JPS5986215A - Vapor growth method of gallium arsenide - Google Patents

Vapor growth method of gallium arsenide

Info

Publication number
JPS5986215A
JPS5986215A JP19720882A JP19720882A JPS5986215A JP S5986215 A JPS5986215 A JP S5986215A JP 19720882 A JP19720882 A JP 19720882A JP 19720882 A JP19720882 A JP 19720882A JP S5986215 A JPS5986215 A JP S5986215A
Authority
JP
Japan
Prior art keywords
temperature
epitaxial growth
carrier concentration
growth layer
starting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19720882A
Other languages
Japanese (ja)
Inventor
Michihiro Ito
伊藤 道弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19720882A priority Critical patent/JPS5986215A/en
Publication of JPS5986215A publication Critical patent/JPS5986215A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To form required impurity concentration profile on epitaxial growth layer and provide any impurity concentration gradient, by a method wherein temperature of gallium as starting material is varied and rate of the temperature variation is selected suitably. CONSTITUTION:Ratio of AsCl3 to H2 is made 5X10<-3> using an epitaxial growing device and temperature of Ga 2 as starting material is held to 850 deg.C at total H2 flow amount 0.8l/minute and temperature of a substrate 3 is held to 730 deg.C and growth is performed, thereby epitaxial growth layer of carrier concentration 4X10<17>cm<-3> is obtained. When ratio of AsCl3 to H2, gas flow amount and temperature of the substrate 3 are made constant and temperature of Ga 2 as starting material is made 830 deg.C, epitaxial growth layer of carrier concentration 2.2X 10<17>cm<-3> is obtained; when temperature of Ga 2 is made 810 deg.C, epitaxial growth layer of carrier concentration 1.5X10<17>cm<-3> is obtained. According to this relation, if temperature of only Ga 2 as starting material is decreased from 850 deg.C to 800 deg.C gradually during the growing process, epitaxial growth layer with carrier concentration gradient corresponding to this temperature drop is obtained. Thus carrier concentration gradient can be controlled by varying the temperature decreasing rate of a heating furnace 4a.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はヒ化ガリウム(GaAe)結晶の気相成長方
法に係り、特にその成長結晶中は不純物元素の濃度こう
配を形成する方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for vapor phase growth of gallium arsenide (GaAe) crystals, and particularly to a method for forming a concentration gradient of impurity elements in the grown crystal. .

〔従来技術〕[Prior art]

気相成長法は基板上に薄膜層を形成する方法として広く
用いられている。そして、近年、半導体素子の特性向上
のために、多層エピタキシャル成長層や不純物濃度にこ
う配を有する成長層が要求されるようになってきた。
Vapor phase growth is widely used as a method for forming thin film layers on substrates. In recent years, in order to improve the characteristics of semiconductor devices, there has been a demand for multilayer epitaxial growth layers and growth layers having a gradient in impurity concentration.

例えば、GaAo電界効果トランジスタ(GaAsFE
T)では通常半絶縁性GaAθ基板上に高抵抗のバッフ
ァ層を気相成長させ、次いで不純物を添加したn形動作
層を連続して成長させており、このn形動作層は吠面に
向ってキャリヤ濃度が減少するようにすることによって
、トランジスタの特性が向上することが研究の結果判明
してきた。
For example, GaAo field effect transistor (GaAsFE)
In T), a high-resistance buffer layer is usually grown in vapor phase on a semi-insulating GaAθ substrate, and then an impurity-doped n-type active layer is successively grown. As a result of research, it has been found that the characteristics of transistors can be improved by reducing the carrier concentration.

