JPS63127530A - Vapor growth of gallium arsenide epitaxial crystal - Google Patents

Vapor growth of gallium arsenide epitaxial crystal

Info

Publication number
JPS63127530A
JPS63127530A JP27468286A JP27468286A JPS63127530A JP S63127530 A JPS63127530 A JP S63127530A JP 27468286 A JP27468286 A JP 27468286A JP 27468286 A JP27468286 A JP 27468286A JP S63127530 A JPS63127530 A JP S63127530A
Authority
JP
Japan
Prior art keywords
buffer layer
gas
forming
layer
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27468286A
Other languages
Japanese (ja)
Inventor
Kenichi Arai
新井 謙一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27468286A priority Critical patent/JPS63127530A/en
Publication of JPS63127530A publication Critical patent/JPS63127530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable an epitaxial wafer which can provide a high-quality FET to be manufactured with a high yield by forming a first buffer layer while supplying oxygen gas onto the source gallium, and forming a thinner second buffer while supplying arsenic trichloride. CONSTITUTION:Vapor phase growth is initiated by causing a mixed gas of AsCl3 and H2 to flow through a gas supplying pipe 12, and simultaneously O2 is caused to flow through the gas supplying pipe 13, forming a first buffer layer 2 having a thickness of about 4.5mum. Thereafter the supply of O2 is stopped, and simultaneously a mixed gas of AsCl3 and H2 is caused to flow through the gas supplying pipe 12, forming a second buffer layer 3 having a thickness of about 0.5mum. With this, a buffer layer having a desired thickness and having less deep impurity levels in the neighborhood of the interface with an active layer can be obtained without degrading the external appearance of the epitaxially grown layer surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヒ化ガリウム エピタキシャル結晶の気相成長
方法に関し、特にショットキバリヤゲート型電界効果ト
ランジスタに使用されるヒ化ガリウム エピタキシャル
ウェーハのバッファ層の気相成長方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for vapor phase growth of gallium arsenide epitaxial crystals, and in particular to a method for growing a buffer layer of gallium arsenide epitaxial wafers used in Schottky barrier gate field effect transistors. Concerning vapor phase growth methods.

〔従来の技術〕[Conventional technology]

ショットキバリヤゲート型FET用結晶では半絶縁性G
aAs基板上に数百nmの厚さの能動層が形成される。
Semi-insulating G for Schottky barrier gate type FET crystals
An active layer several hundred nm thick is formed on the aAs substrate.

