JPS5982522A - Intake apparatus of engine - Google Patents

Intake apparatus of engine

Info

Publication number
JPS5982522A
JPS5982522A JP57191603A JP19160382A JPS5982522A JP S5982522 A JPS5982522 A JP S5982522A JP 57191603 A JP57191603 A JP 57191603A JP 19160382 A JP19160382 A JP 19160382A JP S5982522 A JPS5982522 A JP S5982522A
Authority
JP
Japan
Prior art keywords
intake
load
low
engine
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57191603A
Other languages
Japanese (ja)
Other versions
JPH0559249B2 (en
Inventor
Nobuo Hirata
平田 宣夫
Masanori Shibata
柴田 雅典
Shigeo Kato
加藤 繁夫
Haruo Okimoto
沖本 晴男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP57191603A priority Critical patent/JPS5982522A/en
Publication of JPS5982522A publication Critical patent/JPS5982522A/en
Publication of JPH0559249B2 publication Critical patent/JPH0559249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0242Fluid communication passages between intake ducts, runners or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To obtain the supercharge effect over a wide range from an intermediate revolution range to a high-speed revolution range of an engine by utilizing each intake pressure wave generated in two systems of intake passages for low load and high load. CONSTITUTION:During high engine revolution at about 5,000-7,000rpm intake passages 9 and 10 for low and high load are opened. Since the length of the intake passage 10 for high load is determined based upon the engine speed of about 5,000-7,000rpm, the secondary pulsation wave between an expansion chamber 8 and a combustion chamber 2 is transmitted to an intake port for high load in the final period of intake stroke. When the number of engine revolution is lower by a ratio of (1.25+ or -0.125) in comparison with about 5,000-7,000prm, said secondary pulsation wave is transmitted to an intake port 11 for low load, since the length of the intake passage 9 for low load is determined based upon said number of revolution.

Description

【発明の詳細な説明】 本発明は、エンジンの吸気装置に関し、特に低負荷用と
高負荷用との2系統の吸気通路を備えた多気筒エンジン
において、各吸気6m路内に発生する吸気圧力波を利用
してエンジンの中回転域から高回転域に亘って過給効果
を得るようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine intake system, and particularly to a multi-cylinder engine equipped with two intake passages, one for low load and one for high load. This relates to an engine that utilizes waves to obtain a supercharging effect over the medium to high engine speed range.

一般に、多気筒エンジンにおいて、拡大室から分岐して
各気筒に開口する2系統の低負荷用吸気通路き高負荷用
吸気通路上を有する吸気通路を備え、該吸気通路は、上
記拡大室の上流に位置して少なくとも低負荷用吸気通路
を流れる吸気量を変化させる1次弁と、高負荷用吸気通
路を流れる吸気量を変化させる2次弁とを有しており、
エンジンの低負荷時には、上記1次弁のみを開作動して
低負荷用吸気通路のみから吸気を各気筒に供給すること
により、吸気流速を速めて燃焼安定性を向」ニさせる一
方、エンジンの高負荷時には、」−記2次弁をも開作動
して高負荷用吸気通路からも吸気の供給を行うことによ
り、充填効率を高めて出力向上を図るようにした、いわ
ゆるテユアル・インククション方式の吸気ソステムはよ
く知られている。
In general, a multi-cylinder engine is provided with an intake passage having two systems, one for low load and one for high load, branching from an enlarged chamber and opening into each cylinder, the intake passage being upstream of the enlarged chamber. It has a primary valve that is located at least to change the amount of intake air flowing through the low-load intake passage, and a secondary valve that changes the amount of intake air that flows through the high-load intake passage,
When the engine is under low load, only the primary valve is opened to supply intake air to each cylinder only from the low-load intake passage, thereby increasing the intake flow rate and improving combustion stability. At times of high load, the so-called dual intake system is designed to increase filling efficiency and improve output by opening the secondary valve marked ``-'' and supplying intake air from the high-load intake passage as well. The intake sostem of is well known.

ところで、従来、エンジンの充填効率向上、出力向りを
図るべく吸気通路に過給機を設けて吸気を過給する技術
はよく知られているか、過給機装備のため、構造が大が
かりとなるとともにコストアップとなる嫌いがあった。
By the way, the technology of supercharging intake air by installing a supercharger in the intake passage in order to improve engine filling efficiency and increase output is well known, but because it is equipped with a supercharger, the structure is large-scale. This also led to an increase in costs.

また、従来、エンジンの吸気通路内に発生ずる吸気吐力
波により過給効果を得る技術として、実公昭45−23
21号公報に開示されているように、単一気筒エンジン
において、吸気管を寸法の異なる2本の通路に分け、か
つそれぞれ別の吸気ポートを有し、エンジン高回転時は
2本の吸気通路を用い、低回転時には閉塞位置の遅い方
の吸気通路を閉止し吸気を早目に閉塞することにより、
吸気管の寸法やエンジン回転数の関数である吸気の最大
圧力時点での吸気の閉塞による過給作用を利用して広範
囲のエンジン回転域に亘って好適な充填効率を得るよう
にしたものが提案されている。
In addition, conventionally, as a technology to obtain a supercharging effect by the intake and discharge force waves generated in the intake passage of the engine,
As disclosed in Publication No. 21, in a single-cylinder engine, the intake pipe is divided into two passages with different dimensions, each having a separate intake port, and when the engine rotates at high speeds, the intake pipe is divided into two passages with different dimensions. By using this, at low rotation speeds, the intake passage with the slower closing position is closed and the intake air is closed early.
A proposed system utilizes the supercharging effect caused by blockage of the intake air at the point of maximum intake pressure, which is a function of intake pipe dimensions and engine speed, to obtain suitable charging efficiency over a wide range of engine speeds. has been done.

しかし1.このものは、単一気筒のエンジンに対するも
のであって、吸気通路内に発生する吸気圧力波をとのよ
うに利用するのか、その構成、作用が定かでなく、直ち
に実用に供し得ないものであった。しかも、気化器方式
のため、圧力波を利用して過給効果を得ようとすると吸
気通路の通路長さか長くなることによりM料の応答ぼれ
が著しくなるという欠点がある。
But 1. This is for a single-cylinder engine, and it is not clear whether it utilizes the intake pressure waves generated in the intake passage or its structure and operation, so it cannot be put to practical use right away. there were. Moreover, since it is a carburetor system, there is a drawback that when trying to obtain a supercharging effect using pressure waves, the length of the intake passage increases, resulting in a significant drop in response of the M material.

