JPS5981828A - Square chip type fuse part - Google Patents

Square chip type fuse part

Info

Publication number
JPS5981828A
JPS5981828A JP19077382A JP19077382A JPS5981828A JP S5981828 A JPS5981828 A JP S5981828A JP 19077382 A JP19077382 A JP 19077382A JP 19077382 A JP19077382 A JP 19077382A JP S5981828 A JPS5981828 A JP S5981828A
Authority
JP
Japan
Prior art keywords
alloy
tin
lead
mainly composed
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19077382A
Other languages
Japanese (ja)
Other versions
JPH0736315B2 (en
Inventor
入蔵 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57190773A priority Critical patent/JPH0736315B2/en
Publication of JPS5981828A publication Critical patent/JPS5981828A/en
Publication of JPH0736315B2 publication Critical patent/JPH0736315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 電子機器には2.一般に火災防止の為に各種の安全装置
、即ち、ヒユーズ、サーミスタなどが電源部又は回路の
内部に組み込まれている。
[Detailed Description of the Invention] Industrial application field electronic equipment includes 2. Generally, various safety devices, such as fuses and thermistors, are built into the power supply or circuit to prevent fire.

特に最近は、安全性の面より小電力の機器についても安
全装置が設けられるようになってきていることから小型
のヒユーズが多く望まれている。
Particularly in recent years, small-sized fuses have been desired because safety devices have been installed even in low-power devices for safety reasons.

又更に、各種部品のチップ化が急速に進んでおりチャフ
0状のヒ=−ズが望まれておシ、本発明はこのようなチ
ップ状ヒユーズに関するものである。
Furthermore, with the rapid progress in making various parts into chips, fuses with zero chaffs are desired, and the present invention relates to such chip-shaped fuses.

従来例の構成とその問題点 従来のヒユーズは一般的に、ガラス管の中に可融性の金
属線を封入して、両端に金属キャップを接続したもの或
は、両端よりリード線を引出1〜樹脂″で外装し、たも
のが使用されている。しかし前者は、ヒューズホールダ
ー(即ちソケット)を必要とし後者のものはリード線例
きであるため回路基板に孔を設け、一般のリード■き部
品のように核化にリード線を通し半田付けせねばならな
いものであった。又更に前者のものは、ガラス管内部に
大きな空間があるため振動に弱いなどの欠点のほか、形
状・寸法が非、賓に太きくなp、小形のものを作ること
ができないと同時に、角型のチップ状のものが作ること
ができなかっブζ。又後者のガラス管などを用いないで
樹脂で外装した形状のものもちるが、これは過熱保護素
子又は温度ヒユーズとビわれるもので、外部、周囲の温
度」1昇を感升して溶断するものであり、183°C以
下の低融点金属でできている。そのため、チップ部品と
して必要な260℃の半田付けに耐える面]熱性をるイ
r保することができないものであった。
Conventional structure and problems Conventional fuses are generally made by enclosing a fusible metal wire in a glass tube and connecting metal caps to both ends, or by having lead wires drawn out from both ends. However, the former requires a fuse holder (i.e. socket), and the latter requires a lead wire, so a hole is made in the circuit board and a general lead wire is used. In addition, the former had disadvantages such as being susceptible to vibration due to the large space inside the glass tube, as well as being difficult to shape and dimension. However, it is not possible to make thick P and small ones for guests, and at the same time, it is not possible to make square chip-shaped ones.Also, instead of using the latter glass tube etc., it is possible to make an exterior with resin. This is called an overheat protection element or temperature fuse, and it fuses when it senses an increase in external or surrounding temperature by 1.5 degrees Celsius. is made of. Therefore, it was not possible to maintain the heat resistance required for chip components to withstand soldering at 260°C.

従って、一般的に用いられているコンデンサ。Therefore, commonly used capacitors.

抵抗器、トランジスター、 etcのチップ部品と同時
に、同一条件で半H3(”jけできるようなチップ状ヒ
ユーズを作ることができなか1.た。
1. It was not possible to make a chip-shaped fuse that could be made under the same conditions as chip parts such as resistors, transistors, etc.