これを気相成長法により行う場合、直接基板上に能動層
を成長させると基板の影響により結晶性の悪い能動層し
か得られず、そのため能動層と基板との間に比抵抗の高
いバッファ層を成長させる方法がとられてきた。三塩化
ヒ素(AsCj’ 3)−ガリウム(Ga)−水素(t
lz)反応系で得られるアンドープ結晶中の残留不純物
はシリコン(Si)であり、通常2〜5 X 10 ”
arm−3の濃度で含まれる。Siは以下の反応機構で
結晶中に取り込まれる。気相成長時、Gaをガス状原料
として基板上に輸送するため石英ボートに収容されたソ
ースGa上にAsCff5が供給されるが、この時^s
Ce 3は次式の反応 4^sCj’ 3 + 6 H2−+As4 + 12
 HC!!  ・・・(1)により112中で容易に分
解し、気相中に塩酸ガス(HCff)が生成する。さて
、ソースGaを収容する石英ボートはGaと次式の反応 SiO□+ 4 Ga= 5i(inGa)+ 2 G
a2O・= (2)を起こしSiがGa中に溶は込み、
このSiが(1)式で生成したHCffとの反応 5i(inGa)+  n HCe  +  (4−n
  )  H2=SiCff 、、H14−a + 2
 H2,(n =1.2.3.4 )・・・(3) で5iCf、lI4、(n=1.2.3.4)となり、
基板上へ輸送される。そして基板上において5iC1f
lH4−0とH2との次式の反応5iCe 1lH4、
+(n−2)l12=Si(inGaAs)+nHCf
f、  (n=1.2.3.4)・・・(4) によりSiがエピタキシャルGaAs結晶中に取り込ま
れる。
When this is done by vapor phase growth, if the active layer is grown directly on the substrate, only an active layer with poor crystallinity will be obtained due to the influence of the substrate, and therefore a buffer layer with high resistivity will be formed between the active layer and the substrate. Methods have been taken to grow the Arsenic trichloride (AsCj' 3)-Gallium (Ga)-Hydrogen (t
lz) The residual impurity in the undoped crystal obtained in the reaction system is silicon (Si), and is usually 2 to 5 × 10 ”
Contained at a concentration of arm-3. Si is incorporated into the crystal by the following reaction mechanism. During vapor phase growth, AsCff5 is supplied onto the source Ga housed in a quartz boat in order to transport Ga onto the substrate as a gaseous raw material, but at this time ^s
Ce 3 is the reaction of the following formula 4^sCj' 3 + 6 H2- + As4 + 12
HC! ! According to (1), it is easily decomposed in 112, and hydrochloric acid gas (HCff) is generated in the gas phase. Now, the quartz boat that accommodates the source Ga has the following reaction with Ga: SiO + 4 Ga = 5i (inGa) + 2 G
a2O・= (2) occurs and Si dissolves into Ga,
The reaction of this Si with HCff generated in equation (1) 5i (inGa) + n HCe + (4-n
) H2=SiCff,,H14-a+2
H2, (n = 1.2.3.4)...(3) becomes 5iCf, lI4, (n = 1.2.3.4),
transported onto the substrate. And on the board 5iC1f
The reaction between lH4-0 and H2 of the following formula 5iCe 1lH4,
+(n-2)l12=Si(inGaAs)+nHCf
f, (n=1.2.3.4) (4) Si is incorporated into the epitaxial GaAs crystal.

高抵抗バッファ層を形成するためには、結晶中にSiが
取り込まれないようにすることが必要であり、そのため
に従来ソースGa上に酸素ガス(02〉を供給する方法
と、ソースGaと基板との中間位置より八sC!!3を
供給する方法が用いられてきた。
In order to form a high-resistance buffer layer, it is necessary to prevent Si from being incorporated into the crystal. For this purpose, conventional methods of supplying oxygen gas (02) onto the source Ga and the method of supplying oxygen gas (02) between the source Ga and the substrate A method of supplying 8sC!!3 from a position intermediate between the two has been used.

すなわち前者の場合、ソースGa上に02を供給すると
次式の反応 4 Ga+ 02= 2 Ga2O−(5)が生じ、そ
の結果(2)式の反応は左側に進行するから、ソースG
a中へのSiの溶は込み量は減少し、従って(3)式で
生ずる5iC1!。H4−、、が減り、(4)式によっ
てGaAs結晶中に取り込まれるSi量が減る。後者の
場合、ソースGaと基板の間より^sC(!gを供給す
ると(+)式により、HCfが生じ、その結果(4)式
の反応は左側に進行するからGaAs結晶中に取り込ま
れるSi量が減る。
That is, in the former case, when 02 is supplied onto the source Ga, the following reaction 4 Ga + 02 = 2 Ga2O- (5) occurs, and as a result, the reaction of equation (2) proceeds to the left, so the source G
The amount of Si dissolved into a decreases, and therefore 5iC1!, which occurs in equation (3)! . H4- decreases, and the amount of Si incorporated into the GaAs crystal decreases according to equation (4). In the latter case, when ^sC(!g is supplied between the source Ga and the substrate, HCf is generated according to the (+) equation, and as a result, the reaction of equation (4) proceeds to the left, so that Si incorporated into the GaAs crystal is quantity decreases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらソースGa上に0□を供給する方法では、
必然的にGaAs結晶中に酸素(0)がドープされるこ
とになり、この0は単体のままで、もしくは他の元素と
の複合体として結晶中で深い不純物準位を形成する。深
い不純物準位はFET特性に影響を及ぼすが、特に能動
層との界面付近に存在するバッファ層中の深い不純物準
位はキャリアをトラップし、FET特性を著しく低下さ
せる。一方、ソースGaと基板との中間位置よりksC
e3を供給する方法では上述の問題は生じないが、気相
中のHCff分圧が増大するため異常成長が起こり、エ
ピタキシャル成長層表面に異常成長核を基にしたヒロッ
ク(hillock)が発生し易いという問題がある。
However, in the method of supplying 0□ on the source Ga,
Inevitably, the GaAs crystal is doped with oxygen (0), and this 0 forms a deep impurity level in the crystal, either as a single element or as a complex with other elements. Deep impurity levels affect FET characteristics, and in particular, deep impurity levels in the buffer layer near the interface with the active layer trap carriers and significantly deteriorate FET characteristics. On the other hand, from the intermediate position between the source Ga and the substrate, ksC
Although the above-mentioned problem does not occur with the method of supplying e3, abnormal growth occurs due to an increase in the HCff partial pressure in the gas phase, and hillocks based on abnormal growth nuclei are likely to occur on the surface of the epitaxial growth layer. There's a problem.

