JPH0727814B2 - Forced cooling superconducting coil device - Google Patents

Forced cooling superconducting coil device

Info

Publication number
JPH0727814B2
JPH0727814B2 JP60019237A JP1923785A JPH0727814B2 JP H0727814 B2 JPH0727814 B2 JP H0727814B2 JP 60019237 A JP60019237 A JP 60019237A JP 1923785 A JP1923785 A JP 1923785A JP H0727814 B2 JPH0727814 B2 JP H0727814B2
Authority
JP
Japan
Prior art keywords
refrigerant
superconducting coil
flow path
superconducting
forced cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60019237A
Other languages
Japanese (ja)
Other versions
JPS61179508A (en
Inventor
邦茂 黒田
好寿 堀田
浩 木村
伸洋 原
孝司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60019237A priority Critical patent/JPH0727814B2/en
Publication of JPS61179508A publication Critical patent/JPS61179508A/en
Publication of JPH0727814B2 publication Critical patent/JPH0727814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は強制冷却超電導導体を用いたコイル装置に係
り、特にコイル冷却に関する。
Description: FIELD OF THE INVENTION The present invention relates to a coil device using a forced cooling superconducting conductor, and more particularly to coil cooling.

〔発明の背景〕[Background of the Invention]

金属性コンジット中に多数の細い複合超電導材(複数本
の超電導フィラメントを銅やアルミニウムのように電気
的および熱的に良導体である安定化材中に埋込んだも
の)を撚合せて挿入した強制冷却超電導導体が開発さ
れ、この超電導導体を巻回した超電導コイルが提案され
ている。この超電導コイルは、冷媒(例えば超臨界圧ヘ
リウム)を超電導導体のコンジット内に流して超電導材
を冷却するものであるため、超電導コイルを冷媒に浸し
て冷却する浸漬冷却方式のように冷媒槽をもつ極低温容
器(クライオスタット)を備える必要がなく、単なる真
空容器(中間温度の熱輻射シールドを有する場合もあ
る)を備えれば足りる利点がある。
Forced by twisting and inserting many thin composite superconducting materials (embedding multiple superconducting filaments in a stabilizing material that is an electrically and thermally good conductor such as copper and aluminum) into a metallic conduit A cooling superconducting conductor has been developed, and a superconducting coil formed by winding the superconducting conductor has been proposed. Since this superconducting coil cools the superconducting material by flowing a refrigerant (for example, supercritical pressure helium) into the conduit of the superconducting conductor, the superconducting coil can be cooled by immersing the superconducting coil in the refrigerant to cool the refrigerant tank. It is not necessary to provide a cryogenic container (cryostat), and it is sufficient to provide a simple vacuum container (which may have an intermediate temperature heat radiation shield).

また、浸漬冷却方式に比較して超電導コイルの耐電圧設
計が容易となり、更に冷媒が超電導材に直接触れてこれ
を冷却するので冷却特性も優れたものとなる。
In addition, the withstand voltage design of the superconducting coil becomes easier as compared with the immersion cooling method, and since the refrigerant comes into direct contact with the superconducting material to cool it, the cooling characteristic becomes excellent.

このようなことから、高電圧を発生する核融合炉用超電
導ポロイダルコイルには強制冷却超電導コイル方式が有
利である。
Therefore, the forced cooling superconducting coil system is advantageous for the superconducting poloidal coil for a fusion reactor that generates a high voltage.

以下図面を参照して具体的に説明する。第2図は強制冷
却超電導導体の典型的な例を示すもので、この超電導導
体1は、金属(主にステンレス鋼)のコンジット(パイ
プ)2の内部に多数の複合超電導導線3を撚合せたもの
を挿入し、その間隙を冷媒を流す流路(第1の冷媒流
路)4としたものである。図示例のコンジット2の断面
形状は角形であるが、丸形やその他の形状も考えられ
る。
A specific description will be given below with reference to the drawings. FIG. 2 shows a typical example of a forced cooling superconducting conductor. In this superconducting conductor 1, a large number of composite superconducting wires 3 are twisted inside a conduit (pipe) 2 made of metal (mainly stainless steel). A flow path (first coolant flow path) 4 in which a coolant is flown is inserted into the gap. The cross-sectional shape of the conduit 2 in the illustrated example is square, but round or other shapes are also conceivable.

この超電導導体1を用いて構成した超電導コイルにおい
て、冷却効果を高めるためには内蔵する流路(第1の冷
媒流路)4における冷媒の流動抵抗が小さいことが必要
である。しかしながら、実際には流動抵抗が著しく大き
くなる傾向があり、更に冷却初期には超電導導体1が常
温であるために冷媒は気化してガス状態となることから
流動抵抗が大きくなり、従って十分な量の冷媒をこの内
蔵する流路(第1の冷媒流路)4に流すことが極めて困
難になる。従って、これまで、超電導導体を装置の性能
に見合った長さに分割して各分割部分に並列的に冷媒を
流す方式が提案されている。しかし、この方式は超電導
コイルへの冷媒供給口および排出口が多くなり構造が複
雑になる欠点があった。
In the superconducting coil configured by using the superconducting conductor 1, it is necessary that the flow resistance of the refrigerant in the built-in passage (first refrigerant passage) 4 is small in order to enhance the cooling effect. However, in actuality, the flow resistance tends to be remarkably large, and since the superconducting conductor 1 is at room temperature at the initial stage of cooling, the refrigerant is vaporized and becomes a gas state, so the flow resistance becomes large, and therefore a sufficient amount is obtained. It becomes extremely difficult to flow the above-mentioned refrigerant through the built-in flow path (first refrigerant flow path) 4. Therefore, up to now, there has been proposed a method in which the superconducting conductor is divided into lengths suitable for the performance of the device and the refrigerant is flowed in parallel to the respective divided portions. However, this method has a drawback in that the refrigerant supply port and discharge port to the superconducting coil are increased and the structure is complicated.

次に、第3図を参照してこの種の強制冷却超電導コイル
装置の冷却系を説明する。圧縮機5と純ヘリウムガスボ
ンベ6とバルブ7は圧力源8を構成する。冷却用液体窒
素によってヘリウムを80K程度まで冷却する液体窒素槽
9と、ヘリウムを5K程度まで冷却する液体ヘリウム槽10
と、この液体ヘリウム槽10から前記圧縮機5への戻りガ
スでヘリウムを冷却する熱交換器11と、超電導コイル装
置からの戻りヘリウムに含まれているガスを液化して前
記液体ヘリウム槽10へ戻すジュール・トムソン弁12と、
これらを収容する真空槽13は熱交換部14を構成する。な
お、液体窒素槽9内の液体窒素及び液体ヘリウム槽10内
の液体ヘリウムは外部系より定量を保つように補給され
る。
Next, the cooling system of the forced cooling superconducting coil device of this type will be described with reference to FIG. The compressor 5, the pure helium gas cylinder 6, and the valve 7 constitute a pressure source 8. Liquid nitrogen tank 9 that cools helium to about 80K with liquid nitrogen for cooling, and liquid helium tank 10 that cools helium to about 5K
A heat exchanger 11 for cooling helium with the return gas from the liquid helium tank 10 to the compressor 5; and liquefying the gas contained in the return helium from the superconducting coil device to the liquid helium tank 10. Jules Thomson valve 12 to return,
The vacuum chamber 13 that accommodates these forms a heat exchange unit 14. The liquid nitrogen in the liquid nitrogen tank 9 and the liquid helium in the liquid helium tank 10 are replenished from the external system so as to maintain a fixed amount.