発明の目的 本発明は、過電流が流れだとき溶断する機能の血イ熱件
のあるチップ状ヒユーズ部品の構成と、それを打射に安
価に製造する製法を提供するもので、特に角型形状のチ
ップ状にし260℃5sec(7)半田耐炉、性に耐え
るものを作ることを目的としている。fアブ部品は一般
的に回路基板のランドにのせ、接着剤で仮固定した後2
00〜260℃の半田浴槽にチップ部品本体を数秒間浸
漬して、引」=す゛ることによって2.半田付けを行う
か、又は回路基板のランドの上にクリーム状の半田を印
刷しておき、この上にチップ部品をのせ、この基板全体
’;a= 200 = 260℃の雰囲気炉の中に入れ
るが又は基板の下部よシ熱板にょシ加熱して、クリーム
半H」と溶融させて、半田付けを行うなどの方法がとら
れているが、一般的な1.83℃〜98℃の溶融点を有
する可融性金属を用いた週熱保護素子又に温度トユーズ
と言われるものでは、この半田付けの温度に耐えられな
い。
OBJECTS OF THE INVENTION The present invention provides a configuration of a chip-shaped fuse component, which has a very hot function of blowing out when an overcurrent flows, and a manufacturing method for producing it at a low cost by shooting. The purpose is to make a chip-like product that can withstand 260°C for 5 seconds (7) in a soldering furnace. Generally, f-ab components are placed on the land of the circuit board and temporarily fixed with adhesive.
2. By immersing the chip component body in a solder bath at 00 to 260°C for a few seconds and pulling it. Solder or print creamy solder on the lands of the circuit board, place the chip components on top of this, and place the entire board in an atmospheric furnace at a = 200 = 260°C. The lower part of the board is heated on a hot plate to melt it with cream and solder. A heat protection element using a fusible metal with dots, or a so-called temperature toyze, cannot withstand this soldering temperature.

本発明は、溶断特性の優れたものを得ることをも目的と
[1,7ている。
Another object of the present invention is to obtain a material with excellent fusing characteristics [1, 7].

発明の構成 本発明は、同相温度が200℃〜240℃で且つ液相温
度が230〜280℃となる導電性金属を用い、この導
電性金属を熱伝導性の比較的小さい金属に接続し、これ
を外部端子とし、更には、導電性金属を熱伝導性の小さ
い樹脂にて、直接密着するように外装[、て、角型のチ
ャフ0状にすることを特徴としている。
Structure of the Invention The present invention uses a conductive metal with an in-phase temperature of 200°C to 240°C and a liquidus temperature of 230 to 280°C, and connects this conductive metal to a metal with relatively low thermal conductivity. This is used as an external terminal, and furthermore, the conductive metal is covered with a resin having low thermal conductivity so as to be in direct contact with the external terminal, and is characterized in that it is made into a rectangular chaff shape.

又、外部端子にijo、] 5 t 〜0.05 t、
厚の薄板状金属端子を用いて、本体の厚さく高さ方向)
に対し1、両側端面のセンターより上部より引出しこれ
を下方に向ってほぼ直角に折り曲げ加工し更に底部にお
いて内側にほぼ直角に折曲げ加工している。
Also, ijo to the external terminal, ] 5 t ~ 0.05 t,
(Thickness in the height direction of the main body) using thick thin plate metal terminals
In contrast, 1, the drawer is pulled out from the upper part of the center of both end faces, bent downward at a substantially right angle, and further bent inward at the bottom at a substantially right angle.

実施例の説明 一般に同相温度とは金属が溶けはじめる温度であり1.
液相温度とは溶は彩る温度のことを言う。
Description of Examples Generally, the in-phase temperature is the temperature at which metal begins to melt.1.
Liquidus temperature refers to the temperature at which a substance becomes molten.

固相温度及び液相温度が183℃の場合は第1図の構造
に作り、一般的に半田付けさノする上限幅度260℃の
半田;も槽の中に浸漬すると5 sec以内で内部の合
金(導電性金属)が溶融して、1線してしまう現象が現
われる。
When the solidus temperature and liquidus temperature are 183°C, the structure shown in Figure 1 is made and soldering is generally carried out using solder with an upper limit width of 260°C. When immersed in a bath, the internal alloy will melt within 5 seconds. A phenomenon occurs in which (conductive metal) melts and forms a single line.

しかし下限温度200℃の半田浴槽の中に浸漬すると、
10’sec程度の浸漬時間まで耐え得るものもあるが
約1/2は断線状態となってしまう。
However, when immersed in a solder bath with a minimum temperature of 200℃,
Some wires can withstand an immersion time of about 10'sec, but about half of them end up in a disconnection state.

半田浴槽に本体を浸漬すると、金属板端子と外装樹脂か
ら熱が伝わって導電性金属までゆき、金属の液相温度に
まで達すると金属が溶融し断線することになる。
When the main body is immersed in a solder bath, heat is transferred from the metal plate terminals and the exterior resin to the conductive metal, and when it reaches the liquidus temperature of the metal, the metal melts and the wire breaks.