ヒロックの数は成長時間と共に増え、また個々のヒロッ
クは時間と共に成長し大きくなる。
The number of hillocks increases with growth time, and individual hillocks grow and become larger over time.

従って成長時間が増加する程、すなわちバッファ層厚が
厚くなる程エピタキシャル層の表面外観歩留の低下が顕
著となり、この方法で歩留を低下させずに成長できるバ
ッファ層の厚さは高々1μm程度である。ところが基板
の影響をなくすためにはバッファ層の厚さは約5μm以
上必要なため、この方法ではヒロックの発生による歩留
低下の問題が避は難かった。
Therefore, the longer the growth time increases, that is, the thicker the buffer layer becomes, the more the surface appearance yield of the epitaxial layer decreases, and the thickness of the buffer layer that can be grown using this method without decreasing the yield is about 1 μm at most. It is. However, in order to eliminate the influence of the substrate, the thickness of the buffer layer needs to be about 5 μm or more, so with this method, it was difficult to avoid the problem of a decrease in yield due to the occurrence of hillocks.

本発明の目的は、基板の影響をなくすために所望の厚み
を有し、しかも能動層との界面付近で深い不純物準位の
少ないバッファ層をエピタキシャル成長層表面外観の歩
留を低下させずに形成することの可能なヒ化ガリウム 
エピタキシャル結晶の気相成長方法を提供することにあ
る。
The purpose of the present invention is to form a buffer layer having a desired thickness and having few impurity levels near the interface with the active layer, without reducing the yield of the surface appearance of the epitaxially grown layer, in order to eliminate the influence of the substrate. Gallium arsenide that can be
An object of the present invention is to provide a method for vapor phase growth of epitaxial crystals.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のヒ化ガリウム エピタキシャル結晶の気相成長
方法は、三塩化ヒ素−ガリウム−水素の反応系で半導体
基板上にヒ化ガリウム層をエピタキシャル成長させる場
合において、先づソースガリウム上に酸素ガスを供給し
つつ第1のバッファ層を形成し、しかる後酸素ガスの供
給を停止し、前記ソースガリウムと前記半導体基板との
中間位置より三塩化砒素を供給しつつ前記第1のバッフ
ァ層より薄い第2のバッファ層を形成する工程を含んで
構成される。
In the vapor phase growth method of gallium arsenide epitaxial crystal of the present invention, when a gallium arsenide layer is epitaxially grown on a semiconductor substrate using a reaction system of arsenic trichloride-gallium-hydrogen, oxygen gas is first supplied onto the source gallium. Then, the supply of oxygen gas is stopped, and a second buffer layer thinner than the first buffer layer is formed while supplying arsenic trichloride from an intermediate position between the source gallium and the semiconductor substrate. The method includes the step of forming a buffer layer.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例で使用する横型気相成長装置
の断面図、第2図は第1図の反応管内部の温度分布図で
ある。
FIG. 1 is a sectional view of a horizontal vapor phase growth apparatus used in an embodiment of the present invention, and FIG. 2 is a temperature distribution diagram inside the reaction tube of FIG.