超電導コイル装置15は、前述した強制冷却超電導導体を
巻回して構成した超電導コイル16が真空容器17内に収納
されて成り、この超電導コイル16は、電気的には励磁電
源18に接続され、また冷却のためのヘリウムが冷媒移送
管19a,19bによって供給される。
The superconducting coil device 15 comprises a superconducting coil 16 formed by winding the above-described forced cooling superconducting conductor and housed in a vacuum container 17, and the superconducting coil 16 is electrically connected to an exciting power source 18, and Helium for cooling is supplied by the refrigerant transfer pipes 19a and 19b.

以上の冷却系において、超電導コイル16を冷却する冷媒
であるヘリウムの流れは次のようになる。ヘリウムガス
は圧縮機5で圧縮され液体窒素槽9で80Kまで冷却さ
れ、更に熱交換器11で戻りガスにより冷却されて液体ヘ
リウム槽10に至る。ここで約5Kまで冷却されて超臨界圧
ヘリウム(2.26気圧以上、5.2K以下)となり、移送管19
aを介して超電導コイル16に供給される。超電導コイル1
6を通過したヘリウムは移送管19bを経てジュール・トム
ソン弁12に送られ、ガスは液化して液体ヘリウム槽10に
放出される。このとき液化しなかったヘリウムガスおよ
び槽内の液体ヘリウムが気化して発生したヘリウムガス
は、熱交換器11を経て圧縮機5に戻る。そしてこのよう
に循環するヘリウムガスが不足するとバルブ7が開いて
純ヘリウムボンベ6から補給される。
In the above cooling system, the flow of helium, which is the refrigerant for cooling the superconducting coil 16, is as follows. The helium gas is compressed by the compressor 5 and cooled to 80 K in the liquid nitrogen tank 9, and further cooled by the return gas in the heat exchanger 11 to reach the liquid helium tank 10. Here, it is cooled to about 5K and becomes supercritical helium (2.26 atm or more, 5.2K or less), and the transfer pipe 19
It is supplied to the superconducting coil 16 via a. Superconducting coil 1
Helium that has passed through 6 is sent to the Joule-Thomson valve 12 via the transfer pipe 19b, and the gas is liquefied and discharged into the liquid helium tank 10. At this time, the helium gas not liquefied and the helium gas generated by vaporizing the liquid helium in the tank return to the compressor 5 via the heat exchanger 11. When the circulating helium gas is insufficient, the valve 7 is opened and the pure helium cylinder 6 is replenished.

ところで、このような冷却系において、超電導コイル16
は冷却開始時点では常温であり、従って超電導コイル16
内を通過するヘリウムは当然にガスになる。しかし、前
述したように、巻回された強制冷却超電導導体1内の流
路4(第1の冷媒流路)はヘリウムガスに対する流動抵
抗が大きく、冷媒としてのヘリウムガスはほとんど流れ
ない。例えば、第2図に示す超電導導体1において、コ
ンジット2が内のりの1辺が7mmの正方形であり、複合
超電導導線3の直径が1mmで27本が撚合されたものであ
るとき、1mの長さ当たりの圧力損失とヘリウムの質量流
量は、常温近くでは、0.3気圧,0.3g/s(≒1.7/s)で
ある。仮りに超電導コイル16を構成する超電導導体1の
長さが100mとすると前記質量流量を確保するために30気
圧の圧力が必要となり、圧縮機5の加圧力、配管やコン
ジット2の耐圧もこれに相応したものにしなければなら
ない。しかも前記質量流量では熱交換部14および超電導
コイル装置15を冷却する能力は小さい。前述した仕様の
超電導導体1を35m用いて巻回して構成した全重量30kg
の超電導コイル16でさえ、常温からKに冷却するのに、
圧縮機5の出力を10気圧に設定して連続運転しても18時
間を要する状態である。
By the way, in such a cooling system, the superconducting coil 16
Is at room temperature at the beginning of cooling, so the superconducting coil 16
The helium passing inside is naturally gas. However, as described above, the flow path 4 (first refrigerant flow path) in the wound forced cooling superconducting conductor 1 has a large flow resistance to helium gas, and helium gas as a refrigerant hardly flows. For example, in the superconducting conductor 1 shown in FIG. 2, when the conduit 2 has a square shape with one side of 7 mm and the composite superconducting wire 3 has a diameter of 1 mm and 27 strands are twisted together, the length of 1 m The pressure loss per unit time and the mass flow rate of helium are 0.3 atm and 0.3 g / s (≈1.7 / s) near room temperature. If the length of the superconducting conductor 1 forming the superconducting coil 16 is 100 m, a pressure of 30 atm is required to secure the mass flow rate, and the pressure of the compressor 5 and the withstand pressure of the pipe and the conduit 2 are also required. It has to be appropriate. Moreover, at the mass flow rate, the ability to cool the heat exchange section 14 and the superconducting coil device 15 is small. The total weight of the superconducting conductor 1 with the above-mentioned specifications wound around 35 m and constructed by 30 kg
Even for the superconducting coil 16 of
Even if the output of the compressor 5 is set to 10 atm and it is continuously operated, it takes 18 hours.

この超電導コイルを例えば核融合炉用のトロイダルコイ
ルに利用しようとすると、超電導導体の長さは数百メー
トルから数千メートル、コイルの重量は数十トンから数
百トンになり、従ってこのようなコイルを超電導状態ま
で冷却することは不可能に近い。
If this superconducting coil is used for a toroidal coil for a fusion reactor, for example, the length of the superconducting conductor will be several hundred meters to several thousand meters, and the weight of the coil will be several tens to several hundred tons. It is almost impossible to cool the coil to the superconducting state.

このような観点からは、前述したように超電導導体を分
割して、各分割部分に並列に冷媒を流す方式が有利であ
る。しかしこの分割方式は冷媒の総流量が増えるために
圧縮機5を大容量のものにする必要があると共に、前述
したように超電導コイル装置15の構造が複雑になる欠点
がある。
From this point of view, it is advantageous to divide the superconducting conductor as described above and flow the refrigerant in parallel to each divided portion. However, this division method has a drawback that the compressor 5 needs to have a large capacity because the total flow rate of the refrigerant increases, and the structure of the superconducting coil device 15 becomes complicated as described above.