そこで、本発明者等は、エンジンの吸気量1g:、を見
るに、吸気ポートから吸気の吸入を開始すると、吸気通
路か負圧となって膨張波が発生し、この膨張波を圧縮波
に反転して特に吸気の吹き返しが生じる吸気行程終期の
吸気ポートに作用せしめれは効果的に過給効果が得られ
ること(以−「、吸気個有脈動効果という)にM目し、
この吸気個有脈動効果を利用することによってエンジン
の充填効率向にを意図するものである。
Therefore, the inventors of the present invention found that when intake air is started from the intake port, an expansion wave is generated due to negative pressure in the intake passage, and this expansion wave is converted into a compression wave. It is important to note that by acting on the intake port at the end of the intake stroke, where intake air blowback occurs, an effective supercharging effect can be obtained (hereinafter referred to as the "intake individual pulsation effect").
It is intended to improve engine charging efficiency by utilizing this intake air pulsation effect.

しかし、この場合、上記吸気個有脈動効果を高出力を要
するエンジン高回転時に得るように設定するき、脈動波
の谷部が低回転側で発生し、かえってエンジン中回転時
の出力低下を招くことになる。そのため、この吸気個有
脈動効果の谷部を補うような別個の吸気個有脈動効果を
更に生せしめることが、エンジンの中回転域から高回転
域に亘る出力向とを図る上で望ましい。
However, in this case, when the above-mentioned intake-specific pulsation effect is set to be obtained at high engine speeds that require high output, the troughs of the pulsation waves occur at low speeds, which instead causes a decrease in output at mid-engine speeds. It turns out. Therefore, it is desirable to further produce a separate intake-specific pulsation effect that compensates for the troughs of this intake-specific pulsation effect, in order to improve the output from the medium speed range to the high speed range of the engine.

すなわち、本発明は、上記の如き低負荷用吉高負荷用と
の2系統の吸気通路を備えた多気筒エンジンにおいて、
低負荷用および高負ii′、j用吸気系統の一方におい
てエンジン高回転時に吸気個有脈動効果を得、他方にお
いて上記吸気個有脈動効果の谷部を補う別個の吸気個有
脈動効果を得るようにすることにより、過給機等を用い
ることなく、がつ燃料の良好な応答性を確保しつつ、既
存の吸気系の僅かな設計変更による簡単な構成でもって
エンジンの中回転から高回転域に亘って充填効率を高め
て出力向とを有効に図ることを目的とするものである。
That is, the present invention provides a multi-cylinder engine having two intake passages, one for low load and one for high load, as described above.
In one of the intake systems for low load and high negative ii', j, an intake individual pulsation effect is obtained at high engine speed, and on the other hand, a separate intake individual pulsation effect is obtained to compensate for the valleys of the intake individual pulsation effect. By doing so, it is possible to maintain good fuel response without using a supercharger, etc., and with a simple configuration by making slight design changes to the existing intake system, it is possible to increase the engine speed from medium to high speeds. The purpose of this is to increase filling efficiency over a wide range of areas and effectively improve output.

この目的を達成するため、本発明の構成は、拡大室と、
該拡大室下流に各気筒へ開口する低負荷用吸気通路と高
負荷用吸気通路とを有する吸気通路を備え、該吸気通路
は、上記拡大室の上流に位置して少なくとも低負荷用吸
気通路を流れる吸気量を変化させる1次弁と、高負荷用
吸気通路を流れる吸気量を変化させる2次弁とを有する
多気筒エンジンの吸気装置であって、」二記拡大室下流
の少なくとも低負荷用吸気通路に燃料を供給するように
燃料噴射ノズルを設け、上記拡大室から各気筒番と至る
低負荷用吸気通路および高負荷用吸気通路の通路長さを
、一方が5000〜70(10rpmのエンジン高回転
時に各気筒の開口に生じる膨張波を」二組拡大室で反転
して反射した圧縮波の2次脈動波が該多気筒の吸気行程
終期に伝播して過給を行う一方、他方が上記圧縮波の2
次脈動波とその3次脈動波との谷部か発生するエンジン
回転時に同じく各気筒の開口に生じる膨張波を上記拡大
室で反転して反射した圧縮波の2次脈動波が該各気尚の
吸気行程終期に伝播して過給を行うように設定したもの
で、低負荷用吸気系統と高負荷用吸気系統とでの異なる
2種類の吸気個有脈動効果によって、つまり一方の吸気
系統でのエンジン高回転時の主たる吸気個有脈動効果と
、この主たる吸気個有脈動効果の谷部を補う他方の吸気
系統での補完的な吸気個有脈動効果とによってエンジン
の中回転域から高回転域に亘って過給効果を得るように
したものである。
To achieve this objective, the arrangement of the invention comprises an enlargement chamber;
An intake passage having a low-load intake passage and a high-load intake passage that opens to each cylinder is provided downstream of the expansion chamber, and the intake passage is located upstream of the expansion chamber and includes at least a low-load intake passage. An intake system for a multi-cylinder engine having a primary valve that changes the amount of intake air flowing through the intake passage, and a secondary valve that changes the amount of intake air that flows through the high-load intake passage, the intake system comprising at least one downstream of the enlarged chamber for low-load use. A fuel injection nozzle is provided to supply fuel to the intake passage, and the passage length of the low-load intake passage and the high-load intake passage from the enlarged chamber to each cylinder number is set to 5000 to 70 (10 rpm). The expansion waves generated at the opening of each cylinder during high rotation are reversed and reflected by the two sets of expansion chambers, and the secondary pulsating waves of compression waves propagate to the end of the intake stroke of the multiple cylinders to perform supercharging, while the other Compression wave 2 above
The secondary pulsating wave of the compression wave, which is generated by the trough between the next pulsating wave and its tertiary pulsating wave, is the expansion wave that also occurs at the opening of each cylinder when the engine rotates, and is inverted and reflected in the expansion chamber. This is set to propagate to the end of the intake stroke to perform supercharging, and due to two different types of intake pulsation effects in the low-load intake system and the high-load intake system, that is, in one intake system. The main intake individual pulsation effect at high engine speeds and the complementary intake individual pulsation effect in the other intake system that compensates for the valleys of this main intake individual pulsation effect reduce the engine speed from medium to high engine speeds. The supercharging effect is achieved over a wide area.

ここにおいて、上記主たる吸気個有脈動効果を得るエン
ジン高回転時としての5000〜7000rplnの限
定は、一般に最高出力および最高速度がこの範囲に設定
されていることから、エン7/ンの高負荷高回転領域で
あって高出力を要し、充填効率向上、出力向上に有効な
領域であることによる。
Here, the limitation of 5000 to 7000 rpm as the engine high speed to obtain the main intake air pulsation effect is because the maximum output and maximum speed are generally set within this range. This is because it is a rotating region that requires high output and is effective in improving filling efficiency and output.