しかし、熱の伝導をできるだけ少くするために端子とな
る金属に熱伝導率の小さい、42チ鉄−ニッケル合金(
熱伝導率0.03 d/℃asec、cnI)やコバー
ル合金(熱伝導率0.04 、lI4/℃、sec、c
rn)を用いた場合と、熱伝導率の良い銀メッキ銅(熱
伝導率0、95 cnl、/’C,sec、cnr )
やクローム鋼(熱伝導率0.774℃、9ee、crn
) 、更には中間的なニッケルメッキ鉄(熱伝導率0.
147/℃、sec、crn)などを用いた場合の内部
の導電性金属の断線率が異ること、及び断線温匿も上昇
する傾向にあることが確認できた。
However, in order to minimize heat conduction, the terminal metal is made of a 42T iron-nickel alloy (42T iron-nickel alloy), which has low thermal conductivity.
Thermal conductivity 0.03 d/℃ asec, cnI) and Kovar alloy (thermal conductivity 0.04, lI4/℃, sec, c
rn) and silver-plated copper with good thermal conductivity (thermal conductivity 0, 95 cnl, /'C, sec, cnr).
or chrome steel (thermal conductivity 0.774℃, 9ee, crn
), and even intermediate nickel-plated iron (thermal conductivity 0.
147/°C, sec, crn), etc., it was confirmed that the disconnection rate of the internal conductive metal was different, and that the disconnection insulation also tended to increase.

勿論、熱伝導率の小さい端子材料を用いたものほど、断
線率が少なく断線する温度も上昇する。
Of course, the lower the thermal conductivity of the terminal material, the lower the wire breakage rate and the higher the temperature at which the wire breaks.

これは6.端子材料によって、導電性金属への熱の伝導
性(熱の伝わる速度)が異ることを意味する。又、外装
樹脂によっても同様な調査を試みてみた。
This is 6. This means that the conductivity of heat (the speed at which heat is transmitted) to the conductive metal differs depending on the terminal material. We also attempted a similar investigation using exterior resin.

モールド樹脂の熱伝導率は一般的に5.1. X 10
””44℃、sec、Crn8度のものから、40 X
 10−’cr4/C,sec、cm程度のものまで商
品化されており、これらの数種のモールド材料について
断線率を調べてみた。や゛はシ、熱伝導率の高い材料で
あるほど、半田浴に浸漬した時の断線率が高いことが確
認できた。
The thermal conductivity of mold resin is generally 5.1. X 10
``''44℃, sec, Crn8 degrees, 40X
Products of the order of 10-'cr4/C, sec, and cm have been commercialized, and the wire breakage rates of several types of these molding materials were investigated. It was confirmed that the higher the thermal conductivity of the material, the higher the wire breakage rate when immersed in a solder bath.

これらのことから、モールド樹脂材料についても、端子
となる金属材料についても熱伝導率の小さい・ものが予
想以上に効果があシ、それの小さい方が好ましいことが
解った。モールド樹脂拐料の場合、15 X 10””
’ axll/℃−5ec、tM以下の材料が好ましく
、又、金属端子材料は、0.5 aJ/℃、 s e 
c 、on以下の熱伝導率が好ましいことが解った。
From these results, it was found that for both the molding resin material and the metal material for the terminals, materials with low thermal conductivity are more effective than expected, and the smaller the thermal conductivity, the better. For mold resin filler, 15 x 10"
' axll/℃-5ec, tM or less is preferable, and the metal terminal material is 0.5 aJ/℃, s e
It was found that a thermal conductivity of less than c,on is preferable.

一方、導電性金属(ヒーーズとなる)については、固相
温度、液相温度とも最低200℃以上必要であることが
解かシ、又、あまりこの温度が高くなると、ヒユーズと
しての溶断特性が悪くなることも確認できた。
On the other hand, for conductive metals (which become fuses), it is clear that both the solidus temperature and the liquidus temperature need to be at least 200℃ or higher, and if this temperature becomes too high, the fusing characteristics of the fuse will deteriorate. I was also able to confirm that.

それは、例えば、一定の電流を流すとジュール熱で導電
性金属の温度が上昇するが、かなり高温度にならないと
、即ち、液相温度と同等かそれより若干高い温度になら
ないと溶断しないことになるが、例えば液相温度が周囲
の雰囲気温度よりあまりにも高い300℃の合金を用い
ると、内部の温度が300℃かそれ以上の温度にならな
いと、溶断しない。しかし、内部温度が300℃に達す
るためには、大きなエネルギーを必要とする。即ち大電
流を必要とするか、小電流であると、溶断までに長時間
を要することになる。
For example, when a certain current is passed through, the temperature of a conductive metal rises due to Joule heat, but it will not melt unless the temperature is quite high, that is, the temperature is equal to or slightly higher than the liquidus temperature. However, if an alloy with a liquidus temperature of 300° C., which is much higher than the surrounding atmospheric temperature, is used, for example, it will not melt unless the internal temperature reaches 300° C. or higher. However, a large amount of energy is required for the internal temperature to reach 300°C. That is, if a large current is required, or if the current is small, it will take a long time to melt.