第4図に従来の超電導コイル装置15の一例を示す。真空
容器17の内側には中間温度(20〜80K)断熱板20が配置
され、その内側に超電導コイル16が配置される。超電導
コイル16は、ボビン21に超電導導体1を巻回し、絶縁物
22によって導体の絶縁を保つように構成したもので、真
空容器17の上部フランジ23にねじ込んで取付けられて垂
下する吊りボルト24a,24bの下端にボビン21を溶接する
ことで保持される。上部フランジ23および中間温度断熱
板20を貫通する常温導体パワーリード25a,25bはこれら
に対して絶縁状態に保持され、両パワーリード25a,25b
の下端は超電導コイル16から引出された超電導導体1の
端部1a,1bと接続継手26a,26bを介して電気的に接続され
る。また超電導導体端部1a,1bは冷媒給排のためにA1点
およびA2点で分岐され、電気絶縁継手27a,27bを介して
冷媒供給管28aと冷媒排出管28bに接続される。この冷媒
供給管28aと冷媒排出管28bは上部フランジ23を貫通して
前述の冷媒移送管19a,19bに接続されるものである。な
お、前述の中間温度断熱板20とパワーリード25a,25bは
適当な冷媒と冷却機によって別途冷却される。超電導コ
イル15はこのように構成されるものであるから、超電導
導体1を複数に分割して超電導コイル16から多くの冷媒
供給口および排出口を導出すると、装置の構造がいかに
複雑になるか想像できよう。
FIG. 4 shows an example of a conventional superconducting coil device 15. An intermediate temperature (20 to 80K) heat insulating plate 20 is arranged inside the vacuum container 17, and a superconducting coil 16 is arranged inside thereof. The superconducting coil 16 is made by winding the superconducting conductor 1 around the bobbin 21 and insulating it.
It is configured to maintain the insulation of the conductor by means of 22, and is held by welding the bobbin 21 to the lower ends of the hanging bolts 24a, 24b which are screwed into and attached to the upper flange 23 of the vacuum container 17. The room temperature conductor power leads 25a, 25b penetrating the upper flange 23 and the intermediate temperature heat insulating plate 20 are held in an insulated state with respect to these, and both power leads 25a, 25b
Is electrically connected to the ends 1a, 1b of the superconducting conductor 1 drawn out from the superconducting coil 16 via connection joints 26a, 26b. Further, the superconducting conductor ends 1a and 1b are branched at points A1 and A2 for supplying and discharging the refrigerant, and are connected to the refrigerant supply pipe 28a and the refrigerant discharge pipe 28b through the electrically insulating joints 27a and 27b. The refrigerant supply pipe 28a and the refrigerant discharge pipe 28b penetrate the upper flange 23 and are connected to the above-mentioned refrigerant transfer pipes 19a and 19b. The intermediate temperature heat insulating plate 20 and the power leads 25a and 25b are separately cooled by an appropriate refrigerant and a cooler. Since the superconducting coil 15 is configured in this way, imagine how complicated the structure of the device will be if the superconducting conductor 1 is divided into a plurality of parts and many refrigerant supply ports and discharge ports are led out from the superconducting coil 16. I can do it.

なお、強制冷却超電導導体に対する冷媒給排系を開示し
た刊行物としては、特公昭50−24197号公報がある。
Note that as a publication disclosing a refrigerant supply / discharge system for a forced cooling superconducting conductor, there is Japanese Patent Publication No. 50-24197.

〔発明の目的〕[Object of the Invention]

本発明の目的は、強制冷却超電導導体を巻回した超電導
コイルの冷却、特に常温からの初期冷却効率を高め、短
時間に、しかも少ない液体ヘリウム消費で超電導コイル
を極低温まで冷却できる超電導コイル装置を提供するこ
とにある。
It is an object of the present invention to cool a superconducting coil wound with a forced cooling superconducting conductor, particularly to enhance the initial cooling efficiency from room temperature, and to cool the superconducting coil to a cryogenic temperature in a short time with a small consumption of liquid helium. To provide.

〔発明の概要〕[Outline of Invention]

この目的を達成するため、第1の発明は、金属管を超電
導コイル(16)の周面に沿って巻回して構成された巻回
部分(30a)を備えると共に真空容器(17)内に配置さ
れ、かつ前記第1の冷媒流路(強制冷却超電導導体が内
蔵する冷媒流路)(4)と並列に接続されて第1の冷媒
流路(4)と共に冷媒給排管(28a,28b)によって冷媒
を給排される第2の冷媒流路(30)と、この第2の冷媒
流路(30)の巻回部分(30a)に接合されると共に前記
超電導コイル(16)内にこの超電導コイル(16)と熱交
換可能に挿入された良熱伝導性材からなる冷却フィン
(33)と、第2の冷媒流路(30)を流れる冷媒の流量を
制御する流量制御手段(32)とを設けることによって、
超電導コイル(16)の温度が高く超電導コイル(16)を
形成する強制冷却超電導導体(1)内の冷媒が気化して
流れにくい初期冷却時には第2の冷媒流路(30)に多く
の冷媒を流し、超電導コイル(16)の周面に沿って巻回
された巻回部分(30a)から冷却フィン(33)を介して
超電導コイル(16)を効果的に冷却するようにし、更
に、第2の冷媒流路(30)内に介挿されこの第2の冷媒
流路(30)に誘起される電圧による電流を遮断する電気
絶縁継手(31a,31b)を設けることにより、第2の冷媒
流路(30)として用いる伝熱性に優れた金属管に超電導
コイル(16)の磁界変動によって循環電流が流れないよ
うにしたことを特徴とし、 また第2の発明は、金属管を巻回して構成された巻回部
分(37a)を備えると共に第1の冷媒流路(4)と並列
に接続されて第1の冷媒流路(4)と共に前記冷媒給排
管(28a,28b)によって冷媒を給排され、かつ前記巻回
部分(37a)が前記超電導コイル(16)内にこの超電導
コイル(16)と熱交換可能に埋設された第2の冷媒流路
(37)と、この第2の冷媒流路(37)を流れる冷媒の流
量を制御する流量制御手段(32)とを設けることによっ
て、超電導コイル(16)の温度が高く超電導コイル(1
6)を形成する強制冷却超電導導体(1)内の冷媒が気
化して流れにくい初期冷却時には第2の冷媒流路(37)
に多くの冷媒を流し、埋設された巻回部分(37a)によ
り直接、伝熱により超電導コイル(16)を効果的に冷却
するようにし、更に、第2の冷媒流路(37)内に介挿さ
れこの第2の冷媒流路(37)に誘起される電圧による電
流を遮断する電気絶縁継手(31a,31b)を設けることに
より、第2の冷媒流路(37)として用いる伝熱性に優れ
た金属管に超電導コイル(16)の磁界変動によって循環
電流が流れないようにしたことを特徴とする。
In order to achieve this object, the first aspect of the present invention includes a winding portion (30a) formed by winding a metal tube along the circumferential surface of a superconducting coil (16) and disposes it in a vacuum container (17). And is connected in parallel with the first refrigerant channel (refrigerant channel contained in the forced cooling superconducting conductor) (4) and together with the first refrigerant channel (4), the refrigerant supply / discharge pipes (28a, 28b). The second superconducting coil (16) is joined to the second superconducting coil (16), which is joined to the second superconducting coil (16) which is supplied with and discharges the superfluous refrigerant by the winding part (30a) of the second supercooling channel (30). A cooling fin (33) made of a good heat conductive material inserted into the coil (16) in a heat exchangeable manner; and a flow rate control means (32) for controlling the flow rate of the refrigerant flowing through the second refrigerant flow path (30). By providing
When the temperature of the superconducting coil (16) is high and the refrigerant in the forced-cooling superconducting conductor (1) forming the superconducting coil (16) is vaporized and difficult to flow, a large amount of refrigerant is supplied to the second refrigerant passage (30). The superconducting coil (16) is allowed to flow and is effectively cooled from the winding portion (30a) wound along the peripheral surface of the superconducting coil (16) via the cooling fins (33). The second refrigerant flow is provided by providing an electrically insulating joint (31a, 31b) which is inserted in the second refrigerant flow path (30) and blocks the current due to the voltage induced in the second refrigerant flow path (30). The second aspect of the invention is characterized in that a circulating current is prevented from flowing due to a magnetic field variation of the superconducting coil (16) in a metal tube having excellent heat conductivity used as the passage (30). And a parallel winding portion (37a) and is connected in parallel with the first refrigerant channel (4). The refrigerant is supplied and discharged by the refrigerant supply / discharge pipes (28a, 28b) together with the first refrigerant flow path (4), and the wound portion (37a) is provided in the superconducting coil (16). 16) and a second refrigerant flow path (37) buried in heat exchange with each other, and a flow rate control means (32) for controlling the flow rate of the refrigerant flowing through the second refrigerant flow path (37). , The temperature of the superconducting coil (16) is high and the superconducting coil (1
Second cooling medium flow path (37) during initial cooling when the cooling medium in the forced cooling superconducting conductor (1) that forms 6) is difficult to vaporize and flow
A large amount of refrigerant is flown into the superconducting coil (16) to effectively cool the superconducting coil (16) directly by the embedded winding portion (37a), and further, the superconducting coil (16) is inserted into the second refrigerant flow path (37). By providing the electrically insulating joints (31a, 31b) that are inserted and cut off the current due to the voltage induced in the second refrigerant flow path (37), the heat transfer property used as the second refrigerant flow path (37) is excellent. It is characterized in that the circulating current is prevented from flowing in the metal tube due to the magnetic field fluctuation of the superconducting coil (16).