さらに、上記燃料噴射ノズルによる燃料供給位置の設定
は、吸気個有脈動効果を得るように設定すると各吸気通
路の通路長さが長くなり、燃料の応答遅れが生じるので
、それを燃料噴射方式により可及的に抑制するためであ
る。
Furthermore, when setting the fuel supply position by the fuel injection nozzle to obtain a unique intake pulsation effect, the passage length of each intake passage becomes long, resulting in a delay in fuel response. This is to suppress it as much as possible.

また、本発明において吸気個有脈動効果を得るに当って
2次脈動を用いる理由は、1次脈動は上記効果が大であ
る反面、低負荷用および高負荷用吸気通路の通路′長さ
が長くなりすき、2次脈動の場合に対して2倍の長さと
なるので車載性が悪く、また、吸気抵抗を増加させる傾
向かある。一方、3次脈動は通路長さが2次脈動に対し
て乙の長さに短かくなる反面、2次脈動に対して上記効
果が約15〜25%程度低下し、また吸気抵抗がさほど
変わらない。このことから、通路長さを可及的に短かく
しながら吸気個有脈動効果を有効に発揮させるためであ
る。
In addition, the reason why secondary pulsation is used to obtain the intake-specific pulsation effect in the present invention is that while the above-mentioned effect is large for primary pulsation, the passage length of the intake passage for low load and high load is Since the length is twice as long as that in the case of secondary pulsation, it is not easy to mount on a vehicle, and it tends to increase intake resistance. On the other hand, with tertiary pulsation, the passage length is shorter than that of secondary pulsation, but on the other hand, the above effect decreases by about 15 to 25% compared to secondary pulsation, and the intake resistance does not change much. do not have. For this reason, the purpose is to effectively exhibit the unique pulsation effect of the intake air while making the passage length as short as possible.

以下、本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図および第2図はデュアルインククションタイプの
4バルブ式2気筒4サイクルエンジンに本発明を適用し
た基本構造例としての第1実施例を示す。同図において
、1Aおよt、ニア 1 Bは第1気筒および第2気筒
であり、2は各気筒11.IBにおいてシリンター3と
ピストン4とて形成された燃焼室である。
FIGS. 1 and 2 show a first embodiment as a basic structural example in which the present invention is applied to a dual injection type four-valve two-cylinder four-cycle engine. In the figure, 1A and t, near 1B are the first and second cylinders, and 2 is each cylinder 11. This is a combustion chamber formed by a cylinder 3 and a piston 4 in IB.

5は一端がエアクリーナ6を介して大気に開口して各気
筒iA、、lBに吸気を供給するための主吸気通路であ
って、該主吸気通路5には吸入空気量を検出するエアフ
ローメータ7が配設されている。上記主吸気通路5はエ
アフローメータ7下流において拡大室8を有し、該拡大
室8から各気筒iA、、1Bに対し低負荷用吸気通路9
a、9bと高負荷用吸気通路10a、lobとが独立分
岐し、各々低負荷用吸気ポート11および高負荷用吸気
ポ・−ト12を介して各気筒IA、IBの燃焼室2に開
口している。
Reference numeral 5 denotes a main intake passage whose one end opens to the atmosphere via an air cleaner 6 to supply intake air to each cylinder iA, IB. is installed. The main intake passage 5 has an enlarged chamber 8 downstream of the air flow meter 7, and a low-load intake passage 9 is connected to each cylinder iA, 1B from the enlarged chamber 8.
a, 9b and high-load intake passages 10a, lob are independently branched and open into the combustion chambers 2 of each cylinder IA, IB via a low-load intake port 11 and a high-load intake port 12, respectively. ing.

」1記拡大室8上流でエアフローメータ7下流の主吸気
通路5には、エンジン負荷の増大に応じて開作動して所
定負荷以上になると全開となってエンジン低負荷時少な
くとも低負荷用吸気通路9as91)を流れる吸気量を
変化させる1次弁13が配設され、また拡大室8下流の
各高負荷用吸気通路1Qa、10bには、エンジン負荷
が所定負荷以上になると開作動してエンジン高負荷時高
負荷用吸気通路10a、101)を流れる吸気量を変化
させる2次弁14.14が互いに連動して配設されてい
る。さらに、上記拡大室8下流の各低負荷用吸気通路9
a、9bには、」二記エアフローメータ7の出力に基づ
いて吸入空気量に応じて燃料噴射量が制i卸される電磁
弁弐の燃料噴射ノズル15.15が配設されている。
1. The main intake passage 5 upstream of the enlarged chamber 8 and downstream of the air flow meter 7 is opened in response to an increase in engine load, becomes fully open when the load exceeds a predetermined load, and is at least a low-load intake passage when the engine load is low. A primary valve 13 is disposed to change the amount of intake air flowing through the expansion chamber 8, and each high-load intake passage 1Qa, 10b downstream of the expansion chamber 8 opens when the engine load exceeds a predetermined load to reduce the engine height. Secondary valves 14, 14 that change the amount of intake air flowing through the high-load intake passages 10a, 101) are disposed in conjunction with each other. Furthermore, each low-load intake passage 9 downstream of the enlarged chamber 8
A and 9b are provided with fuel injection nozzles 15 and 15, which are electromagnetic valves 2 and 9b, and whose fuel injection amount is controlled according to the amount of intake air based on the output of the air flow meter 7.

また、」二記各高負荷用吸気ポート12には該高負荷用
吸気ポート12を吸気行程において開閉する高負荷用吸
気弁16か設けられ、また図示していないが各低負荷用
吸気ポート11には該低負荷用吸気ポート11を吸気行
程において開閉する低負荷用吸気弁が設けられている7
、尚、各気筒1A、1Bにおいて、17および18はそ
れぞれ一端か大気に開1」シ他端が抽気ポー)19.2
(]を介して各気筒IA、II3の燃焼室2に開1コし
て燃焼室2からの排気ガスを排出する第1および第2排
気通路であって、上記各排気ポー1−19.20には該
排気ポート19.20を排気行程において開閉する排気
弁2L 21が設けられている。
In addition, each of the high-load intake ports 12 described in "2" is provided with a high-load intake valve 16 that opens and closes the high-load intake port 12 during the intake stroke, and although not shown, each of the low-load intake ports 11 7 is provided with a low-load intake valve that opens and closes the low-load intake port 11 during the intake stroke.
In each cylinder 1A and 1B, 17 and 18 are open to the atmosphere at one end and bleed port at the other end.19.2
First and second exhaust passages that open into the combustion chamber 2 of each cylinder IA, II3 through () and discharge exhaust gas from the combustion chamber 2, and each exhaust port 1-19. is provided with an exhaust valve 2L 21 that opens and closes the exhaust port 19, 20 during the exhaust stroke.

