JPS5979507A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS5979507A
JPS5979507A JP57190475A JP19047582A JPS5979507A JP S5979507 A JPS5979507 A JP S5979507A JP 57190475 A JP57190475 A JP 57190475A JP 19047582 A JP19047582 A JP 19047582A JP S5979507 A JPS5979507 A JP S5979507A
Authority
JP
Japan
Prior art keywords
film
target
recording medium
magnetic recording
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57190475A
Other languages
Japanese (ja)
Inventor
Mamoru Sugimoto
守 杉本
Satoshi Nehashi
聡 根橋
Akihiko Kawachi
河内 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57190475A priority Critical patent/JPS5979507A/en
Publication of JPS5979507A publication Critical patent/JPS5979507A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve an output power and resolution of a high density magnetic recording medium by a method wherein one of titanium, vanadium, manganese and copper is added to Co-Os system as the third element so that crystalline particles are magnetically separated each other. CONSTITUTION:A vertical magnetic recording medium is made by adding one of titanium, vanadium, manganese and copper to cobalt and osmium. To make this, an equipment such as a facing target direction sputtering equipment or a magnetron sputtering equipment is used. In the case of the facing target method, a Co-Os two-element target 1 and a DC source 2 and a Co-Os-Mn three-element target 3 facing the target 1 and a DC source 4 are provided and a prescribed magnetic field is generated between two facing targets. A magnet 6 is provided outside a bell-jar of this equipment to prevent a substrate 5 from being exposed to plasma. Thus a tape for video recorder is produced and its crystalline particles are magnetically separated each other so that an output power and the resolution of the tape are improved.

Description

【発明の詳細な説明】 本発明は、磁気記録材料、よシ詳しく述べるならば、コ
バルト・オスミウム垂直磁気記録媒体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to magnetic recording materials, and more particularly to cobalt osmium perpendicular magnetic recording media.

磁気記録媒体は、コンピューターの記憶装置に用いられ
一般に記録媒体の長手方向に磁化させている。しかしな
がらこのような磁化方式では記録密度の高密度化に限界
があり、はるかに高密度化が可能となる記録媒体の面に
垂直な方向に磁化する方式が提案されている。そして、
磁性薄膜に対して垂直方向に磁化可能な垂直磁気記録に
はコバルト・オスミウム(c6−08と略記する)が使
用され、スパッタリングによって基板上に薄膜を形成し
ている。垂直記録媒体の作成には、膜面垂直方向の反磁
界に打ち勝つ垂直磁気異方性を付与することが必要であ
る。最密六方晶コバルトはC軸方向に大きい結晶磁気異
方性を有しているが、磁化が大きいために形状磁気異方
性エネルギーが犬きく、垂直磁気異方性膜は得られない
。そのため、オスミウムC以下08と略す)を添加する
ことによシ飽和磁化を減少させると共に、最密六方晶の
C軸を基板垂直方向に強く配向させることによシ、垂直
磁気異方性膜を作成することが可能になる。
Magnetic recording media are used in computer storage devices and are generally magnetized in the longitudinal direction of the recording medium. However, such a magnetization method has a limit in increasing the recording density, and a method has been proposed in which magnetization is performed in a direction perpendicular to the surface of the recording medium, which makes it possible to achieve a much higher density. and,
Cobalt osmium (abbreviated as C6-08) is used for perpendicular magnetic recording that can be magnetized perpendicularly to a magnetic thin film, and a thin film is formed on a substrate by sputtering. To create a perpendicular recording medium, it is necessary to provide perpendicular magnetic anisotropy that overcomes the demagnetizing field in the direction perpendicular to the film surface. Close-packed hexagonal cobalt has large magnetocrystalline anisotropy in the C-axis direction, but because of its large magnetization, the shape magnetic anisotropy energy is too high, making it impossible to obtain a perpendicular magnetic anisotropic film. Therefore, by adding osmium C (hereinafter abbreviated as 08), the saturation magnetization is reduced, and by strongly aligning the C axis of the close-packed hexagonal crystal in the direction perpendicular to the substrate, a perpendicular magnetic anisotropic film is created. It becomes possible to create.