〔発明の実施例〕Example of Invention

第1図に示した実施例は、第4図で説明した従来装置に
本発明を適用してこれに改良を加えた例であるので、こ
れと共通の構成部材には同一参照符号を付し、以下その
改良点を説明する。
Since the embodiment shown in FIG. 1 is an example in which the present invention is applied to the conventional apparatus described in FIG. 4 to improve it, the same reference numerals are given to the same constituent members. The improvements will be described below.

第2の冷媒流路30は伝熱性に優れ且つ冷媒に対して流動
抵抗が小さい金属管からなり、その主要部をなす巻回部
分30aは超電導コイル16の外周に接近して巻回して構成
される。冷媒供給管28aはB1点において分岐され、電気
絶縁継手31aを介して第2の冷媒流路30の一端に接続さ
れこれに冷媒を供給する。更に冷媒排出管28bもB2点に
おいて分岐され、流量調整弁(流量制御手段)32および
電気絶縁継手31bを介して第2の冷媒流路30の他端に接
続されて第2の冷媒流路30から冷媒を排出する。すなわ
ち、第2の冷媒流路30は超電導導体1が内蔵する冷媒流
路(第1の冷媒流路)4と並列に接続されて、第1の冷
媒流路4と共に冷媒供給管28aおよび冷媒排出管28bによ
って冷媒を給排される。
The second refrigerant flow path 30 is made of a metal tube having excellent heat conductivity and low flow resistance to the refrigerant, and a winding portion 30a, which is a main part thereof, is formed by winding the superconducting coil 16 close to the outer circumference thereof. It The refrigerant supply pipe 28a is branched at a point B1 and is connected to one end of the second refrigerant flow path 30 via an electrically insulating joint 31a to supply the refrigerant thereto. Further, the refrigerant discharge pipe 28b is also branched at the point B2, and is connected to the other end of the second refrigerant flow passage 30 via the flow rate adjusting valve (flow control means) 32 and the electrically insulating joint 31b to connect the second refrigerant flow passage 30. To discharge the refrigerant from. That is, the second coolant channel 30 is connected in parallel with the coolant channel (first coolant channel) 4 contained in the superconducting conductor 1, and together with the first coolant channel 4, the coolant supply pipe 28a and the coolant discharge. The refrigerant is supplied and discharged through the pipe 28b.

第2の冷媒流路30の巻回部分30aの内側には伝熱性に優
れた冷却フィン33が取付けられ、この冷却フィン33の内
側は超電導コイル16の内部に挿入されて第2の冷媒流路
30の巻回部分30aと超電導コイル16との熱交換率が高め
られる。
A cooling fin 33 having excellent heat conductivity is attached to the inside of the wound portion 30a of the second refrigerant flow passage 30, and the inside of the cooling fin 33 is inserted into the superconducting coil 16 to form the second refrigerant flow passage.
The heat exchange rate between the winding portion 30a of 30 and the superconducting coil 16 is increased.

冷却フィン33は伝熱性を考慮すると金属性のものがよ
く、超電導コイル16の磁界変動によるうず電流損失を軽
減するためには、第5図および第6図に示すようにスリ
ット34を設けて櫛歯状にするのがよい。この冷却フィン
33は、第2の冷媒流路30の巻回部分30aの巻回方向には
連続もしくは適当に分割して構成されるが、超電導コイ
ル16の周囲に電気的な閉回路を構成しないようにすべき
である。
Considering the heat conductivity, the cooling fin 33 is preferably made of metal. In order to reduce the eddy current loss due to the magnetic field fluctuation of the superconducting coil 16, the cooling fin 33 is provided with slits 34 as shown in FIG. 5 and FIG. It is good to have teeth. This cooling fin
33 is continuous or appropriately divided in the winding direction of the winding portion 30a of the second refrigerant flow path 30, but should not form an electrically closed circuit around the superconducting coil 16. Should be.

第2の冷媒流路30の巻回部分30aを超電導コイル16の内
側に設ける場合には、この冷却フィン33は巻回部分30a
の外側に設けられてその外側部が超電導コイル16内に挿
入される。
When the winding portion 30a of the second refrigerant flow passage 30 is provided inside the superconducting coil 16, the cooling fin 33 is provided in the winding portion 30a.
Is provided on the outer side of and the outer portion is inserted into the superconducting coil 16.