そして、上記各高負荷用吸気通路10a、101)の最
小通路面積As は各低負荷用吸気通路9a、91〕の
最小通路面積Apよりも大きく設定され(As>Ap)
、また各高負荷用吸気通路10a1101〕の通路長さ
15は各低負荷用吸気通路9a、9L+の通路長さlp
 よりも短かく設定されており(ls(/?p )、特
に高負荷用吸気通路10a110bによる圧力波の伝播
をその減衰を小さくして有効に行うようにしている。
The minimum passage area As of each high-load intake passage 10a, 101) is set larger than the minimum passage area Ap of each low-load intake passage 9a, 91) (As>Ap).
, and the passage length 15 of each high-load intake passage 10a1101] is the passage length lp of each low-load intake passage 9a, 9L+.
(ls(/?p)), in particular, to effectively propagate pressure waves through the high-load intake passage 10a110b by reducing their attenuation.

また、」1記拡大室8の容積は、エンソン総IJI気咀
に対して05倍以上に設定されており、05倍未満では
膨張波と圧縮波間の反転効果が得られないことによるも
のである。また、」二記拡犬室8は、エンジンの加速運
転時又は減速運転時等の過渡運転時での吸入空気のサー
ジタンクとして機能し、加速時の息旬きや減速時の燃料
のオーバリッチによる失火等を防止して燃料の良好な応
答性を確保するものである。
In addition, the volume of the expansion chamber 8 is set to be at least 0.5 times the total IJI air volume of Enson, and if it is less than 0.5 times, the reversal effect between expansion waves and compression waves cannot be obtained. . In addition, the expansion chamber 8 functions as a surge tank for intake air during transient operations such as acceleration or deceleration of the engine, and serves as a surge tank for intake air during transient operations such as engine acceleration or deceleration. This prevents misfires and other misfires caused by the engine and ensures good response of the fuel.

さらに、上記高負荷用吸気弁16の開弁時間(高負荷用
吸気ポート1−2の開口時期)と低負荷用吸気弁(図示
せず)の開弁時期(低負荷用吸気ポート11の開口時期
)とはほぼ同時期に、また両者の閉弁時期(各吸気ポー
ト11.12の閉口時1υ])もほぼ同時期に設定され
ている。
Further, the opening time of the high-load intake valve 16 (opening timing of the high-load intake ports 1-2) and the opening timing of the low-load intake valve (not shown) (opening time of the low-load intake port 11) The closing timings of both valves (1υ when each intake port 11, 12 is closed]) are set to be approximately the same.

加えて、」−組番高負荷用吸気通路10aiOI〕の通
路長さls、つまり該高負荷用吸気通路IQa、lQb
の拡大室8への開口端面から燃焼室2への開口(高負荷
用吸気ポート12)までの通路長さls は、5000
〜? (100rpmの回転域で2次の吸気個有脈動効
果を得るように、0 es−、(θ、−θ。)X    X −’−X2  
 ・・・(1):Hi(lN+    4 の式から求められた値に設定されている。、尚、上記(
1)式において、θ8は高負荷用吸気弁16の開弁期間
で、θ0は高負荷用吸気弁16の開弁による高負荷用吸
気ポート12開1」から膨張波が実゛龜的に発生するま
での期間と効果的に過給を行うために該膨張波を反転し
た圧縮波の2次脈動波を伝播させる時期から高負荷用吸
気弁16の閉弁(高負1()j用吸気ポート12閉(」
)までの期間とを合算した無効期間で約60〜100°
程度であり、よって(θ、−θ3.)は膨張波発生から
圧縮波の2次脈動波1云播まてに要するクランクンヤフ
トの回転角度を表わす。また、Nlはエンジン回転数で
50(H〜700 (l r 1)Illの間に設定さ
れた基準回転数を表わす。また、ユは2次脈動が2往復
する行程の逆数を表わす。さらに、aは圧力波の伝播速
度(音速)で、20°Cでa =: 34 :3 m/
 sである。
In addition, the passage length ls of "-set number high load intake passage 10aiOI", that is, the high load intake passage IQa, lQb.
The passage length ls from the opening end face to the enlarged chamber 8 to the opening to the combustion chamber 2 (high load intake port 12) is 5000
~? (0 es-, (θ, -θ.)X
... (1): Hi (set to the value obtained from the formula of lN+ 4. In addition, the above (
In equation 1), θ8 is the opening period of the high-load intake valve 16, and θ0 is the expansion wave actually generated from the high-load intake port 12 open 1 due to the opening of the high-load intake valve 16. In order to effectively perform supercharging, the intake valve 16 for high load is closed (intake for high negative 1()j). Port 12 closed ("
) is approximately 60 to 100 degrees in the invalid period including the period up to
Therefore, (θ, -θ3.) represents the rotation angle of the crank shaft required from the generation of the expansion wave to the dissemination of the second pulsating wave of the compression wave. Further, Nl represents the reference engine speed set between 50 (H to 700 (l r 1) Ill). Also, U represents the reciprocal of the stroke in which the secondary pulsation makes two reciprocations.Furthermore, a is the propagation velocity (sound velocity) of the pressure wave, and at 20°C, a =: 34:3 m/
It is s.