それは、外装樹脂からの放熱と、金属端子からの放熱が
ある為周囲の雰囲気温度との温度差が大きいと溶断時間
をおくらせることになり溶断特性を一層悪くするものと
なる。
This is because there is heat radiation from the exterior resin and heat radiation from the metal terminals, so if there is a large temperature difference with the surrounding ambient temperature, the fusing time will be delayed, which will further worsen the fusing characteristics.

半田付は温度200〜260℃に耐えて溶断特性の優れ
た合金(導電性金属)とこては、固相温度を最低200
℃を必要とし、液相温度を最低230℃を必要とする。
For soldering, use an alloy (conductive metal) that can withstand temperatures of 200 to 260°C and has excellent fusing characteristics, and a soldering iron with a solidus temperature of at least 200°C.
℃, and requires a liquidus temperature of at least 230°C.

又、上限温度としては、溶断特性によって定まってくる
が同相温度は最高240℃までで、液相温度280℃ま
でである。
Further, the upper limit temperature is determined depending on the fusing characteristics, but the in-phase temperature is up to 240°C, and the liquidus temperature is up to 280°C.

これらの固相温度、及び液相温度は、モールド樹脂材料
の熱伝導率、金属板端子の熱伝導率によって、左右され
ることは勿論であるが導電性金属の線径及び本体の大き
さによっても変わってくるので、必要な溶断特性、必・
要な耐熱性に合った導電性金属を選択しなければならな
い。
These solidus temperatures and liquidus temperatures depend not only on the thermal conductivity of the molding resin material and the thermal conductivity of the metal plate terminal, but also on the wire diameter and the size of the conductive metal body. The required fusing characteristics and necessary
A conductive metal must be selected that meets the required heat resistance.

先に述べた固相温度と液相温度を満足する合金としては
、 鉛(75)−インジューム(25)合金:固相温度25
5℃、液相1m265℃鉛(90)  アンチモン(1
0)合金:    //   252℃  〃  26
(1℃鉛(85)−アンチモン(15)台金:   /
/   252℃  〃  275℃錫(95)−銀(
5)合金:      //   221℃  〃 2
50℃錫(96)−銀(4)合金:      // 
  221℃  //   22 ]、 ’C錫(96
,5)−アンチモン(35)合金:    l/   
230℃  〃  2:う3℃錫(95)−アンチモン
(5)合金:    //   232℃  〃  2
37℃と純粋の錫(固相温度232℃・液相温度232
℃)などである。これらの導電性金属合金を用いること
により一般的なチップ部品の半田付は条件、即ち、20
0℃〜260℃の半田付は温度に対して十分耐えられる
ものが得られる。
As alloys that satisfy the solidus temperature and liquidus temperature mentioned above, lead (75)-indium (25) alloy: solidus temperature 25
5℃, liquid phase 1m265℃Lead (90) Antimony (1
0) Alloy: // 252℃ 〃 26
(1°C lead (85) - antimony (15) base metal: /
/ 252℃ 〃 275℃ Tin (95) - Silver (
5) Alloy: //221℃〃2
50℃ tin(96)-silver(4) alloy: //
221℃ // 22], 'C tin (96
,5)-antimony(35) alloy: l/
230℃ 〃 2: 3℃ Tin (95)-antimony (5) alloy: // 232℃ 〃 2
37℃ and pure tin (solidus temperature 232℃, liquidus temperature 232℃
℃) etc. By using these conductive metal alloys, general chip components can be soldered under the following conditions:
Soldering at temperatures of 0°C to 260°C can provide sufficient resistance to the temperature.

実施例■ 第1図は本発明によるヒユーズチップ部品を示す図で、
(a)は内部斜視図、(b)は内部断面図、(c)は底
面図であシ、i ld導電性金属、2,3は薄板状端子
、4は樹脂、5は凹部、6は凸部、7は接続部である。
Example ■ Figure 1 is a diagram showing a fuse chip component according to the present invention.
(a) is an internal perspective view, (b) is an internal sectional view, and (c) is a bottom view, i ld conductive metal, 2 and 3 thin plate terminals, 4 resin, 5 recess, 6 The convex portion 7 is a connecting portion.