第1図は従来から用いられているエピタキシャル成長装
置を示す概略断面図で、(1)は反応管、(2)は原料
Ge、 、’ [3’lはその上にエピタキシャル成長
させるべき基板、(4a)I (4b)は反応管+11
を所望の温度に加熱する加熱炉で、(4a)は一定温度
分布を、(4b)は5〜b に形成されている。(6)は三塩化ヒ素(As ata
 ) 用バブル容器、(6)はキャリヤガスとしての水
素(H2)の供給管、(7)はH2ガスの流量計、(8
)は不純物ガス〔通常は硫化水素()I2El)ガス〕
のボンベ、(9)は不純物ガスの流量計、(10)はバ
ブル容器(6)の出力バルブ、(++)はキャリヤガス
の直接反応管fi+への供給を開閉するバルブ、θ鎖は
キャリヤガスのバブル容器(5)への供給を開閉するバ
ルブ、(l(9)は不純物ガスボンベ(8)の出力バル
ブ、04)は反応管filの排気管である。
FIG. 1 is a schematic cross-sectional view showing a conventionally used epitaxial growth apparatus, in which (1) is a reaction tube, (2) is a raw material Ge, ,'[3'l is a substrate on which epitaxial growth is to be made, (4a )I (4b) is reaction tube +11
(4a) has a constant temperature distribution, and (4b) has a heating furnace for heating to a desired temperature. (6) is arsenic trichloride (As ata
), (6) is a supply pipe for hydrogen (H2) as a carrier gas, (7) is a flow meter for H2 gas, (8
) is an impurity gas [usually hydrogen sulfide ()I2El) gas]
cylinder, (9) is the impurity gas flow meter, (10) is the output valve of the bubble container (6), (++) is the valve that opens and closes the supply of carrier gas directly to the reaction tube fi+, and the θ chain is the carrier gas (l(9) is the output valve of the impurity gas cylinder (8), and 04 is the exhaust pipe of the reaction tube fil.

この装置の通常の動作は周知であるので簡単に説明する
。最初バルブttol 、 (121、Q3)を閉じ、
バルブ(II)のみを開いて供給管(6)からのH2ガ
スを反応管+11内へ導いて反応管fil内がH2ガス
の流れで満されるようにする。ついで、バルブ(11)
 、 92+を切換えて、バルブ(lO)を開くことに
よって、H2ガスを流量計(7)を介してバブル容器(
5)に導きバブルさせる5 ことによって1Ct3ガスをH2ガスをキャリヤガスと
して反応管(1)へ導入することによってエピタキシャ
ル成長が開始される。このようにして所望の厚さのバッ
ファ層が基板(3)の上に形成された後に、バルブθ3
)を開いて不純物ガスをボンベ(8)から流量計(9)
を介して反応管(1)へ導入し、n形動外層を成長させ
る訳である。
The normal operation of this device is well known and will be briefly described. First close the valve ttol, (121, Q3),
Only the valve (II) is opened to introduce H2 gas from the supply pipe (6) into the reaction tube +11 so that the inside of the reaction tube fil is filled with the flow of H2 gas. Next, the valve (11)
, 92+ and open the valve (lO), the H2 gas is passed through the flow meter (7) into the bubble container (
Epitaxial growth is started by introducing 1Ct3 gas into the reaction tube (1) using H2 gas as a carrier gas. After a buffer layer of desired thickness is formed on the substrate (3) in this way, the valve θ3
) to drain the impurity gas from the cylinder (8) to the flow meter (9).
It is introduced into the reaction tube (1) through the tube to grow an n-type outer layer.

このとき、キャリヤ濃度に所望のこう配をもたせるため
には、流量計(9)を見ながらバルブ0渇を調整してn
形動外層の形成中不純物ガスの供給量を連続して変化さ
せることが8裂であるが、この制御操作がデリケートで
あるので、再現性よく所望のキャリヤ濃度こう配を有す
るエピタキシャル成長層を得ることは困難であった。
At this time, in order to give the carrier concentration a desired gradient, adjust the valve 0 while watching the flow meter (9).
It is important to continuously change the amount of impurity gas supplied during the formation of the outer layer, but since this control operation is delicate, it is difficult to obtain an epitaxially grown layer with a desired carrier concentration gradient with good reproducibility. It was difficult.

〔発明の概要〕[Summary of the invention]

この発明は基板温度、キャリヤガス流量などの他の祭件
を一定にしておいて、原料G8の温度を変えるのみでエ
ピタキシャル成長層のキャリヤ濃度が変化するとの知見
もとづいて、原料Gaの温度を徐々に変化させることに
よって、キャリヤ濃度に所望のこう配を有するGaAs
結晶の気相成長方法を提供するものである。
This invention is based on the knowledge that the carrier concentration in the epitaxial growth layer changes simply by changing the temperature of the raw material G8 while keeping other conditions constant such as the substrate temperature and carrier gas flow rate, and gradually changes the temperature of the raw material Ga. GaAs with a desired gradient in carrier concentration by varying the
A method for vapor phase growth of crystals is provided.