また、」二記名低負荷用吸気通路9 a −、91)の
通路長さe■)、つまり該低負荷用吸気通路921.9
1)の拡大室8への開1」端面から燃焼室2への開口(
低色イ:ム用吸気ポー1−11 )までの通路長さj’
pは、」二記高負曲用吸気通路10a、101)でのN
 1/ 1.25 rpmを中心として発生ずる主たる
吸気個有脈動効果の谷部を補うべ(5000〜7000
 r l)mの間に設定されたその基準回転数N1の]
/(1,25±0.125 ) r、pmのエンジン回
転時に補完的な2次の吸気個有脈動効果を得るように、
上記(1,)式と同様の、 60   1 ep−(θ、−θ。) X −X−X a   ・・・
(11):H3ON2 4 の式により求められる値に設定されている。つまり、」
−記(11)式において、θ1.は低負荷用吸気弁の開
弁期間であって上述の如くθ、−θSであり、またN2
は1ンジン回転数てN2 =Nl/ (1,25±01
25)てあルノテ、ep −1s X (1,2,5±
0.125 )に設定されている。
In addition, the passage length e■) of the two-signed low-load intake passage 9a-, 91), that is, the low-load intake passage 921.9
1) Opening from the end face to the expansion chamber 8 (1) to the combustion chamber 2 (
Low color A: Passage length j' to intake port 1-11)
p is N in the intake passage 10a, 101) for high and negative bends.
1/ The valley of the main intake-specific pulsation effect that occurs around 1.25 rpm should be compensated for (5000 to 7000 rpm).
r l) of its reference rotation speed N1 set between m]
/(1,25±0.125) r, so as to obtain a complementary second-order intake unique pulsation effect when the engine rotates at pm.
Similar to the above formula (1,), 60 1 ep-(θ, -θ.) X -X-X a ...
(11): It is set to a value determined by the formula H3ON2 4 . In other words,"
- In equation (11), θ1. is the opening period of the intake valve for low load, and is θ, -θS as mentioned above, and N2
is 1 engine rotation speed N2 = Nl/ (1,25±01
25) Tealnote, ep -1s X (1,2,5±
0.125).

尚、」−記(+)、(El)式では、圧力波の≠播に対
する吸入空気の流れの影響を無視している。これは、流
速か音速に比べて小さく、吸気通路の長さにほとんど変
化をもたらさないためである5、次に、」1記第1実施
例の作用について説明するに、高出力を要する5 00
0〜7000 rpm のエンジン高回転時には、2次
弁14.14の開作動により低負荷用吸気通路9a、9
1〕と共に高負荷用吸気通路1oa、iobも開かれて
、各気筒1A11Bに対し高負荷用吸気通路10a、1
01)からも吸気の供給が行われている。その際、各気
筒1A、、IBにおいて高負荷用吸気弁16の開弁後、
高負荷用吸気ポート12からの吸気開始により各高負荷
用吸気通路10a、10b内に膨張波が発生ずる。この
膨張波は、拡大室8から各気筒lA。
Note that in the expressions (+) and (El), the influence of the flow of intake air on the spread of pressure waves is ignored. This is because it is small compared to the flow velocity or the sound velocity and causes almost no change in the length of the intake passage.
At high engine speeds of 0 to 7000 rpm, the low-load intake passages 9a and 9 are opened by opening the secondary valves 14 and 14.
1], the high-load intake passages 1oa and iob are also opened, and the high-load intake passages 10a and 1 are opened for each cylinder 1A11B.
Intake air is also supplied from 01). At that time, after opening the high-load intake valve 16 in each cylinder 1A, IB,
When intake starts from the high-load intake port 12, an expansion wave is generated in each high-load intake passage 10a, 10b. This expansion wave is transmitted from the expansion chamber 8 to each cylinder lA.

113に至る高負荷用吸気通路1o、1obの通路長さ
esを5000〜7000 rpmのエンジン高回転時
を基準として上記(I)式により求められた値に設定し
たことにより、高負荷用吸気通路10a1101〕−拡
大室8(圧縮波に反転して反射)−・高負荷用吸気通路
10ai01〕−・燃焼室2(膨張波に反転して反射)
−高負荷用吸気通路10a1101〕−・拡大室8(圧
縮波に反転して反り・()−高f1.7+j用吸気通路
10a、10bを経て、圧縮波の2次脈動波として各気
筒lA、1Bの吸気行程終期の高負荷用吸気ポート12
に伝播する。その結果、この2次脈動圧縮波により、吸
気行程終期の高負荷用吸気ポート12からの吸気の吹き
返しか抑制されて吸気が燃焼室2内へ押し込まれ、つま
り過給が行われることになる。よって、各気筒IA、、
IB自身の高負荷用吸気系統での吸気個有脈動効果によ
る過給効果により、50 o O〜70001°四〕の
エンジン高回転時での充填効率か増大して出力を向」ニ
させることかできる。
By setting the passage length es of the high-load intake passages 1o and 1ob leading to 10a1101] - Expansion chamber 8 (reflects as a compression wave and reflects it) - High load intake passage 10ai01] - Combustion chamber 2 (reflects as an expansion wave and reflects it)
-High-load intake passage 10a1101] - Expansion chamber 8 (curved due to compression wave) Intake port 12 for high load at the end of the intake stroke of 1B
propagate to. As a result, this secondary pulsating compression wave suppresses only the blowback of the intake air from the high-load intake port 12 at the end of the intake stroke and forces the intake air into the combustion chamber 2, that is, supercharging is performed. Therefore, each cylinder IA,
Due to the supercharging effect caused by the unique intake pulsation effect in IB's own high-load intake system, the charging efficiency at high engine speeds of 50° to 70,001° (4) increases and the output is improved. can.

一方、エンジン回転時か上記500 (1〜7000 
rpmに対しく1.25=10.125)の割合たけ低
いエンジン回転時には、上記と同様に各気筒lA、11
3の低負荷用吸気ポート11からの吸気開始により低負
荷用吸気通路9a、9b内に発生した膨張波は、拡大室
8から各気筒lA、1Bに至る低負荷用吸気il路9 
a z 91)の通路長さe、をら−18X(1,25
±0125)  に設定したことにより、低負荷用吸気
通路9a、9b−拡大室8(圧縮波に反転して反射)→
1氏負負荷吸気通路9a、、9b−燃焼室2(膨張波に
反転して反射)−・低負荷用吸気通路9a%9b−拡大
室8(圧縮波に反転して反射)→低負荷用吸気通路9a
、、9bを経て、圧縮波の2次脈動波として各気筒lA
、、lBの吸気行程終期の低負荷用吸気ポート11に伝
播して、同じく過給か行われる1、その結果、各気筒1
A11B自身の低負荷用吸気系統での吸気1固有脈動効
果により、」1記高負荷用吸気系統による吸気個有脈動
効果ての2次脈動とその3次脈動との谷部に相当するエ
ンジン回転時における充填効率を充足補償して出力向ヒ
を図ることができる。
On the other hand, when the engine is rotating, the above 500 (1 to 7000
When the engine speed is low at a ratio of 1.25=10.125) to rpm, each cylinder lA, 11
The expansion waves generated in the low-load intake passages 9a and 9b due to the start of intake from the low-load intake port 11 of No.
az 91) passage length e, -18X (1,25
±0125), the low-load intake passages 9a, 9b-expansion chamber 8 (reflected as a compression wave)→
1 Negative load intake passage 9a,, 9b - Combustion chamber 2 (inverts to expansion wave and reflects) - Low load intake passage 9a% 9b - Expansion chamber 8 (inverts to compression wave and reflects) -> For low load Intake passage 9a
,,9b, each cylinder lA as a secondary pulsating wave of the compression wave.
,,IB is propagated to the low-load intake port 11 at the end of the intake stroke, and supercharging is also performed.As a result, each cylinder 1
Due to the intake 1 unique pulsation effect in the low load intake system of A11B itself, the engine rotation corresponds to the trough between the secondary pulsation and its 3rd pulsation in the intake unique pulsation effect due to the high load intake system described in 1. It is possible to improve the output power by fully compensating the filling efficiency at the time.