ところが、超高密度磁気記録を実現させた場合、1つの
ビットにおける減磁界は、薄膜時の最大の減磁界4πM
s (Msは飽和磁化)よシ相当減る筈であシ、必ずし
も Ku > 2πMs”(Kuは磁化膜の結晶異方性定数
である)の条件を満たす必要はないと考えられる。
However, when ultra-high-density magnetic recording is realized, the demagnetizing field for one bit is the maximum demagnetizing field for thin films, 4πM.
s (Ms is the saturation magnetization), and it is not necessarily necessary to satisfy the condition "Ku >2πMs" (Ku is the crystal anisotropy constant of the magnetized film).

一方、co −08垂直磁化膜は、バルクの場合コバル
トの飽和磁化が、08含有量が増えるに従い、直線的に
減少するのに対しその直線よりやや高い飽和磁化の減少
傾向を示している事がら、結晶粒界に08が偏析してい
ることが予想され、最近、膜の断面のオージェ電子分光
分析によって実証された。つまシ、飽和磁化を下げ減磁
界を小さくするために、結晶粒中に適度[Osが混入す
ることと、結晶粒界にO8が偏析し非磁性層を形成する
ことによって、磁壁移動による磁化機構を減少させ、結
晶粒間を磁気的に分離させて単磁区粒子の磁化回転のみ
にすることが、理想的な垂直磁気記録媒体と考えられる
On the other hand, in the case of the co-08 perpendicular magnetization film, the saturation magnetization of cobalt in the bulk decreases linearly as the 08 content increases, but the saturation magnetization decreases slightly higher than the straight line. , it is predicted that 08 is segregated at grain boundaries, and this was recently demonstrated by Auger electron spectroscopy analysis of a cross section of the film. In order to lower the saturation magnetization and reduce the demagnetizing field, a moderate amount of [Os] is mixed into the crystal grains, and O8 is segregated at the grain boundaries to form a nonmagnetic layer, thereby increasing the magnetization mechanism due to domain wall movement. An ideal perpendicular magnetic recording medium is considered to be one in which the magnetic field is reduced and the crystal grains are magnetically separated so that only the magnetization rotation of single domain grains occurs.

従来のc、)  os垂直磁化記録媒体は、膜の垂直異
方性(特にここでは垂直異方性磁界Hkで表わす。)を
上げると垂直方向の保磁力Hc(llも上昇してしまう
。4インチCOターゲットにcrベレットをおいて12
.5μm厚のポリイミドKRFマグネトロンスパッタ形
成させた例を以下1c記す。
In conventional c,) os perpendicular magnetization recording media, when the perpendicular anisotropy of the film (particularly represented here by the perpendicular anisotropy magnetic field Hk) is increased, the perpendicular coercive force Hc (ll) also increases.4 Place a CR pellet on an inch CO target and 12
.. An example in which polyimide KRF magnetron sputtering was formed to a thickness of 5 μm is described below in 1c.

例1 初期真空度  3 X HV”Torr投入電力
   IKV 70雇 時間     1 hour における膜特性は 例2 初期真空度  3.5 X 10−”torr投
入電力   2KV 127771A時間     1
0m1n における膜特性は であった。こhは投入電力を変えた場合の例であるが、
基板加熱した場合も同様の傾向を示す。っ1シ、熱が膜
形成時にかかることによって、保磁力Hcも異方性磁界
Hkも上昇する。ところがこれは現実に非常に不都合で
ある。垂直記録媒体はfU2  初期真空度  3.5
 X 1(l  torr投入電力   2KV 12
7蕎 時間     10m1n における膜特性は であった。これは投入電力を変えた場合の例であるが、
基板加熱した場合り同様の傾向を示す。っま9、熱が膜
形成時にかかることによって、保磁力H,も異方性磁界
Hkも上昇する。ところがこれは現実に非常に不都合で
ある。垂直記録媒体は例2のように、高H&が当然望ま
しいのであるがHc (11が大きくなシすぎると、フ
ェツイト、パーマロイ、センダスト、アモルファス軟磁
性体等ヲ用いた磁気ヘッドでll−を飽和させる為に、
ヘッドに流す電流を非常に大きくしなければ在らない。
Example 1 Initial degree of vacuum 3.5 X HV" Torr Input power IKV 70 hours 1 hour Example 2 Initial degree of vacuum 3.5 X 10-" Torr Input power 2KV 127771A hours 1
The film properties at 0 m1n were as follows. This is an example of changing the input power,
A similar tendency is shown when the substrate is heated. First, as heat is applied during film formation, both the coercive force Hc and the anisotropic magnetic field Hk increase. However, this is actually very inconvenient. Perpendicular recording medium has fU2 initial degree of vacuum 3.5
X 1 (l torr input power 2KV 12
The film properties at 10 m1n for 7 hours were as follows. This is an example of changing the input power,
A similar tendency is shown when the substrate is heated. 9. As heat is applied during film formation, both the coercive force H and the anisotropic magnetic field Hk increase. However, this is actually very inconvenient. For perpendicular recording media, it is naturally desirable to have a high H& as in Example 2, but if Hc (11) is too large, a magnetic head using fetzite, permalloy, sendust, amorphous soft magnetic material, etc. will saturate ll-. For the sake of
This is not possible unless the current flowing through the head is extremely large.