第1図において11は石英反応管、12.13は共にガ
ス供給管、14はソースGa、15は石英ボート、16
はGaAsからなる半導体基板、17はガス排気口、1
8は電気炉である。12のガス供給管の出口はソースG
a14と半導体基板16との中間位置にくるよう配置さ
れている。かかる装置を使用してGaAsエピタキシャ
ル結晶の気相成長は次のように行う。ガス供給管13に
^scl 3とH2の混合ガスを流すと反応式(1)に
よりAs4と1Iceが生成する。このHC1!が高温
領域に設置したソースGa14と反応してGaCeが発
生し、As4とGal’はキャリヤガスのH2によって
GaAsからなる半導体基板16上に輸送され、次式の
反応4GaC1!+As4+2H2=4GaAs+4)
Ice−16)によりGaAsエピタキシャル成長が行
われる。この際、前述したようにソースGa14と石英
ボート15から反応式(2)により生じたSiが式(3
) 、 (4)の反応を通じてGaAS結晶中に取り込
まれる。
In Fig. 1, 11 is a quartz reaction tube, 12 and 13 are both gas supply tubes, 14 is a source Ga, 15 is a quartz boat, and 16
1 is a semiconductor substrate made of GaAs; 17 is a gas exhaust port;
8 is an electric furnace. The outlet of gas supply pipe 12 is source G
It is arranged so as to be located at an intermediate position between a14 and the semiconductor substrate 16. Vapor phase growth of GaAs epitaxial crystal using such an apparatus is carried out as follows. When a mixed gas of ^scl 3 and H2 flows through the gas supply pipe 13, As4 and 1Ice are generated according to reaction formula (1). This HC1! reacts with the source Ga14 placed in a high temperature region to generate GaCe, and As4 and Gal' are transported onto the semiconductor substrate 16 made of GaAs by the carrier gas H2, resulting in the reaction 4GaC1! +As4+2H2=4GaAs+4)
GaAs epitaxial growth is performed using Ice-16). At this time, as mentioned above, Si generated from the source Ga 14 and the quartz boat 15 according to the reaction formula (2) is
), is incorporated into the GaAS crystal through the reaction (4).

バッファ層を形成するには次のように行う。ガス供給管
13に^sCe 3の供給量を約4X10−’moe/
sinとした^scl!3とH2の混合ガスを流し気層
成長を開始するが、この時同時に約2×10−7tso
e / +*i口の02をガス供給管13に流す。
The buffer layer is formed as follows. The supply amount of ^sCe 3 to the gas supply pipe 13 is approximately 4X10-'moe/
Sin and ^scl! Gas layer growth is started by flowing a mixed gas of 3 and H2, but at the same time about 2 x 10-7
Flow 02 from e/+*i port into gas supply pipe 13.

これによって10分間の成長時間で約4.5μmの厚さ
の第1のバッファ層を形成する。その後02の供給を止
め、同時にガス供給管12にAsCj’3の供給量を約
6 X 10−5aoe / winとしたkscl 
3と112の混合ガスを流し、3分間の成長時間で約0
.5μmの厚さの第2のバッファ層を形成する。
As a result, a first buffer layer having a thickness of about 4.5 μm is formed in a growth time of 10 minutes. After that, the supply of 02 was stopped, and at the same time, the amount of AsCj'3 supplied to the gas supply pipe 12 was set to about 6 x 10-5 aoe/win.
A mixed gas of 3 and 112 was flowed, and the growth time was about 0 for 3 minutes.
.. A second buffer layer is formed with a thickness of 5 μm.