以上の構成において、超電導コイル16が高温でここに供
給される冷媒が超電導導体1内で気化されてしまうよう
な初期冷却時には、冷媒供給管28aから供給されて冷媒
排出管28bから排出される冷媒の大部分は流動抵抗の小
さい金属管からなる第2の冷媒流路30に分流し、その巻
回部分30aから冷却フィン33を介して超電導コイル16を
冷却する。第2の冷媒流路30に流れる冷媒の流量は流量
調整弁(流量制御手段)32で制御され、第3図で述べた
冷却系に流れる冷媒の量が、熱交換部14の機能を十分に
発揮できる程度に維持される。
In the above configuration, during the initial cooling such that the refrigerant supplied to the superconducting coil 16 at a high temperature is vaporized in the superconducting conductor 1, the refrigerant supplied from the refrigerant supply pipe 28a and discharged from the refrigerant discharge pipe 28b. Most of the fluid is divided into the second refrigerant flow path 30 made of a metal tube having a small flow resistance, and the superconducting coil 16 is cooled from the winding portion 30a through the cooling fins 33. The flow rate of the refrigerant flowing through the second refrigerant channel 30 is controlled by the flow rate adjusting valve (flow rate control means) 32, and the amount of the refrigerant flowing through the cooling system described in FIG. It is maintained to the extent that it can be demonstrated.

このように第2の冷媒流路30に十分な冷媒を流すことに
より初期冷却時においても超電導コイル16の冷却を早め
ることができる。そして超電導コイル16の温度が低下
し、超電導導体1内での気化率が減少してその流動抵抗
が減少した段階では、冷却系に流れる冷媒の量が減少し
ない程度に流量調整弁(流量制御手段)32を絞って第2
の冷媒流路30に分流する冷媒を減少させ、超電導導体1
内の冷媒流路(第1の冷媒流路)4に流れる冷媒の流量
を増加させる。このようにして超電導導体1内の冷媒流
路(第1の冷媒流路)4に流れる冷媒の流量を徐々に増
加させ、超電導コイル16が所望の温度に達した時点では
第2の冷媒流路30への冷媒の分流を停止し、冷媒のすべ
てを超電導導体1内の冷媒流路(第1の冷媒流路)4に
流すようにする。
By flowing a sufficient amount of the coolant in the second coolant flow path 30 in this manner, it is possible to accelerate the cooling of the superconducting coil 16 even during the initial cooling. Then, when the temperature of the superconducting coil 16 decreases, the vaporization rate in the superconducting conductor 1 decreases, and the flow resistance decreases, the flow rate adjusting valve (flow rate controlling means) does not decrease to the extent that the amount of the refrigerant flowing in the cooling system does not decrease. ) Squeeze 32 to the second
Of the superconducting conductor 1 by reducing the refrigerant that diverts to the refrigerant passage 30 of
The flow rate of the refrigerant flowing through the internal refrigerant channel (first refrigerant channel) 4 is increased. In this way, the flow rate of the refrigerant flowing through the refrigerant flow path (first refrigerant flow path) 4 in the superconducting conductor 1 is gradually increased, and when the superconducting coil 16 reaches the desired temperature, the second refrigerant flow path is reached. The branching of the refrigerant to 30 is stopped, and all the refrigerant is allowed to flow through the refrigerant flow path (first refrigerant flow path) 4 in the superconducting conductor 1.

このようにして超電導コイル16を冷却することにより、
前述した仕様の超電導コイル16の冷却時間を6分の1に
短縮することができた。しかも冷却系に十分な冷媒を循
環させたことにより、熱交換部14における液体ヘリウム
槽10の液体ヘリウムの消費量(気化して減少したことに
よる補充量)を約10分の1にな節約することができた。
By cooling the superconducting coil 16 in this way,
The cooling time of the superconducting coil 16 having the above-mentioned specifications could be shortened to 1/6. Moreover, by circulating sufficient refrigerant in the cooling system, the consumption amount of liquid helium in the liquid helium tank 10 in the heat exchange unit 14 (replenishment amount due to vaporization and reduction) is reduced to about 1/10. I was able to.

超電導コイル16が極低温になり超電導導体11が超電導状
態になった時点で、この超電導コイル16はパワーリード
25a,25bを介して励磁される。第2の冷媒流路30や冷却
フィン33は超電導コイル16やボビン21から電気的に絶縁
されているが、超電導コイル16で作られた磁界との交差
は避けられない。従って、この磁界が変動すると第2の
冷媒流路30や冷却フィン33には電圧が誘起され、第2の
冷媒流路30や冷却フィン33が超電導コイル16のまわりに
電気的な閉回路を構成すると循環電流や渦電流が流れ、
そのジュール熱によって超電導コイル16の温度を上昇さ
せる問題がある。
When the superconducting coil 16 becomes extremely low temperature and the superconducting conductor 11 enters the superconducting state, the superconducting coil 16 becomes a power lead.
It is excited through 25a and 25b. The second coolant flow path 30 and the cooling fins 33 are electrically insulated from the superconducting coil 16 and the bobbin 21, but the magnetic field generated by the superconducting coil 16 cannot be avoided. Therefore, when this magnetic field fluctuates, a voltage is induced in the second refrigerant flow passage 30 and the cooling fin 33, and the second refrigerant flow passage 30 and the cooling fin 33 form an electrically closed circuit around the superconducting coil 16. Then circulating current and eddy current flow,
There is a problem that the temperature of the superconducting coil 16 is raised by the Joule heat.

しかるに本実施例においては、第2の冷媒流路30と冷媒
供給管28aの間および流量調整弁(流量制御手段)32の
間にそれぞれ電気絶縁継手31a,31bが挿入されており、
従って第2の冷媒流路30に誘起された電圧でこの第2の
冷媒流路30に循環電流が流れることはない。また超電導
コイル16に挿入される冷却フィン33もスリット34によっ
て櫛歯状になっているので渦電流の発生は軽減され、従
ってこれらの電流によるジュール熱の発生は極めて少な
いものとなる。なお、この実施例において、電気絶縁継
手31a,31bは第2の冷媒流路30の両端に設けられている
が、閉回路が構成されるのを防止するためには1個でよ
い。この場合には、第2の冷媒流路30に誘起される電流
が正になる側の端部に電気絶縁継手を設け、負になる側
は接地すれば感電に対して安全性の高いものになる。こ
のような意味では、流量調整弁(流量制御手段)32は第
2の冷媒流路30に対して電気絶縁継手の外側に設けるの
がよく、また電気絶縁継手は第2の冷媒流路30の誘起電
圧分布に応じてその個数と挿入位置を決ればよい。
However, in the present embodiment, the electrically insulating joints 31a and 31b are inserted between the second refrigerant flow path 30 and the refrigerant supply pipe 28a and between the flow rate adjusting valve (flow rate control means) 32, respectively,
Therefore, the circulating current does not flow in the second refrigerant flow passage 30 due to the voltage induced in the second refrigerant flow passage 30. Further, since the cooling fins 33 inserted into the superconducting coil 16 are also comb-shaped by the slits 34, the generation of eddy currents is reduced, so that the generation of Joule heat due to these currents is extremely small. In addition, in this embodiment, the electrically insulating joints 31a and 31b are provided at both ends of the second refrigerant passage 30, but only one is required to prevent the closed circuit from being formed. In this case, an electric insulation joint is provided at the end on the side where the current induced in the second refrigerant flow path 30 becomes positive, and the negative side is grounded to make it highly safe against electric shock. Become. In this sense, the flow rate adjusting valve (flow rate control means) 32 is preferably provided outside the electrically insulated joint with respect to the second refrigerant passage 30, and the electrically insulated joint is provided in the second refrigerant passage 30. The number and insertion position may be determined according to the induced voltage distribution.