たとえ、飽和記録できても消去が困難であったり、オー
バーフィト特性が劣化してしまうという欠点が生じる。
Even if saturation recording is possible, there are drawbacks such as difficulty in erasing and deterioration of overfit characteristics.

一方、例1のような場合には書き込み電流及び、オーバ
フィトの特性は改善されるが、垂直磁気記録の本来の垂
直異方性磁界が小であるため、高密度記録における磁化
反転がシャープでなく記録密度特性が悪化してしまう。
On the other hand, in a case like Example 1, the write current and overfit characteristics are improved, but because the original perpendicular anisotropy field of perpendicular magnetic recording is small, the magnetization reversal in high-density recording is not sharp. Recording density characteristics deteriorate.

本発明はかかる点を鑑み、cm −03系に更に第三元
素としてチタニウム、バナジウム、マンガン、銅のうち
少なくとも一種を添加することによりこれらの難点を解
決したものである。
In view of these points, the present invention solves these difficulties by further adding at least one of titanium, vanadium, manganese, and copper as a third element to the cm-03 system.

本発明の目的は、結晶粒間を磁気的に分離させ超高密度
磁気記録媒体を提供することにある。
An object of the present invention is to provide an ultra-high density magnetic recording medium in which crystal grains are magnetically separated.

本発明の他の目的は、IQQKFRP工以上の超高密度
磁気記録における出力及び分解能を飛躍的に高めること
にある。
Another object of the present invention is to dramatically increase the output and resolution in ultra-high density magnetic recording of IQQKFRP technology or higher.

本発明(,4GO−(J8 K更に10重量%(以下w
t%と略す)までのチタニウム(以下Tiと略す)、バ
ナジウム(以下Vと略す〕、マンガンC以下M、Nと略
す)、銅(以下Ciと略す)のうち少なくとも一種を加
えることによシ明らかに効果を発揮する。
The present invention (,4GO-(J8K) further contains 10% by weight (hereinafter w
By adding at least one of titanium (hereinafter abbreviated as Ti), vanadium (hereinafter abbreviated as V), manganese (hereinafter abbreviated as M and N), and copper (hereinafter abbreviated as Ci) up to clearly effective.

Ti 、 V 、 Mn 、 C1L(7)添加量が1
(l wt%を超えると膜の結晶性が著しく低下し、膜
の垂直磁気異方性が急激におちる。従来Co−082元
素では、O8が12〜30wt%の範囲で磁気特性、結
晶配向とも良好であるとされていたが、本発明のTz 
、 v 、 M?Z、 (44添加によって08量の下
限が広が9二元素の場合よシも良い特性を示した。第1
図に本発明の効果を示す。図中の数字は、Co中のO8
とTi、V、Mn、Cuの含有量を重量%で表示した。
Ti, V, Mn, C1L (7) addition amount is 1
(If it exceeds 1 wt%, the crystallinity of the film will drop significantly, and the perpendicular magnetic anisotropy of the film will drop sharply.) Conventionally, in the Co-082 element, when O8 is in the range of 12 to 30 wt%, both magnetic properties and crystal orientation decrease. Although it was considered to be good, the Tz of the present invention
, v, M? Z, (By adding 44, the lower limit of 08 amount was widened and showed better characteristics than in the case of 92 elements.
The figure shows the effects of the present invention. The numbers in the figure are O8 in Co.
The contents of Ti, V, Mn, and Cu are expressed in weight%.