バッファ層形成終了後、ガス供給管12よりAsCf3
の供給を停止し、ガス供給管12に硫化水素、シラン等
のn型ドーパントガスを流し、不純物濃度的1017C
II−’の能動層を約0.5μm成長することによりF
ET用エピタキシャル結晶が得られる。
After completing the buffer layer formation, AsCf3 is supplied from the gas supply pipe 12.
The supply of 1017C is stopped, and an n-type dopant gas such as hydrogen sulfide or silane is supplied to the gas supply pipe 12 to reduce the impurity concentration to 1017C.
By growing the active layer of II-' to a thickness of about 0.5 μm, F
An epitaxial crystal for ET is obtained.

第3図に本発明により半絶縁性半導体基板1上に第1の
バッファ層2、第2のバッファ層3を形成し、さらにそ
の上に能動層4を成長したFET用エピタキシャル結晶
の断面図を示す。
FIG. 3 shows a cross-sectional view of an epitaxial crystal for FET in which a first buffer layer 2 and a second buffer layer 3 are formed on a semi-insulating semiconductor substrate 1 according to the present invention, and an active layer 4 is further grown thereon. show.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はバッファ層形成にあたって
、ソースGa上に02を供給しつつ厚い領域を、次にソ
ースGaと基板との中間位置よりkscl3を供給しつ
つ能動層との界面付近の薄い領域を形成することにより
、エピタキシャル成長層表面外観を劣化させることなく
、所望の厚みを有し、かつ能動層との界面付近で深い不
純物準位の少ないバッファ層を得ることができる。従っ
て高品質なFETの得られるエピタキシャル ウェハを
高歩留で製造可能となり、その効果は顕著である。
As explained above, in forming the buffer layer, the present invention supplies 02 on the source Ga to form a thick region, and then supplies kscl3 from an intermediate position between the source Ga and the substrate to form a thin layer near the interface with the active layer. By forming the region, a buffer layer having a desired thickness and having few deep impurity levels near the interface with the active layer can be obtained without deteriorating the surface appearance of the epitaxially grown layer. Therefore, epitaxial wafers from which high-quality FETs can be obtained can be manufactured at a high yield, and the effect is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は横型気相成長装置の断面図、第2図は反応管内
部の温度分布図5、第3図はFET用エピタキシャル結
晶の断面図である。 1・・・半絶縁性半導体基板、2・・・第1のバッファ
層、3・・・第2のバッファ層、4・・・能動層、11
・・・石英反応管、12・・・ガス供給管、13・・・
ガス供給管、14・・・ソースGa、15石英ボート、
16・・・半導体基板、17・・・ガス排気口、18・
・・電気炉、19・・・サセプタ。 代理人 弁理士 内 原  音(・Z \、− 箭1旧 箭2図 [3回
FIG. 1 is a sectional view of a horizontal vapor phase growth apparatus, FIG. 2 is a temperature distribution diagram 5 inside a reaction tube, and FIG. 3 is a sectional view of an FET epitaxial crystal. DESCRIPTION OF SYMBOLS 1... Semi-insulating semiconductor substrate, 2... First buffer layer, 3... Second buffer layer, 4... Active layer, 11
...Quartz reaction tube, 12...Gas supply pipe, 13...
Gas supply pipe, 14... source Ga, 15 quartz boat,
16... Semiconductor substrate, 17... Gas exhaust port, 18.
...Electric furnace, 19...Susceptor. Agent Patent Attorney Oto Uchihara (・Z \, - 箭1 古箭2fig. [3 times

Claims (1)

