material, and a helium gas atmosphere between the conductor section and the conductor section. A current lead for a superconducting magnet device, comprising a hollow tube arranged coaxially with the core material while maintaining a gap that serves as a cold section passage.
JP2084252A 1990-03-30 1990-03-30 Current lead of superconducting magnet apparatus Pending JPH03283678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2084252A JPH03283678A (en) 1990-03-30 1990-03-30 Current lead of superconducting magnet apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2084252A JPH03283678A (en) 1990-03-30 1990-03-30 Current lead of superconducting magnet apparatus

Publications (1)

Publication Number Publication Date
JPH03283678A true JPH03283678A (en) 1991-12-13

Family

ID=13825271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2084252A Pending JPH03283678A (en) 1990-03-30 1990-03-30 Current lead of superconducting magnet apparatus

Country Status (1)

Country Link
JP (1) JPH03283678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342672B1 (en) 1994-02-14 2002-01-29 Canon Kabushiki Kaisha Superconducting lead with recoverable and nonrecoverable insulation
JP2008305765A (en) * 2007-06-11 2008-12-18 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead
JP2009230912A (en) * 2008-03-19 2009-10-08 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871593A (en) * 1971-12-27 1973-09-27
JPS5998505A (en) * 1982-11-26 1984-06-06 Japanese National Railways<Jnr> Super conductive current lead
JPS62142378A (en) * 1985-12-17 1987-06-25 Fuji Electric Co Ltd Current lead for superconductive electromagnet device
JPS62264683A (en) * 1986-05-13 1987-11-17 Mitsubishi Electric Corp Current lead for superconductive equipment
JPS62283609A (en) * 1986-05-31 1987-12-09 Toshiba Corp Gas cooled current supplying lead
JPS63245909A (en) * 1987-03-31 1988-10-13 Sumitomo Electric Ind Ltd Current lead
JPS63264813A (en) * 1987-04-22 1988-11-01 Sumitomo Electric Ind Ltd Superconductive wire
JPS63266712A (en) * 1987-04-24 1988-11-02 Fujikura Ltd Superconductive wire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871593A (en) * 1971-12-27 1973-09-27
JPS5998505A (en) * 1982-11-26 1984-06-06 Japanese National Railways<Jnr> Super conductive current lead
JPS62142378A (en) * 1985-12-17 1987-06-25 Fuji Electric Co Ltd Current lead for superconductive electromagnet device
JPS62264683A (en) * 1986-05-13 1987-11-17 Mitsubishi Electric Corp Current lead for superconductive equipment
JPS62283609A (en) * 1986-05-31 1987-12-09 Toshiba Corp Gas cooled current supplying lead
JPS63245909A (en) * 1987-03-31 1988-10-13 Sumitomo Electric Ind Ltd Current lead
JPS63264813A (en) * 1987-04-22 1988-11-01 Sumitomo Electric Ind Ltd Superconductive wire
JPS63266712A (en) * 1987-04-24 1988-11-02 Fujikura Ltd Superconductive wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342672B1 (en) 1994-02-14 2002-01-29 Canon Kabushiki Kaisha Superconducting lead with recoverable and nonrecoverable insulation
JP2008305765A (en) * 2007-06-11 2008-12-18 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead
JP2009230912A (en) * 2008-03-19 2009-10-08 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead

Similar Documents

Publication Publication Date Title
US4176291A (en) Stored field superconducting electrical machine and method
US20150340139A1 (en) Superconductive coil device and production method therefor
US5298679A (en) Current lead for cryostat using composite high temperature superconductors
Sato et al. High field generation using silver-sheathed BSCCO conductor
JPH03283678A (en) Current lead of superconducting magnet apparatus
JP2952552B2 (en) Current leads for superconducting equipment
JP2929622B2 (en) How to use oxide superconductor
JP3450318B2 (en) Thermoelectric cooling type power lead
JP3377350B2 (en) Thermoelectric cooling type power lead
JPH11112043A (en) Current lead for super conducting device
JPH0510809B2 (en)
JP2734171B2 (en) Current lead of superconducting magnet device
JPH05234749A (en) Superconducting device for magnetic levitation train
JPH0955545A (en) Current lead for superconductive apparatus
JP3860070B2 (en) Thermoelectric cooling power lead
JP2515813B2 (en) Current lead for superconducting equipment
JPH0745420A (en) Current lead of superconducting apparatus
JP2013143474A (en) Superconducting magnet device and current lead for the same
JPH11199367A (en) Refrigerator-cooling type superconductive magnet device for pulling-up device of single crystal
JP2981810B2 (en) Current lead of superconducting coil device
JP3120482B2 (en) Current lead of superconducting magnet device
JP3127705B2 (en) Current lead using oxide superconductor
JP4019014B2 (en) Thermoelectric cooling power lead
JP2883697B2 (en) Current lead for superconducting coil
JPH05114753A (en) Current lead of superconductive magnet device