〔発明の実施例〕[Embodiments of the invention]

i1図に示した通りのエピタキシャル成長装置に用いて
、H2に対するAs ctaの比率を5X10″′3と
して、総1(2流量0.811分で原料Ga (21の
温度を850℃、基板(3)の温度を130℃に保って
成長させたところ、キャリヤ濃度が4XlOam  の
エピタキシャル成長層を得たoまた、H2に対するAs
 Ot3の比率、ガス流電及び基板(3)の温度を一定
にして、原料Ga f21の温度を830℃にした場合
はキャリヤ濃度2.2X1017am−”、原料()a
 (21の温度を810℃とするとキャリヤ(Q i 
1.5 XIO”am−”のエピタキシャル成長j−を
得た。第2図はこの関係を示ず特性図で、横軸は原料G
aと基板との間の温度差、縦軸は成長結晶のキャリヤ儀
度を示す。すなわち、成長中に原料Ga+21の温度の
み850℃からBoo”C!で徐々に降下させると、そ
れに応じたキャリヤ91度こう配を肩丈るエピタキシャ
ル成長層を得た。ぞして、キャリヤ濃度のこう配は加熱
炉(4a)の温度の降下速実を変えることによつで制御
できる。当然ながら、加熱炉(4a)の温度の降下速度
か大きいほどキャリヤ濃度こう配は急峻になる。この温
匿降下の制御は電気回路を利用して自動的に行なわせる
ことは容易である。
Using an epitaxial growth apparatus as shown in Figure i1, the ratio of As cta to H2 was set to 5X10'''3, and the temperature of the raw material Ga (21) was 850°C at a flow rate of 0.811 min, and the substrate (3) When grown at a temperature of 130°C, an epitaxially grown layer with a carrier concentration of 4XlOam was obtained.
When the ratio of Ot3, the gas current, and the temperature of the substrate (3) are kept constant and the temperature of the raw material Ga f21 is set to 830°C, the carrier concentration is 2.2X1017 am-'', and the raw material ()a is
(If the temperature of 21 is 810℃, the carrier (Q i
1.5 Epitaxial growth of XIO "am-" was obtained. Figure 2 is a characteristic diagram that does not show this relationship, and the horizontal axis is the raw material G.
The temperature difference between a and the substrate, the vertical axis indicates the carrier density of the growing crystal. That is, by gradually lowering only the temperature of the raw material Ga+21 from 850°C to Boo'C! during growth, an epitaxially grown layer with a corresponding carrier gradient of 91° was obtained.Thus, the carrier concentration gradient was It can be controlled by changing the rate of decrease in the temperature of the heating furnace (4a).Of course, the higher the rate of decrease in the temperature of the heating furnace (4a), the steeper the carrier concentration gradient. Control can be easily performed automatically using an electric circuit.

〔発明の効果〕〔Effect of the invention〕

以上龜明したように、この発明の方法によれば原料Ga
の温度を変化させるだけで、エピタキシャル成長層に所
望の不純物濃度分布を形成することができ、この温度変
化の速度を適尚に選ぶことによって任意の不純物濃度こ
う配を得られる。
As explained above, according to the method of this invention, the raw material Ga
A desired impurity concentration distribution can be formed in the epitaxially grown layer by simply changing the temperature of the epitaxially grown layer, and by appropriately selecting the rate of temperature change, an arbitrary impurity concentration gradient can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第11図はこの発明を適用できる従来からのエピタキシ
ャル成長装置を示す概略断面図、第2図は第1図の装f
jfを用いた場合の原料Gaと基板との温度差とエピタ
キシャル成長層のキャリヤ濃度との関係の一例を示す特
性図である。 図において、(1)は反応管、(2)は原料となるGa
。 (3)は基板、(4a)、 (4b)は加熱炉、(5)
はAROZa用バブル容器、(6)はギヤリヤガス供給
管、(8)は不純物ガスボンベ、(14)は排気管であ
る。
FIG. 11 is a schematic cross-sectional view showing a conventional epitaxial growth apparatus to which the present invention can be applied, and FIG.
FIG. 3 is a characteristic diagram showing an example of the relationship between the temperature difference between the raw material Ga and the substrate and the carrier concentration of the epitaxially grown layer when using jf. In the figure, (1) is the reaction tube, (2) is the raw material Ga
. (3) is the substrate, (4a), (4b) is the heating furnace, (5)
is a bubble container for AROZa, (6) is a gear rear gas supply pipe, (8) is an impurity gas cylinder, and (14) is an exhaust pipe.