この形状のものを用いて種々の実験を行った。Various experiments were conducted using this shape.

寸法的には樹脂外装した本体長さ7,3癲、巾4.3膿
、高さ2.8’mm内部の導電性金属の長さは4.5調
である。
Dimensionally, the resin-clad body has a length of 7.3mm, a width of 4.3mm, and a height of 2.8mm, and the length of the conductive metal inside is 4.5mm.

この構造に対して、固相温度221℃、液相温度250
℃の錫(95wtチ)−銀(swt%)の導電性の合金
を長径0.1 rtrrnに細線化した。
For this structure, the solidus temperature is 221°C and the liquidus temperature is 250°C.
A conductive alloy of tin (95wt)-silver (swt%) at temperature was thinned to a long diameter of 0.1 rtrrn.

これを、半田メッキした熱伝導率0.034/′C,、
sec、鋸ノ42Fe−Nr合金(厚さ0.1+m、巾
4.. Oim )に熱圧着によシ接続した。これを、
熱伝導率10XIO−4crt、/℃、sec、t1n
のエポキシ樹脂にてトランスファーモールドによシ端子
の一部と、導電性合金全体を該樹脂にて密着するように
外装した。
This was solder plated with a thermal conductivity of 0.034/'C,
sec, and was connected to a 42Fe-Nr alloy (thickness 0.1+m, width 4.0m) by thermocompression bonding. this,
Thermal conductivity 10XIO-4crt, /℃, sec, t1n
A part of the terminal and the entire conductive alloy were covered with the epoxy resin by transfer molding so as to be in close contact with the resin.

端子は両端側面よシ本体高さ方向に対して、中央線よシ
上部よシ引出すように外装し、これを下方向にほぼ直角
に折曲げ加工し更に底面にて、内側にほぼ直角に折曲げ
加工をした。
The terminal is externally wrapped so as to be pulled out from both sides, in the height direction of the main body, and from the center line and from the top, bent downward at almost a right angle, and then folded inward at the bottom at almost a right angle. I did the bending process.

外装樹脂に覆われる、端子の部分にT字部を設けるのは
、樹脂外装後の端子の引張り強度を向」ニさせる為であ
る。この様にすると、5の四部に樹脂が入シ込むため外
部への引張シに対して凸部6がストッパーの働きをする
烏に強度が向上する。
The reason why the T-shaped portion is provided in the portion of the terminal that is covered with the exterior resin is to improve the tensile strength of the terminal after being exteriorized with the resin. In this way, the resin enters into the four parts of 5, so that the convex part 6 acts as a stopper against external tension, improving the strength of the crow.

この様にして得られた、ヒーーズチップの溶断特性を第
2図に示す。
The fusing characteristics of the heats chip thus obtained are shown in FIG.

第2図に示すように3.5Aでは4 Sec以内で、3
Aでは20 see以内で溶断し、又、2.5Aでは1
00sec以内で全て溶断することが併かる。この時の
表面温度についても測定を行ったが、May170℃程
度までしか温度上昇がない非常に優れた溶断特性のもの
が得られる。
As shown in Figure 2, at 3.5 A, within 4 Sec, 3
At A, it melts within 20 see, and at 2.5 A, it melts within 1
It is also possible that all the melts are blown out within 0.00 seconds. The surface temperature at this time was also measured, and very excellent fusing characteristics were obtained, with the temperature rising only up to about 170°C.

又、半田耐熱性についても測定を行った。その結果を第
1表に示す、260℃では若干の断線不良が発生するが
、240℃では一般の使用条件(半田付は条件)には十
分に耐え得るものが得られることが解かる。
Furthermore, the soldering heat resistance was also measured. The results are shown in Table 1, and it can be seen that at 260° C., some disconnection defects occur, but at 240° C., a product that can sufficiently withstand general usage conditions (soldering is a condition) can be obtained.

第1表 半田耐熱性、錫(95)−銀(5)合金φ0.1使用。Table 1 Soldering heat resistance, using tin (95)-silver (5) alloy φ0.1.

実施例■ 実施例1と全く同様な方法で導電性合金材料のみを変え
て溶断特性、及び耐熱性を測定した。
Example 2 The fusing characteristics and heat resistance were measured in exactly the same manner as in Example 1, except that the conductive alloy material was changed.