したかって、各気筒1A、、lBにおいて、第3図に示
すように、エンジン高回転時(5000〜70(to 
rpm )での高負荷用吸気系統による主たる吸気個有
脈動効果(破線で示す)によって得られる出力向」二に
加えて、この主たる吸気IN ’f−r脈動効果での2
次脈動とその3次脈動との谷部に相当するエンジン回転
時での低負荷用吸気系統による補完的な吸気1固有脈動
効果(実線で示す)によって」−記谷部の出力低下を補
足して出力を向上させ、よってエンジンの中回転域から
高回転域に亘って広範囲に出力向J二を図ることかでき
る。尚、第3図では、高負荷用吸気系統による主たる2
次の吸気1固有脈動効果を600Orpmを基準として
得るとともに、低負荷用吸気系統による補完的な2次の
吸気個有脈動効果を4800rpmを基準として得るよ
うに設定した場合におけるエンジンの出力トルク特性を
示す。
Therefore, in each cylinder 1A, 1B, as shown in FIG.
In addition to the output direction obtained by the main intake individual pulsation effect (indicated by the dashed line) due to the high-load intake system at
Due to the supplementary intake 1 specific pulsation effect (shown by the solid line) by the low-load intake system during engine rotation corresponding to the valley between the next pulsation and its third pulsation, the output decrease in the valley is supplemented. Therefore, the output direction can be increased over a wide range from the medium speed range to the high speed range of the engine. In addition, in Fig. 3, the main 2
The output torque characteristics of the engine in the case where the following intake 1 specific pulsation effect is obtained based on 600 rpm, and the complementary 2nd intake specific pulsation effect by the low-load intake system is set to be obtained based on 4800 rpm. show.

また、その場合、高出力を要するエンジン高回転時(5
000〜7000rl)m)での主たる吸気個有脈動効
果を高負荷用吸気系統で得たことにより、つまり高負荷
用吸気通路1(la、、10bは低負荷用吸気系統9a
、91〕よりも通路面積か大で圧力波の1云播の抵抗が
小さいことにより、その過給効果を有効に発揮でき、し
かもそのことにより高負荷用吸気通路10a、101)
の通路長さe5が低負荷用吸気通路9a−,9bの通路
長さepより短かくて済み吸気抵抗の増大を防くことが
てきるのて、充填効率を効果的に増大でき、上記出方要
求に合致して有利である。
In addition, in that case, when the engine is running at high speed (5
000 to 7000rl)m) was obtained in the high-load intake system.
, 91], the passage area is larger and the resistance to one wave of pressure wave is smaller than that of the high-load intake passages 10a, 101), so that the supercharging effect can be effectively exhibited.
Since the passage length e5 of the low-load intake passages 9a-, 9b can be shorter than the passage length ep of the low-load intake passages 9a-, 9b, and an increase in intake resistance can be prevented, the filling efficiency can be effectively increased. This is advantageous because it meets the requirements of many people.

また、」二記拡大室8は、1次弁13下流に位置するの
で、該1次弁13によって圧力波が減衰することがなく
、上記吸気個有脈動効果を有効に発揮することができる
Furthermore, since the enlarged chamber 8 is located downstream of the primary valve 13, the pressure waves are not attenuated by the primary valve 13, and the above-mentioned intake-specific pulsation effect can be effectively exhibited.

さらに、燃料供給装置としての燃料噴射ノスル15は、
拡大室8下流の低負荷用吸気ポート9 a −。
Furthermore, the fuel injection nostle 15 as a fuel supply device is
Low load intake port 9 a - downstream of expansion chamber 8 .

9bに設けられているので、吸気1有脈動効果眼を得る
上で吸気通路長さlpか長くなることにによる燃料の応
答性の悪化を防止して、良好な燃料応答性を確保できる
とともに、全運転域で吸気の供給を行い燃料の供給が可
能な低負荷用吸気通路9 e+ 、9 bのみの設置で
済み、燃ネごl供給装置の簡略化を図ることができる。
9b, in order to obtain the intake 1 pulsation effect, it is possible to prevent the deterioration of the fuel response due to the increase in the intake passage length lp, and to ensure good fuel response. Only the low-load intake passages 9e+ and 9b, which can supply intake air and fuel in all operating ranges, are required, and the fuel supply device can be simplified.

また、上記各吸気個有脈動効果による過給効果は、拡大
室8の位置、並びに該拡大室8から各気筒lA、、lB
に至る低負荷用吸気通路9a、9bおよび高負荷用吸気
通路10a、lObの通路しさep、ls等を上述の如
く設定することによって得られ、過給機等を要さないの
で、既存の吸気系の僅かな設計変更で済み、構造が極め
て簡単なものであり、よって容易にかつ安価に実施する
ことかできる。
In addition, the supercharging effect due to the individual intake pulsation effect is determined by the position of the expansion chamber 8 and from the expansion chamber 8 to each cylinder lA, , lB.
This can be obtained by setting the passage widths ep, ls, etc. of the low-load intake passages 9a, 9b and the high-load intake passages 10a, 1Ob as described above, and since a supercharger etc. is not required, the existing intake It requires only a slight change in the design of the system, has an extremely simple structure, and can therefore be implemented easily and at low cost.