【特許請求の範囲】[Claims] 三塩化ヒ素−ガリウム−水素の反応系で半導体基板上に
ヒ化ガリウム層をエピタキシャル成長させる場合におい
て、先づソースガリウム上に酸素ガスを供給しつつ第1
のバッファ層を形成し、しかる後酸素ガスの供給を停止
し、前記ソースガリウムと前記半導体基板との中間位置
より三塩化砒素を供給しつつ前記第1のバッファ層より
薄い第2のバッファ層を形成する工程を含むことを特徴
とするヒ化ガリウムエピタキシャル結晶の気相成長方法
When epitaxially growing a gallium arsenide layer on a semiconductor substrate using a reaction system of arsenic trichloride-gallium-hydrogen, firstly, while supplying oxygen gas onto the source gallium,
After that, the supply of oxygen gas is stopped, and a second buffer layer thinner than the first buffer layer is formed while supplying arsenic trichloride from an intermediate position between the source gallium and the semiconductor substrate. A method for vapor phase growth of a gallium arsenide epitaxial crystal, the method comprising the step of forming a gallium arsenide epitaxial crystal.
JP27468286A 1986-11-17 1986-11-17 Vapor growth of gallium arsenide epitaxial crystal Pending JPS63127530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27468286A JPS63127530A (en) 1986-11-17 1986-11-17 Vapor growth of gallium arsenide epitaxial crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27468286A JPS63127530A (en) 1986-11-17 1986-11-17 Vapor growth of gallium arsenide epitaxial crystal

Publications (1)

Publication Number Publication Date
JPS63127530A true JPS63127530A (en) 1988-05-31

Family

ID=17545093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27468286A Pending JPS63127530A (en) 1986-11-17 1986-11-17 Vapor growth of gallium arsenide epitaxial crystal

Country Status (1)

Country Link
JP (1) JPS63127530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480833A (en) * 1991-02-19 1996-01-02 Fujitsu Limited Semiconductor device having an isolation region enriched in oxygen and a fabrication process thereof
US5844303A (en) * 1991-02-19 1998-12-01 Fujitsu Limited Semiconductor device having improved electronic isolation
JP2007154468A (en) * 2005-12-02 2007-06-21 Hideo Fujita United clip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480833A (en) * 1991-02-19 1996-01-02 Fujitsu Limited Semiconductor device having an isolation region enriched in oxygen and a fabrication process thereof
US5569953A (en) * 1991-02-19 1996-10-29 Fujitsu Limited Semiconductor device having an isolation region enriched in oxygen
US5844303A (en) * 1991-02-19 1998-12-01 Fujitsu Limited Semiconductor device having improved electronic isolation
JP2007154468A (en) * 2005-12-02 2007-06-21 Hideo Fujita United clip

Similar Documents

Publication Publication Date Title
JP3093904B2 (en) Method for growing compound semiconductor crystal
JPH01225114A (en) Manufacture of semiconductor thin-film
US3994755A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPS63127530A (en) Vapor growth of gallium arsenide epitaxial crystal
US4028147A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
US4032950A (en) Liquid phase epitaxial process for growing semi-insulating gaas layers
JPH0529234A (en) Epitaxial crowing method
JP3494467B2 (en) Method of forming semiconductor thin film
JPS61275191A (en) Vapor-phase growth method for gaas thin film
JPH01220432A (en) Manufacture of compound semiconductor layer
JPS63124515A (en) Vapor growth method for gallium arsenide
JPH0794409A (en) Formation of iii-v compound semiconductor thin film
JPS6052574B2 (en) Epitaxial growth method
JP3106526B2 (en) Compound semiconductor growth method
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JPS63190329A (en) Thin film crystal growth method
JPS6197819A (en) Method for vapor growth
JPS5945216B2 (en) Group 3-5 compound semiconductor crystal growth equipment
JPS5986215A (en) Vapor growth method of gallium arsenide
JPH01109715A (en) Vapor phase epitaxy method
JPH08335553A (en) Selective epitaxial growth
JPS59203800A (en) Vapor phase epitaxial growth of single crystal thin film of inorganic compound
JPS58219731A (en) Vapor growth method for compound semiconductor
JPS59161015A (en) Vapor growth of gallium arsenide