A:鉛(40wt%) −t4(60wt%)合金固相
温度183℃、液相温度188℃ B:鉛(85wt%)−アンチモy(15wt%)合金
同相温度252℃、液相温度275℃ の2種類の導電性金属を用意し、直径0.1 m+nに
細緋化して測定した。この結果を第3図、第4図。
A: Lead (40 wt%) - T4 (60 wt%) alloy solidus temperature 183°C, liquidus temperature 188°C B: Lead (85 wt%) - antimoy (15 wt%) alloy homogeneous temperature 252°C, liquidus temperature 275°C Two types of conductive metals were prepared, and they were thinned to a diameter of 0.1 m+n and measured. The results are shown in Figures 3 and 4.

第2表に示す。Shown in Table 2.

Aの鉛(40)−錫(60)については比較的低電流で
溶断し、溶断電流が小さくとれ溶断特性もバラツキが少
なく優れた特性を示すが、半田耐熱性に劣9200℃5
 sec程度しか耐えないことが解かる。従って、Aの
材料は2.チップ状ヒユーズとして用いるには耐熱性の
面で不十分であ、!l)、200℃5 see以内で半
田付けせねばならないものとなる。
Lead (40)-tin (60) of A fuses at a relatively low current, has a small fusing current, and exhibits excellent fusing characteristics with little variation, but has poor soldering heat resistance at 9200℃5.
It can be seen that it can withstand only about sec. Therefore, the material of A is 2. The heat resistance is insufficient for use as a chip fuse! l), it must be soldered at 200°C within 5°C.

しかし乍ら、Bの鉛(85)−アンチモン(15)の導
電性合金については溶断特性が若干悪くなるが即ち、大
電流を必要とすること及び溶断時間が長くなシ、溶断時
間のバラツキの巾が大きくなる傾向にあるが、このB材
料については、何んとか使用できる範囲であり合金の同
相温度、液相温度が溶断特性と半田耐熱性に大きく影響
していることが解かる。
However, the conductive alloy B of lead (85)-antimony (15) has slightly worse fusing characteristics, but requires a large current, has a long fusing time, and suffers from variations in fusing time. Although the width tends to increase, this B material is within a usable range, and it can be seen that the in-phase temperature and liquidus temperature of the alloy greatly influence the fusing characteristics and soldering heat resistance.

従って、固相温度が252℃、液相温度が275℃まで
が溶断特性をある程度確保できる上限であり、これ以上
の固相温度、液相温度の導電性金属となると半田耐熱性
には優れたものとなることが解かる。
Therefore, a solidus temperature of 252°C and a liquidus temperature of 275°C are the upper limits at which fusing characteristics can be secured to some extent, and conductive metals with solidus temperatures or liquidus temperatures higher than these have excellent soldering heat resistance. I understand that it becomes a thing.

発明の効果 以上のように本発明によれば、一定の範囲の固相温度及
び液相温度を有する合金を0.1−径程度に細線化し、
これを一定の長さが確保できるように端子間隔をとり、
この間に一定の長さの上記導電性金属合金を接続し、こ
の時の端子金属としては先に示した熱伝導率の小さい金
属を用いて、更には、外装する樹脂にはできるだけ熱伝
導率の小さいものを用いて、導電性金属に密着するよう
、モールド外装することによって、耐振性の優れた、溶
断特性の優れた、半田耐熱性の優れた、角型のチップ状
ヒユーズを容易に安価に生産することができ、且つ、今
後の電子部品の小型化指向に対して、又はチップ化指向
に対して、マツチさせることのできる小型のヒ、−−ズ
を作ることができ、電子機器の小型化に寄与するところ
が犬でちる。
Effects of the Invention As described above, according to the present invention, an alloy having a solidus temperature and a liquidus temperature within a certain range is thinned to about 0.1-diameter,
The terminals are spaced so that a certain length can be secured.
Connect a certain length of the above conductive metal alloy between them, use the metal with low thermal conductivity shown earlier as the terminal metal, and also make sure that the resin for the exterior has as high a thermal conductivity as possible. By using small pieces and molding them so that they adhere closely to conductive metal, we can easily and inexpensively produce square chip-shaped fuses with excellent vibration resistance, excellent fusing characteristics, and excellent soldering heat resistance. It is possible to create small-sized fuses that can be produced and match the future trend toward miniaturization of electronic components or toward chipping, and the miniaturization of electronic devices. Inu chiru contributes to this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるチップ状ヒユーズを示す図で(a
)は内部斜視図、(b)は内部断面図、(C) vi底
面図、第2図、第3図、第4図はチップヒユーズの溶断
特性を示す図である。 1・・・導電性金属、2,3・・・薄板状端子、4・・
・外装樹脂、5・・・凹部、6・・・凸部、7・・・外
部端子と導電性金属との接続部。
FIG. 1 is a diagram showing a chip-shaped fuse according to the present invention (a
) is an internal perspective view, (b) is an internal sectional view, (C) is a bottom view, and FIGS. 2, 3, and 4 are diagrams showing the fusing characteristics of the chip fuse. 1... Conductive metal, 2, 3... Thin plate terminal, 4...
- Exterior resin, 5... Concave portion, 6... Convex portion, 7... Connection portion between external terminal and conductive metal.