尚、本発明は」1記第1実施例に限定されるものではな
く、その他種々の変形例をも包含するものである。第4
図〜第6図は上記第1実施例の変形例としての第2〜第
4実施例を示す(尚、第1実施例と同一の部分について
は同一の符号を付してその説明を省略する)。第4図の
第2実施例では、拡大室8下流において各気筒lA、、
iBの低負荷用吸気通路9a、9bと2次弁14下流の
高負荷用吸気通路10a、101)とを連通路22.2
2で連通し、該連通路22.22にそれぞれ燃料噴射ノ
スル1テ、15′を設り低負荷用吸気通路9a、91〕
と高負荷用吸気通路10a、101)の両方へ燃料を供
給するようにしたものであり、この場合にも高負荷用吸
気通路10a、10bおよび低角曲用吸気il路9a、
9bの通路長さls、、epを−に記(1)、(11)
式により設定することにより、−上記第1実施例と同様
の作用効果を奏することかできる。
It should be noted that the present invention is not limited to the first embodiment described in 1. It also includes various other modifications. Fourth
Figures 6 to 6 show second to fourth embodiments as modifications of the first embodiment (the same parts as in the first embodiment are given the same reference numerals and their explanations are omitted). ). In the second embodiment shown in FIG. 4, each cylinder lA, .
A communication passage 22.2 connects the low load intake passages 9a, 9b of iB and the high load intake passages 10a, 101) downstream of the secondary valve 14.
2, and fuel injection nostles 1 and 15' are provided in the communication passages 22 and 22, respectively, to form low-load intake passages 9a and 91].
and high-load intake passages 10a, 101), and in this case also, fuel is supplied to both the high-load intake passages 10a, 10b and the low-angle intake IL passage 9a,
Write the path lengths ls, ep of 9b in - (1), (11)
By setting according to the formula, it is possible to achieve the same effects as in the first embodiment.

また、第5図の第3実施例では、各気筒1A11Bに対
し低負荷用吸気通路9a、、9bと高負荷用吸気通路1
0a、101)とを、上記第1実施例の如き独立した低
負荷用および高負荷用吸気ポートlL12ではなく、共
通の単一の吸気ポート23を介して燃焼室2に開口させ
、該吸気ポート23を単一の吸気弁24て開閉するよう
にしたものである。また、第6図の第4実施例では、拡
大室を、低負荷用吸気系統の拡大室8aと高負荷用吸気
系統の拡大室8bとに独立して設けるようにしたもので
ある。これらの場合においても、高負荷用吸気通路10
a、10bおよび低負荷用吸気1ijj路9 a −、
9bの通路長さl3、l、を]二起重1)、(IJ)式
に設定することにより同様の作用効果を得ることができ
る。
In addition, in the third embodiment shown in FIG. 5, low load intake passages 9a, 9b and high load intake passage 1 are provided for each cylinder 1A11B.
0a, 101) are opened into the combustion chamber 2 through a common single intake port 23 instead of the independent low-load and high-load intake ports LL12 as in the first embodiment, and the intake ports 23 is opened and closed by a single intake valve 24. In the fourth embodiment shown in FIG. 6, the expansion chambers are provided independently in the expansion chamber 8a of the low-load intake system and the expansion chamber 8b of the high-load intake system. Even in these cases, the high-load intake passage 10
a, 10b and low load intake 1ijj path 9a-,
Similar effects can be obtained by setting the passage length 13, 1 of 9b to the equation 1), (IJ).

さらに、上記第1実施例等では、エンジン高回転時(5
000〜7000rpm)の主たる吸気1固有脈動効果
を高負荷用吸気系統で、それより低回転側での補完的な
吸気個有脈動効果を低負荷用吸気系統て役るようにした
が、それとは逆に、低負荷用吸気系統で主たる吸気個有
脈動効果を、高負荷用吸気系統て補完的な吸気個有脈動
効果を得るようにしてもよいのは勿論である。しかし、
上述の如く、充填効率向L1出力向上の点では」1記第
1実施例の如き設定が好ましい。
Furthermore, in the first embodiment, etc., when the engine is at high rotation speed (5
The main intake 1-specific pulsation effect (000 to 7000 rpm) is used in the high-load intake system, and the complementary intake-specific pulsation effect at lower rotation speeds is used in the low-load intake system. Conversely, it goes without saying that the main intake individual pulsation effect may be obtained in the low-load intake system, and the complementary intake individual pulsation effect may be obtained in the high-load intake system. but,
As mentioned above, in terms of improving filling efficiency and L1 output, the settings as in the first embodiment described in "1" are preferable.

また、上記実施例では2気筒エンジンに適用した例を示
したが、本発明は、デュアルインダクション吸気システ
ムのその他名種多気筒エンジンに対しても適用できるの
は言うまでもない。
Furthermore, although the above embodiments have been shown as examples in which the present invention is applied to a two-cylinder engine, it goes without saying that the present invention can also be applied to other types of multi-cylinder engines with dual induction intake systems.

以」二説明したように、本発明によれば、拡大室下流に
低負荷用と高負荷用との2系統の吸気通路を備えた多気
筒エンジンにおいて、低負荷用および高負荷用吸気系統
の一方で5000〜7000rpmのエンジン高回転時
に主たる吸気個有脈動効果により過給効果を得るととも
に、他方で上記主たる吸気(固有脈動効果での2次脈動
と3次脈動との谷部に相当するエンジン回転時に補完的
な吸気個有脈動効果により上記谷部を補うように過給効
果を得るようにしたので、過給機等を要さずにかつ燃料
の良好な応答性を確保しながら、既存の吸気系の僅かな
設訓変更による簡単な構成でもって、エンジンの中回転
域から高回転域に亘って広範囲に出力向」二を有効に図
ることができ、よってエンジンの出力向」二対策の容易
実施化およびコストタウン化に大いに寄与できるもので
ある。
As explained above, according to the present invention, in a multi-cylinder engine equipped with two intake passages, one for low load and one for high load, downstream of the enlarged chamber, the intake passages for low load and high load can be connected to each other. On the one hand, at high engine speeds of 5000 to 7000 rpm, the main intake air unique pulsation effect provides a supercharging effect, and on the other hand, the main intake air (which corresponds to the trough between the secondary pulsation and the tertiary pulsation due to the inherent pulsation effect) Since the supercharging effect is obtained by supplementing the above-mentioned valley by the complementary intake air pulsation effect during rotation, it does not require a supercharger, etc., and while ensuring good fuel response, it can replace the existing With a simple configuration by making slight changes to the intake system, it is possible to effectively improve the power output over a wide range from the mid- to high-speed range of the engine. This can greatly contribute to the ease of implementation and cost reduction.