第7図の例は、大形の超電導コイル装置の場合におい
て、前述の第2の冷媒流路30の長さが増えてその流動抵
抗が無視できない程度になる場合の対策例である。第2
の冷媒流路30の長さが増えて流動抵抗が増加し冷媒の流
量が減少すると、それに伴って冷却系全体の冷媒流路が
減少して熱交換部14の性能が低下する。この流量減少を
防止するために、この実施例は、真空容器17内において
冷媒供給管28cのC1点と冷媒排出管28bのC2点の間にバイ
パス流路35を設け、このバイパス流路35の途中にバイパ
ス流量調整弁36を設けたものである。
The example of FIG. 7 is a countermeasure example in the case of a large-sized superconducting coil device in the case where the length of the above-mentioned second refrigerant channel 30 increases and its flow resistance becomes a level that cannot be ignored. Second
When the length of the coolant channel 30 increases, the flow resistance increases, and the flow rate of the coolant decreases, the coolant channel of the entire cooling system decreases accordingly, and the performance of the heat exchange unit 14 decreases. In order to prevent this flow rate reduction, in this embodiment, a bypass passage 35 is provided between the C1 point of the refrigerant supply pipe 28c and the C2 point of the refrigerant discharge pipe 28b in the vacuum container 17, and the bypass passage 35 A bypass flow rate adjusting valve 36 is provided on the way.

このように構成することにより、バイパス流量調整弁36
を操作して冷却系に流れる冷媒の流量を調節して圧力源
8および熱交換部14の能力に相応した値にすることによ
り、熱交換部14の能力を十分に発揮させることができ
る。そしてその後にバイパス流量調整弁36を操作してバ
イパス流量を減じ第2の冷媒流路30に流す冷媒の流量を
増加させ、次に流量調整弁(流量制御手段)32を操作し
て第2の冷媒流路30に流す冷媒の流量を減じて超電導導
体1内の冷媒流路(第1の冷媒流路)4に流す冷媒の流
量を増加させれば、全体的に超電導コイル16を短時間で
所定の温度にまで冷却することができる。
With this configuration, the bypass flow rate adjustment valve 36
Is operated to adjust the flow rate of the refrigerant flowing in the cooling system to a value corresponding to the capacities of the pressure source 8 and the heat exchanging section 14, so that the capacity of the heat exchanging section 14 can be sufficiently exhibited. Then, thereafter, the bypass flow rate adjusting valve 36 is operated to reduce the bypass flow rate to increase the flow rate of the refrigerant flowing in the second refrigerant flow path 30, and then the flow rate adjusting valve (flow rate control means) 32 is operated to operate the second flow rate adjusting valve 32. If the flow rate of the refrigerant flowing in the refrigerant flow path 30 is reduced to increase the flow rate of the refrigerant flowing in the refrigerant flow path (first refrigerant flow path) 4 in the superconducting conductor 1, the entire superconducting coil 16 can be shortened in a short time. It can be cooled to a predetermined temperature.

第8図は前述した実施例において、パワーリード25a,25
bと超電導導体1の端部1a,1bとその接続継手26a,26bの
冷却を改善した例を示す。前述の例において、端部1a,1
bは接続継手26a,26bの部分において袋小路となってお
り、従って該部分に冷媒は流れにくく伝熱冷却となる。
パワーリード25a,25bは別途冷却されるが、その外端か
ら超電導導体1の端部1a,1bとの接続部までその全域を
直接冷却することは困難で、その下端部は伝熱による冷
却となる。従ってこの部分に超電導導体を配置してこれ
を伝熱で冷却することは安定性の点で好ましくない。ま
た、接続部での発熱によって超電導導体の安定性は一層
損われることになる。
FIG. 8 shows the power leads 25a, 25 in the embodiment described above.
An example is shown in which the cooling of b, the ends 1a and 1b of the superconducting conductor 1 and the connecting joints 26a and 26b thereof are improved. In the above example, the ends 1a, 1
The b is a dead end in the connecting joints 26a and 26b, so that the refrigerant hardly flows in the connecting heat transfer cooling.
Although the power leads 25a and 25b are separately cooled, it is difficult to directly cool the entire area from the outer end to the connection portion with the end portions 1a and 1b of the superconducting conductor 1, and the lower end portion is not cooled by heat transfer. Become. Therefore, it is not preferable in terms of stability to arrange a superconducting conductor in this portion and cool it by heat transfer. Further, the heat generated at the connection portion further impairs the stability of the superconducting conductor.

これらを考慮して本実施例は、前記導電性の接続継手26
a,26bから冷媒流路を分岐し、これを電気絶縁継手27a,2
7bを介して冷媒供給管28aと冷媒排出管28bにそれぞれ接
続したものである。このようにすれば、超電導導体1内
にはその全域にわたって冷媒が流れることになり安定し
た特性が得られることになる。
In consideration of these points, the present embodiment is directed to the conductive connecting joint 26
The refrigerant flow path is branched from a, 26b, and this is electrically insulated joint 27a, 2
The refrigerant supply pipe 28a and the refrigerant discharge pipe 28b are respectively connected via 7b. By doing so, the refrigerant flows over the entire area of the superconducting conductor 1, so that stable characteristics can be obtained.

第9図および第10図は超電導コイルと第2の冷媒流路の
間の熱交換特性を改善する例で、第2の冷媒流路の主要
部分を構成する巻回部分を超電導コイルの内部に直接埋
設したものである。
9 and 10 show an example of improving the heat exchange characteristics between the superconducting coil and the second refrigerant flow path, in which the winding portion forming the main part of the second refrigerant flow path is placed inside the superconducting coil. It was directly buried.

第9図の例は、超電導導体1と第2の冷媒流路37の巻回
部分37aを構成する金属管とを2本持ちでソレノイド巻
きした例である。また第10図は、ダブルパンケーキ巻き
コイルへの適用例で、超電導導体1を巻回して構成した
ダブルパンケーキと金属管を巻回して構成した第2の冷
媒流路37の巻回部分37aの一部をなすダブルパンケーキ
を交互に積層したものである。
The example of FIG. 9 is an example in which the superconducting conductor 1 and the metal tube forming the winding portion 37a of the second coolant channel 37 are two-held and solenoid-wound. Further, FIG. 10 shows an application example to a double pancake winding coil, in which a double pancake formed by winding the superconducting conductor 1 and a winding portion 37a of a second refrigerant flow path 37 formed by winding a metal tube. The double pancakes that form a part of are alternately stacked.