Claims (1)

【特許請求の範囲】[Claims] 111  加熱炉内に置かれた反応管の中に、原料とな
るガリウムを置き、かつヒ素を含むキャリヤガスおよび
不純物ガスを流し、上記ガリウムに対して上記ガス流の
下流側に置かれた基板上に不純物を含むヒ化ガリウムを
気相成長させるに当って、上記原料となるガリウムの温
度を変化させて所望の不純物濃度分布の気相成長層を得
ることを特徴とするヒ化ガリウム結晶の気相成長方法。
111 Gallium as a raw material is placed in a reaction tube placed in a heating furnace, and a carrier gas and impurity gas containing arsenic are flowed, and a substrate placed on the downstream side of the gas flow with respect to the gallium is placed. A vapor phase growth method of gallium arsenide crystal, characterized in that when gallium arsenide containing impurities is grown in a vapor phase, the temperature of the raw material gallium is changed to obtain a vapor phase growth layer with a desired impurity concentration distribution. Phase growth method.
JP19720882A 1982-11-08 1982-11-08 Vapor growth method of gallium arsenide Pending JPS5986215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19720882A JPS5986215A (en) 1982-11-08 1982-11-08 Vapor growth method of gallium arsenide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19720882A JPS5986215A (en) 1982-11-08 1982-11-08 Vapor growth method of gallium arsenide

Publications (1)

Publication Number Publication Date
JPS5986215A true JPS5986215A (en) 1984-05-18

Family

ID=16370616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19720882A Pending JPS5986215A (en) 1982-11-08 1982-11-08 Vapor growth method of gallium arsenide

Country Status (1)

Country Link
JP (1) JPS5986215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD176Z (en) * 2009-04-15 2010-10-31 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Process for the manufacture of high-voltage diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD176Z (en) * 2009-04-15 2010-10-31 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Process for the manufacture of high-voltage diode

Similar Documents

Publication Publication Date Title
CN111501097A (en) Large domain size WS2Method for growing single crystal
US4419179A (en) Method of vapor phase growth
JPS5986215A (en) Vapor growth method of gallium arsenide
US3563816A (en) Method for the vapor growth of semiconductors
JPH0529234A (en) Epitaxial crowing method
JPS63127530A (en) Vapor growth of gallium arsenide epitaxial crystal
JPS61275191A (en) Vapor-phase growth method for gaas thin film
JPS6246975B2 (en)
JPS6048900B2 (en) Gallium arsenide crystal growth method
JPH03171634A (en) Epitaxial wafer with formation layer of electrode for fet
JPS5826657B2 (en) 3-5 Epitaxy and hand-wringing method
JPH01215799A (en) Semi-insulating gaas compound semiconductor single crystal and production thereof
JP2737990B2 (en) Compound semiconductor single crystal manufacturing equipment
JPS5461463A (en) Vapor phase growth method for semiconductor
JPS63190329A (en) Thin film crystal growth method
JPS61280611A (en) Vapor growing process
JPH01245529A (en) Manufacture of compound semiconductor device
JPH0330339A (en) Method for growing crystal of ii-vi compound semiconductor
JPS6211221A (en) Molecular-beam epitaxial growth method
JPS60192339A (en) Liquid phase epitaxial growing method
JPS61189633A (en) Vapor growth method
JPH0222812A (en) Method of growing compound semiconductor layer
JPS6394619A (en) Manufacture of single crystal ge thin film
JPS63257215A (en) Manufacture of semiconductor device
JPH0421599A (en) Method for carrying out vapor phase epitaxy of gaasp mixed crystal