【図面の簡単な説明】 図面は本発明の実施例を例示し、第1図および第2図は
第1実施例を示す全体構成説明図および同要部概略図、
第13図は出力トルク特性を示す図、第4図は第2実施
例を示す第1図相当図、第5図は第3実施例を示す第2
図相当図、第6図は84実11徂例を示ず第1図相当図
である。 1A・・・第1気筒、1B 第2気筒、2・・・燃焼室
、5・・主吸気通路・・・8.8a −、81)・・・
拡大室、9as913・・・低負荷用吸気通路、10a
i01)・・・高負6:1用吸気1m路、13・・・1
次弁、14・・・2次弁、15.15′・・・燃料噴射
ノズル。 第3図
[BRIEF DESCRIPTION OF THE DRAWINGS] The drawings illustrate an embodiment of the present invention, and FIGS. 1 and 2 are an explanatory diagram of the overall configuration and a schematic diagram of the essential parts of the first embodiment,
Fig. 13 is a diagram showing output torque characteristics, Fig. 4 is a diagram equivalent to Fig. 1 showing the second embodiment, and Fig. 5 is a diagram equivalent to Fig. 1 showing the third embodiment.
FIG. 6 is a diagram equivalent to FIG. 1, but does not show the 84-piece 11-layer example. 1A...1st cylinder, 1B 2nd cylinder, 2...Combustion chamber, 5...Main intake passage...8.8a-, 81)...
Expansion chamber, 9as913...Low load intake passage, 10a
i01)...Intake 1m path for high negative 6:1, 13...1
Next valve, 14... Secondary valve, 15.15'... Fuel injection nozzle. Figure 3

Claims (1)

【特許請求の範囲】[Claims] m  拡大室と、該拡大室下流に各気筒へ開口する低負
荷用吸気通路と高負荷用吸気通路とを有する吸気通路を
備え、該吸気通路は、上記拡大室の上流に位置して少な
くとも低負荷用吸気通路を流れる吸気量を変化させる1
次弁と、高負荷用吸気通路を流れる吸気風を変化させる
2次弁とを有する多気筒エンジンの吸気装置であって、
上記拡大室下流の少なくとも低負荷用吸気通路に燃料を
供給する燃料噴射ノズルを設け、上記拡大室から各気筒
に至る低負荷用吸気通路および高負荷用吸気通路の通路
長さを、一方が5 (l OO〜7000rp+nのエ
ンジン高回転時に各気筒の開口に生じる膨張波を上記拡
大室で反転して反射した圧縮波の2次脈動波が該多気筒
の吸気行程終期に伝播して過給を行う一方、他方が」二
記圧縮波の2次脈動波とその3次脈動波との谷部が発生
するエンジン回転時に同じく各気筒の開口に生じる膨張
波を上記拡大室で反転して反射した圧縮波の2次脈動波
が該多気筒の吸気行程終期に伝播して過給を行うように
設定したことを特徴とするエンジンの吸気装置。
m. An intake passage having an enlarged chamber, and a low-load intake passage and a high-load intake passage that open to each cylinder downstream of the enlarged chamber, and the intake passage is located upstream of the enlarged chamber and has at least a low-load intake passage. Changing the amount of intake air flowing through the load intake passage 1
An intake system for a multi-cylinder engine having a secondary valve and a secondary valve that changes intake air flowing through a high-load intake passage,
A fuel injection nozzle for supplying fuel to at least the low-load intake passage downstream of the expansion chamber is provided, and the passage length of the low-load intake passage and the high-load intake passage from the expansion chamber to each cylinder is set such that one side has a length of 5. (l When the engine rotates at a high speed of OO~7000rpm+n, the expansion wave generated at the opening of each cylinder is inverted and reflected in the expansion chamber, and the secondary pulsating wave of the compression wave propagates at the end of the intake stroke of the multiple cylinders and causes supercharging. On the one hand, on the other hand, when the engine rotates, the trough between the secondary pulsating wave of the compression wave and its tertiary pulsating wave occurs, and the expansion wave that also occurs at the opening of each cylinder is reversed and reflected in the expansion chamber. An intake system for an engine, characterized in that a secondary pulsating wave of a compression wave is set to propagate at the end of an intake stroke of the multi-cylinder to perform supercharging.
JP57191603A 1982-10-30 1982-10-30 Intake apparatus of engine Granted JPS5982522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57191603A JPS5982522A (en) 1982-10-30 1982-10-30 Intake apparatus of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191603A JPS5982522A (en) 1982-10-30 1982-10-30 Intake apparatus of engine

Publications (2)

Publication Number Publication Date
JPS5982522A true JPS5982522A (en) 1984-05-12
JPH0559249B2 JPH0559249B2 (en) 1993-08-30

Family

ID=16277379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191603A Granted JPS5982522A (en) 1982-10-30 1982-10-30 Intake apparatus of engine

Country Status (1)

Country Link
JP (1) JPS5982522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3544122A1 (en) * 1985-12-13 1987-06-19 Bayerische Motoren Werke Ag MULTI-CYLINDER INTERNAL COMBUSTION ENGINE WITH INTAKE SYSTEM
US4911111A (en) * 1988-04-14 1990-03-27 Honda Giken Kogyo Kabushiki Kaisha Intake manifold for an internal combustion engine
US4932378A (en) * 1986-10-30 1990-06-12 Mazda Motor Corporation Intake system for internal combustion engines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572215U (en) * 1980-06-06 1982-01-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572215U (en) * 1980-06-06 1982-01-07

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3544122A1 (en) * 1985-12-13 1987-06-19 Bayerische Motoren Werke Ag MULTI-CYLINDER INTERNAL COMBUSTION ENGINE WITH INTAKE SYSTEM
US4932378A (en) * 1986-10-30 1990-06-12 Mazda Motor Corporation Intake system for internal combustion engines
US4911111A (en) * 1988-04-14 1990-03-27 Honda Giken Kogyo Kabushiki Kaisha Intake manifold for an internal combustion engine

Also Published As

Publication number Publication date
JPH0559249B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
JP2863927B2 (en) Engine intake system
JPS6211169B2 (en)
JPS5982522A (en) Intake apparatus of engine
JPS5999034A (en) Intake apparatus for rotary piston engine
JPH0452377B2 (en)
JPH0337009B2 (en)
JPS6326261B2 (en)
JP2647131B2 (en) Intake device for turbocharged diesel engine
JPS63140822A (en) Valve gear of engine with supercharger
JPS60222523A (en) Suction device of engine
JP3427396B2 (en) Intake device for engine with mechanical supercharger
JPS6340251B2 (en)
JPS60249624A (en) Intake-air device in rotary piston engine
JPH0337013B2 (en)
JPS6323370B2 (en)
JPH0329968B2 (en)
JPS6340252B2 (en)
JPS5970833A (en) Intake device of rotary piston engine
JPS60249623A (en) Intake-air device in rotary piston engine
JPH0452375B2 (en)
JPS60249625A (en) Intake-air device in rotary piston engine
JPS5979037A (en) Intake apparatus for engine
JPH0337014B2 (en)
JPS6326262B2 (en)
JPS5974331A (en) Intake device for rotary engine