Claims (5)

【特許請求の範囲】[Claims] (1)導電性金属線又は金属板を樹脂モールド外装して
、本体°を絶縁して両端部よシ薄板状金属板端子を引出
し、本体底面部で内側に折曲げ加工されたチップ状ヒー
ーズ部品において、導電性金属に固相温度が200〜2
40℃、液相温度が230〜280℃となる錫、錫−鉛
合金、錫−アンチモン合金、鉛−インノユーム合金、鉛
−アンチモン合金、又は錫−IN合金を主体とする金属
を用いることを特徴とする角型チップ状ヒユーズ部品。
(1) A chip-shaped heats component in which a conductive metal wire or metal plate is coated with a resin mold, the main body is insulated, thin metal plate terminals are drawn out from both ends, and the terminals are bent inward at the bottom of the main body. , the conductive metal has a solidus temperature of 200 to 2
It is characterized by using a metal mainly composed of tin, tin-lead alloy, tin-antimony alloy, lead-innoyum alloy, lead-antimony alloy, or tin-IN alloy, which has a liquidus temperature of 40°C and 230 to 280°C. A square chip-shaped fuse component.
(2)導電性金属として、鉛(75wt%)−インシ−
ム(25wt%)を主体とする合金、鉛(81wt%)
−インジューム(19wt%)を主体とする合金、鉛(
90wt%)−アンチモン(10wt%)を主体とする
合金。 鉛(85wt%)−アンチモン(15wt%)を主体と
する合金、錫(95wtチ)−銀(5wt%)を主体と
する合金。 錫(96,5wt%)−アンチモン(3,5wt%)を
主体とする合金、又は錫(95wt%)−アンチモン(
5wtlr)を主体とする合金を用いることを特徴とす
る特許請求の範囲第(1)項記載の角型テッゾ状ヒユー
ズ部品。
(2) As a conductive metal, lead (75 wt%)
alloy mainly composed of aluminum (25wt%), lead (81wt%)
- Alloy mainly composed of indium (19wt%), lead (
90wt%) - an alloy based on antimony (10wt%). An alloy mainly composed of lead (85wt%) and antimony (15wt%), and an alloy mainly composed of tin (95wt%) and silver (5wt%). An alloy mainly composed of tin (96.5 wt%) - antimony (3.5 wt%) or tin (95 wt%) - antimony (
The rectangular Tezzo-shaped fuse component according to claim (1), characterized in that an alloy mainly composed of 5wtlr) is used.
(3)外部端子となる金属薄板には、鉄又は鉄−ニッケ
ル合金、又はニッケルなどの金属の表面に錫又は半田メ
ッキした熱伝導率が0.54℃、8eC,Cm以下の材
料を用い該外部端子となる金属薄板をも一部包むように
、導電性金属に密着させで、且つ、外部端子が本体高さ
く厚み)方向に対して、中央よシ上部の両端よシ引出さ
れるように樹脂モールド外装し11両端側面でほぼ直角
に下方向に折曲げられ、更に底面にて内側にほぼ直角に
折曲げられていることを特徴とする特許請求の範囲第(
1)項又は第2項記載の角型チップ状ヒユーズ部品。
(3) For the thin metal plate that will serve as the external terminal, use iron or iron-nickel alloy, or a material such as nickel plated with tin or solder that has a thermal conductivity of 0.54°C, 8eC, or less. The resin is placed in close contact with the conductive metal so as to partially wrap the thin metal plate that will become the external terminal, and the external terminal is pulled out from the center to both ends of the top in the direction of the height and thickness of the main body. Claim No. 1, characterized in that the mold exterior 11 is bent downward at substantially right angles at both end sides, and further bent inward at substantially right angles at the bottom surface.
The square chip-shaped fuse component according to item 1) or item 2.
(4)外装樹脂に熱伝導率15 X I 0−4ayl
/’C,sec、ctn以下のものを用いることを特徴
とする特徴請求の範囲第(1)項、第(2)項又は第(
3)項記載の角型チラノ′状ヒユーズ部品。
(4) Thermal conductivity of the exterior resin is 15 X I 0-4 ayl
/'C, sec, ctn or less.
Square type tyranno' shaped fuse part described in 3).
(5)外部端子となる薄板状コム端子の導電性金属線、
又は板との接続部をT字型に加工して、いることを特徴
とする特許請求の範囲第(1)項記載の角型チラノ状ヒ
=−ズ部品。
(5) A conductive metal wire of a thin plate comb terminal that serves as an external terminal;
Or, the rectangular tyranno-shaped heat component according to claim (1), characterized in that the connecting portion with the plate is processed into a T-shape.
JP57190773A 1982-11-01 1982-11-01 Square chip-shaped fuse parts Expired - Lifetime JPH0736315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57190773A JPH0736315B2 (en) 1982-11-01 1982-11-01 Square chip-shaped fuse parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57190773A JPH0736315B2 (en) 1982-11-01 1982-11-01 Square chip-shaped fuse parts