これらの2つの例は、第2の冷媒流路37の巻回部分37a
により超電導コイル16を直接的に冷却するので、冷却フ
ィンを用いた間接的冷却よりも冷却効率が向上する。な
お、巻回部分37aの配置、巻き方や、これを構成する金
属管の寸法と形状などは適宜に設定し得る。
These two examples are the wound portion 37a of the second refrigerant flow path 37.
Since the superconducting coil 16 is directly cooled by this, the cooling efficiency is improved as compared with the indirect cooling using the cooling fin. The arrangement and winding method of the wound portion 37a, and the size and shape of the metal tube forming the wound portion 37a can be appropriately set.

〔発明の効果〕〔The invention's effect〕

以上に述べたように、本発明は、初期冷却時には第2の
冷媒流路に分流する冷媒によって超電導コイルを冷却す
るので冷却効率が向上し、短時間に少ない液体ヘリウム
消費量で超電導コイルを極低温まで冷却することができ
る。しかも、第2の冷媒流路中に電気絶縁継手を挿入し
たことによりこの第2の冷媒流路に循環電流が誘導され
るのが防止され、従って循環電流による発熱も防止でき
る。さらに、第2の冷媒流路の巻回部分を超電導コイル
の内部に埋設したものにおいては、この巻回部分によっ
て超電導コイルを直接的に冷却するので、冷却フィンを
用いて間接的に冷却するよりも冷却効率がさらに向上す
る効果がある。
As described above, according to the present invention, the superconducting coil is cooled by the refrigerant diverted to the second refrigerant passage during the initial cooling, so that the cooling efficiency is improved, and the superconducting coil is poled with a small consumption amount of liquid helium in a short time. Can be cooled to low temperatures. Moreover, by inserting the electrically insulating joint in the second refrigerant flow path, it is possible to prevent the circulation current from being induced in the second refrigerant flow path, and thus to prevent the heat generation due to the circulation current. Further, in the case where the wound portion of the second refrigerant flow path is embedded inside the superconducting coil, the superconducting coil is directly cooled by this wound portion, so that it is not indirectly cooled by using the cooling fin. Also has the effect of further improving the cooling efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る超電導コイル装置の縦
断側面図、第2図は強制冷却超電導導体の断面図、第3
図は従来の超電導コイル装置における冷却系のブロック
図、第4図は従来の超電導コイル装置の縦断側面図、第
5図は第1図に示した装置における第2の冷媒流路の巻
回部分と冷却フィンの一部を示す平面図、第6図は第5
図のA−A断面図、第7図および第8図は本発明の他の
各実施例に係る超電導コイル装置の縦断側面図、第9図
および第10図は本発明の他の実施例に係る超電導コイル
装置における第2の冷媒流路の各変形例を示す断面図で
ある。 1……強制冷却超電導導体、4……内蔵する冷媒流路
(第1の冷媒流路)、16……超電導コイル、17……真空
容器、28a……冷媒供給管、28b……冷媒排出管、30……
第2の冷媒流路、30a……巻回部分、31a,31b……電気絶
縁継手、32……流量調整弁(流量制御手段)、33……冷
却フィン、37……第2の冷媒流路、37a……巻回部分。
FIG. 1 is a vertical sectional side view of a superconducting coil device according to an embodiment of the present invention, FIG. 2 is a sectional view of a forced cooling superconducting conductor, and FIG.
FIG. 4 is a block diagram of a cooling system in a conventional superconducting coil device, FIG. 4 is a vertical sectional side view of a conventional superconducting coil device, and FIG. 5 is a winding portion of a second refrigerant passage in the device shown in FIG. And FIG. 6 is a plan view showing a part of the cooling fins and FIG.
FIG. 7 is a vertical sectional side view of a superconducting coil device according to another embodiment of the present invention, and FIGS. 9 and 10 show other embodiments of the present invention. It is a sectional view showing each modification of the 2nd refrigerant channel in the superconducting coil device concerning this. 1 ... Forced cooling superconducting conductor, 4 ... Built-in refrigerant passage (first refrigerant passage), 16 ... Superconducting coil, 17 ... Vacuum container, 28a ... Refrigerant supply pipe, 28b ... Refrigerant discharge pipe , 30 ……
Second refrigerant flow path, 30a ... Winding part, 31a, 31b ... Electrically insulating joint, 32 ... Flow rate adjusting valve (flow rate control means), 33 ... Cooling fin, 37 ... Second refrigerant flow path , 37a …… The winding part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 浩 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 原 伸洋 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 小林 孝司 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kimura 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitate Works, Ltd. Hitachi Research Laboratory (72) Nobuhiro Hara 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitate Works Co., Ltd. In Hitachi Research Laboratory (72) Inventor Koji Kobayashi 4026 Kuji Town, Hitachi City, Ibaraki Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】第1の冷媒流路を内蔵する強制冷却超電導
導体を巻回して構成した超電導コイルと、この超電導コ
イルを収容する真空容器と、この真空容器内に収容され
た前記超電導コイルの第1の冷媒流路に冷媒を給排する
冷媒給排管とを備えた強制冷却超電導コイル装置におい
て、金属管を前記超電導コイルの周面に沿って巻回して
構成された巻回部分を備えると共に前記真空容器内に配
置され、かつ前記第1の冷媒流路と並列に接続されて前
記第1の冷媒流路と共に前記冷媒給排管によって冷媒を
給排される第2の冷媒流路と、この第2の冷媒流路の前
記巻回部分に接合されると共に前記超電導コイル内にこ
の超電導コイルと熱交換可能に挿入された良熱伝導性材
からなる冷却フィンと、前記第2の冷媒流路を流れる冷
媒の流量を制御する流量制御手段と、前記第2の冷媒流
路内に介挿されこの第2の冷媒流路に誘起される電圧に
よる電流を遮断する電気絶縁継手とを設けたことを特徴
とする強制冷却超電導コイル装置。
1. A superconducting coil formed by winding a forced cooling superconducting conductor containing a first refrigerant flow path, a vacuum container containing the superconducting coil, and a superconducting coil housed in the vacuum container. In a forced cooling superconducting coil device including a refrigerant supply / discharge pipe for supplying / discharging a refrigerant to / from a first refrigerant flow path, a wound portion formed by winding a metal tube along a peripheral surface of the superconducting coil is provided. And a second refrigerant flow path which is disposed in the vacuum container, is connected in parallel with the first refrigerant flow path, and is supplied and discharged with the first refrigerant flow path by the refrigerant supply / discharge pipe. A cooling fin made of a good heat conductive material, which is joined to the wound portion of the second refrigerant channel and is inserted into the superconducting coil so as to exchange heat with the superconducting coil; and the second refrigerant. Controls the flow rate of the refrigerant flowing through the flow path A forced cooling superconducting coil provided with a flow rate control means and an electrically insulating joint which is inserted in the second refrigerant channel and interrupts a current caused by a voltage induced in the second refrigerant channel. apparatus.
【請求項2】特許請求の範囲第1項において、前記冷却
フィンは櫛歯状に形成されていることを特徴とする強制
冷却超電導コイル装置。
2. The forced cooling superconducting coil device according to claim 1, wherein the cooling fin is formed in a comb shape.
【請求項3】特許請求の範囲第1項において、前記電気
絶縁継手は前記第2の冷媒流路における前記巻回部分と
前記冷媒給排管の間に設けられていることを特徴とする
強制冷却超電導コイル装置。
3. The compulsion according to claim 1, wherein the electrically insulating joint is provided between the winding portion and the refrigerant supply / discharge pipe in the second refrigerant flow path. Cooled superconducting coil device.
【請求項4】特許請求の範囲第3項において、前記流量
制御手段は前記電気絶縁継手と前記冷媒給排管の間に設
けられていることを特徴とする強制冷却超電導コイル装
置。
4. The forced cooling superconducting coil device according to claim 3, wherein the flow rate control means is provided between the electrically insulating joint and the refrigerant supply / discharge pipe.
【請求項5】第1の冷媒流路を内蔵する強制冷却超電導
導体を巻回して構成した超電導コイルと、この超電導コ
イルを収容する真空容器と、この真空容器内に収容され
た前記超電導コイルの第1の冷媒流路に冷媒を給排する
冷媒給排管とを備えた強制冷却超電導コイル装置におい
て、金属管を巻回して構成された巻回部分を備えると共
に前記第1の冷媒流路と並列に接続されて前記第1の冷
媒流路と共に前記冷媒給排管によって冷媒を給排され、
かつ前記巻回部分が前記超電導コイル内にこの超電導コ
イルと熱交換可能に埋設された第2の冷媒流路と、この
第2の冷媒流路を流れる冷媒の流量を制御する流量制御
手段と、前記第2の冷媒流路内に介挿されこの第2の冷
媒流路に誘起される電圧による電流を遮断する電気絶縁
継手とを設けたことを特徴とする強制冷却超電導コイル
装置。
5. A superconducting coil formed by winding a forced cooling superconducting conductor containing a first refrigerant flow path, a vacuum container accommodating the superconducting coil, and the superconducting coil housed in the vacuum container. A forced cooling superconducting coil device, comprising: a refrigerant supply / discharge pipe for supplying / discharging a refrigerant to / from a first refrigerant flow path; and a winding portion formed by winding a metal pipe and the first refrigerant flow path. Refrigerant is supplied / discharged by the refrigerant supply / discharge pipe connected in parallel with the first refrigerant flow path,
And a second refrigerant channel in which the wound portion is embedded in the superconducting coil so as to be capable of heat exchange with the superconducting coil, and a flow rate control means for controlling the flow rate of the refrigerant flowing through the second refrigerant channel. A forced cooling superconducting coil device, comprising: an electrically insulating joint which is inserted in the second refrigerant flow passage and interrupts a current caused by a voltage induced in the second refrigerant flow passage.
【請求項6】特許請求の範囲第5項において、前記電気
絶縁継手は前記第2の冷媒流路における前記巻回部分と
前記冷媒給排管の間に設けられていることを特徴とする
強制冷却超電導コイル装置。
6. The compulsion device according to claim 5, wherein the electrically insulating joint is provided between the wound portion and the refrigerant supply / discharge pipe in the second refrigerant flow path. Cooled superconducting coil device.
【請求項7】特許請求の範囲第6項において、前記流量
制御手段は前記電気絶縁継手と前記冷媒給排管の間に設
けられていることを特徴とする強制冷却超電導コイル装
置。
7. The forced cooling superconducting coil device according to claim 6, wherein the flow rate control means is provided between the electrically insulating joint and the refrigerant supply / discharge pipe.
JP60019237A 1985-02-05 1985-02-05 Forced cooling superconducting coil device Expired - Lifetime JPH0727814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019237A JPH0727814B2 (en) 1985-02-05 1985-02-05 Forced cooling superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019237A JPH0727814B2 (en) 1985-02-05 1985-02-05 Forced cooling superconducting coil device