斜線部が本発明によって垂直磁気異方性が改善された領
域でその他は本発明の効果を示さkい領域である。
The shaded area is the area where the perpendicular magnetic anisotropy has been improved by the present invention, and the other areas are areas where the effect of the present invention is less apparent.

具体例として、DCスパッタ、RFスバビタ。Specific examples include DC sputtering and RF sputtering.

マグネトロンスパッタ、対向ターゲット方式スパッタ、
イオンビームスパッタ、イオンブレーティング、電子ビ
ーム蒸着、メッキ等薄膜作製法あるいは、ポリエチレン
テレフタヲート、ポリイミド、ガヲス、アルマイト処理
したアルミ基板等の基板材質にかかわらず、本発明のT
’ T VI Mn#Cu、添加効果がある。一般に、
垂直磁気記録媒体として垂直磁気記録層単層の場合とそ
の下に裏打ち層として高透磁率層の材質、例えばパーマ
ロイ、Co系、Fe系、アモルファス高透磁、率薄膜を
各種変更しても成り立つ。
Magnetron sputtering, facing target sputtering,
Regardless of the thin film production method such as ion beam sputtering, ion blating, electron beam evaporation, or plating, or the substrate material such as polyethylene terephthalate, polyimide, Gawas, or alumite-treated aluminum substrate, the T of the present invention can be used.
'TVI Mn#Cu has an additive effect. in general,
In the case of a single perpendicular magnetic recording layer as a perpendicular magnetic recording medium, various changes can be made in the material of the high permeability layer as an underlayer, such as permalloy, Co-based, Fe-based, amorphous high permeability, and high-permeability thin film. .

以下、実施例に基いて、本発明を説明する。The present invention will be explained below based on Examples.

実施例1 ポリイミド基板にRF電源でCQ −08及び、CO−
OS −T i垂直磁化膜を形成した。ターゲットは、
Co−13wt%08r co −16wtチOs  
、 C。
Example 1 CQ-08 and CO- were applied to a polyimide substrate using an RF power supply.
An OS-Ti perpendicular magnetization film was formed. The target is
Co-13wt%08r co-16wtOs
,C.

−20wt%08と、3種類のc o−o s合金ター
ゲットを用いた。CooB−T6三元素垂直磁化膜につ
いては、C0−08合金ターゲツト上に、5X 5 X
 1 mzサイズのTiベレットを分布が均一になるよ
うに配置して各種のTi量の薄膜を作製した。
-20wt%08 and three types of CO-OS alloy targets were used. For CooB-T6 ternary perpendicular magnetization film, 5X 5X
Ti pellets of 1 mz size were arranged so that the distribution was uniform, and thin films with various amounts of Ti were produced.

各成分の含有量はXMAにて定量を行った。The content of each component was determined by XMA.

スパッタ条件 スパッタ前にペルジャーのベーキング及び、ポリイミド
基板のガス出しを行った。スパッタ中は基板ホルダーを
水冷した。スパッタ時間は、15分で膜厚は約0.6μ
mであった。
Sputtering conditions Prior to sputtering, Pelger baking was performed and the polyimide substrate was degassed. The substrate holder was water-cooled during sputtering. The sputtering time was 15 minutes and the film thickness was approximately 0.6μ.
It was m.

この結果10 wt%までのTiを添加することにより
、垂直磁気異方性が約3C)%向上した。
As a result, by adding up to 10 wt% of Ti, the perpendicular magnetic anisotropy was improved by about 3 C)%.

又08量を増加させると異方性磁界Hkが最大となるT
i量は少なくなった。更にTi量が10wt%を超える
と結晶配向性は急速に悪化すると共に、垂直磁気異方性
も急激に低くなった。
Also, when the amount of 08 is increased, the anisotropic magnetic field Hk becomes maximum T
The amount of i has decreased. Furthermore, when the amount of Ti exceeded 10 wt%, the crystal orientation deteriorated rapidly and the perpendicular magnetic anisotropy also decreased rapidly.