Publications (2)

Publication Number Publication Date
JPS5981828A true JPS5981828A (en) 1984-05-11
JPH0736315B2 JPH0736315B2 (en) 1995-04-19

Family

ID=16263481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190773A Expired - Lifetime JPH0736315B2 (en) 1982-11-01 1982-11-01 Square chip-shaped fuse parts

Country Status (1)

Country Link
JP (1) JPH0736315B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262438A (en) * 1987-04-21 1988-10-28 Sumitomo Electric Ind Ltd Conductor for fuse
JPH0214751U (en) * 1988-07-15 1990-01-30
US5262751A (en) * 1991-12-12 1993-11-16 Yazaki Corporation Fuse
JPH0650377U (en) * 1992-08-05 1994-07-08 新電元工業株式会社 Surface mount type jumper parts
JP2009158490A (en) * 2009-03-16 2009-07-16 Sony Chemical & Information Device Corp Protection element
JP2010170890A (en) * 2009-01-23 2010-08-05 Yazaki Corp Fusible link
CN102468091A (en) * 2010-11-16 2012-05-23 邱鸿智 Fuse

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692347U (en) * 1979-12-17 1981-07-23
JPS5787456U (en) * 1980-11-19 1982-05-29

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692347U (en) * 1979-12-17 1981-07-23
JPS5787456U (en) * 1980-11-19 1982-05-29

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262438A (en) * 1987-04-21 1988-10-28 Sumitomo Electric Ind Ltd Conductor for fuse
JP2529255B2 (en) * 1987-04-21 1996-08-28 住友電気工業株式会社 Fuse conductor
JPH0214751U (en) * 1988-07-15 1990-01-30
JPH0433631Y2 (en) * 1988-07-15 1992-08-12
US5262751A (en) * 1991-12-12 1993-11-16 Yazaki Corporation Fuse
JPH0650377U (en) * 1992-08-05 1994-07-08 新電元工業株式会社 Surface mount type jumper parts
JP2010170890A (en) * 2009-01-23 2010-08-05 Yazaki Corp Fusible link
JP2009158490A (en) * 2009-03-16 2009-07-16 Sony Chemical & Information Device Corp Protection element
CN102468091A (en) * 2010-11-16 2012-05-23 邱鸿智 Fuse

Also Published As

Publication number Publication date
JPH0736315B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US4224656A (en) Fused electrolytic capacitor assembly
JPS63141233A (en) Chip type fuse
US5402307A (en) Electronic component having fuse wire
JPH0810716B2 (en) Electronic package
US4988969A (en) Higher current carrying capacity 250V subminiature fuse
JPH06504875A (en) Flat type fuse for high rated current
JPS5981828A (en) Square chip type fuse part
CN106663574A (en) Chip fuse and fuse element
JP2819408B2 (en) Alloy type temperature fuse
US5126511A (en) Copper cored enclosures for hybrid circuits
JP2627532B2 (en) Brazing material
JPS61124071A (en) Electric connector
CN212907259U (en) Novel thermal protection piezoresistor
JP2003016894A (en) Thermal fuse and electronic equipment using the same
JPH0620891A (en) Solid-state electrolytic capacitor
JPS58142505A (en) Overload fusion resistor
JP2686548B2 (en) Brazing material
JP4435439B2 (en) Method for mounting fuse element and fuse built-in electric component
JPS58192236A (en) Fuse
KR100362749B1 (en) SMD Super microfuse & Manufacturing Method
JPH0622093B2 (en) Substrate type thermal fuse and resistor and method of manufacturing the same
JPH0622092B2 (en) Substrate type thermal fuse and manufacturing method thereof
JP2572746Y2 (en) Power type surface mount resistor
JPH0353780B2 (en)
JPS6136942A (en) Apparatus for electronic part