Publications (2)

Publication Number Publication Date
JPS61179508A JPS61179508A (en) 1986-08-12
JPH0727814B2 true JPH0727814B2 (en) 1995-03-29

Family

ID=11993782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019237A Expired - Lifetime JPH0727814B2 (en) 1985-02-05 1985-02-05 Forced cooling superconducting coil device

Country Status (1)

Country Link
JP (1) JPH0727814B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635165B2 (en) * 1989-04-28 1997-07-30 株式会社日立製作所 Forced cooling superconducting coil device
US7464558B2 (en) * 2003-11-19 2008-12-16 General Electric Company Low eddy current cryogen circuit for superconducting magnets
JP2006128465A (en) * 2004-10-29 2006-05-18 Toshiba Corp Cooling device of superconducting coil
US7053740B1 (en) * 2005-07-15 2006-05-30 General Electric Company Low field loss cold mass structure for superconducting magnets
US7319329B2 (en) * 2005-11-28 2008-01-15 General Electric Company Cold mass with discrete path substantially conductive coupler for superconducting magnet and cryogenic cooling circuit
JP2015002287A (en) * 2013-06-17 2015-01-05 住友重機械工業株式会社 Superconducting magnet
JP7210403B2 (en) * 2019-08-08 2023-01-23 株式会社日立製作所 Superconducting magnet device and particle beam therapy system
CN117476306B (en) * 2023-11-10 2024-05-14 中国科学院近代物理研究所 Fast pulse superconducting magnet structure

Also Published As

Publication number Publication date
JPS61179508A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
US6389821B2 (en) Circulating cryostat
Buyanov et al. A review of current leads for cryogenic devices
EP0209134A1 (en) Forced flow cooling-type superconducting coil apparatus
CN101109583A (en) Cryogenically cooled equipment comprising current leads for electric equipment
US20100242502A1 (en) Apparatus and method of superconducting magnet cooling
JP3898231B2 (en) Current supply for cooling electrical equipment
JPH0727814B2 (en) Forced cooling superconducting coil device
JPS6241567A (en) Method and device for cooling body by using superfluid helium
JPS607396B2 (en) superconducting device
US4600802A (en) Cryogenic current lead and method
US4134037A (en) Current lead-in device for superconducting rotary electrical machines
JPS6123306A (en) Cooling device of superconductive coil
JP4799757B2 (en) Superconducting magnet
CN116206847A (en) Cooling system and superconducting magnet system
JPH06504401A (en) Hollow electrical conductors that can be cooled at low temperatures and their applications
JP3725305B2 (en) Superconducting magnet cooling system
Smirnov et al. A pulsed superconducting dipole magnet for the Nuclotron
JP4906182B2 (en) Conduit type forced cooling superconducting conductor and superconducting magnet
CN110462760A (en) Hot bus heat exchanger for superconducting magnet
Viargues et al. Construction and preliminary testing of perforated-plate heat exchangers for use in helium IIrefrigerators
Ballarino et al. Potential of High-Temperature Super Conductor Current Leads for LHC Cryogenics
RU2749666C1 (en) Magnetic field generator
JPS61125002A (en) Forcibly cooled superconductive coil device
JP3692625B2 (en) Superconducting power transmission cable
Woolley Long Pulse Fusion Physics Experiments Without Superconducting Electromagnets