実施例2 電子ビーム蒸発源を三個備え、基板と電子ビーム蒸発源
の間に高周波を印加するコイルを備えたイオンブレーテ
ィング装置によシポリイミドテープに+: O−IJ 
8− Cu三元系メディアを作製した。
Example 2 A polyimide tape was coated with an ion blating device equipped with three electron beam evaporation sources and a coil for applying high frequency between the substrate and the electron beam evaporation source: O-IJ
8-Cu ternary media was produced.

各電子ビーム蒸発源にはそれぞれco、as。Each electron beam evaporation source has co and as, respectively.

Cttを充填した各電子ビームのノくワーをコントロー
ルすることによシ付着膜の組成を変えることが可能であ
る。成膜速度は約5000λ/secであった。
By controlling the nozzle of each Ctt-filled electron beam, it is possible to change the composition of the deposited film. The film formation rate was approximately 5000λ/sec.

実験はcmと08の蒸発源のパワーの比を三段階に変更
して生成膜のCoと08の重量比が90:10,85:
15,80:20のものに対してCuのパワーを変動さ
せて三種の元素を変更した。
In the experiment, the power ratio of the evaporation source of cm and 08 was changed in three stages, and the weight ratio of Co and 08 in the produced film was 90:10, 85:
Three types of elements were changed by varying the power of Cu for the 15, 80:20 one.

いずれの場合においてもC1tの量が10wt%を越え
るとHkは急激に低下した。その様子を第2図に示す。
In any case, when the amount of C1t exceeded 10 wt%, Hk decreased rapidly. The situation is shown in Figure 2.

○印はCOとO8の比が90:10.△印はCQと08
の比が85:15.X印はcmと08の比が80:20
である。
The circle indicates that the ratio of CO and O8 is 90:10. △ mark is CQ and 08
The ratio is 85:15. The X mark has a ratio of cm to 08 of 80:20.
It is.

実施例3 対向ターゲット方式スパッタ装置を用い、ビデオ用テー
プを作製し画像処理を行った。
Example 3 A video tape was produced and image processed using a facing target sputtering device.

第3図に対向ターゲット方式スパッタ装置の概略図を示
す。c、)  O7l二元素ターゲット1と専用の直流
電源(以下DC電源と記、す)2とそれに対向して設け
られたco−08−Kn三元素ターゲット3と専用のD
C電源4からなシ、この対向したターゲット間に約30
0ガウスの磁界を発生させ、基板5がプラズマにさらさ
れないようにペルジャーの外側に電磁石6を備えた構成
である。
FIG. 3 shows a schematic diagram of a facing target type sputtering apparatus. c,) O7l two-element target 1, a dedicated DC power supply (hereinafter referred to as DC power supply) 2, a co-08-Kn three-element target 3 provided opposite thereto, and a dedicated D
From C power supply 4, there is about 30 mm between these opposing targets.
It generates a magnetic field of 0 Gauss and includes an electromagnet 6 outside the Pelger so that the substrate 5 is not exposed to plasma.

基板5は、ロール方式で巻き取れるように設計してあシ
、後方の加熱及び水冷可能な基板ホルダー7及びそれと
連動したガイド棒によって上下に可動になっている。
The substrate 5 is designed to be rolled up in a roll manner, and is movable up and down by a substrate holder 7 at the rear that can be heated and cooled by water, and a guide rod interlocked with the substrate holder 7.

スパッタ条件 この対向ターゲット方式スパッタ装置は、それぞれの電
極に電源を独立に設けているため、C0−08膜中のM
n量を変えるにはそれぞれターゲットに加えるパワーを
変えればよく、パワーを変えたことによる膜厚分布の変
動は、基板ホルダー及び基板の上下によって制御した。
Sputtering conditions This facing target type sputtering equipment has an independent power supply for each electrode, so the M in the C0-08 film
To change the amount of n, it was sufficient to change the power applied to each target, and the variation in film thickness distribution due to changing the power was controlled by the substrate holder and the upper and lower positions of the substrate.

第4図に、Mn量を変えたときの△θ50と、Hkの変
化を示す。)i nが1011rtチ以下の範囲では、
HkがMn添加によって急激に上昇している。ただしM
 71が01w6%以上添加されると△θ5゜が異常に
犬となり結晶性及びその配向性が悪化したと思われる。
FIG. 4 shows changes in Δθ50 and Hk when the amount of Mn is changed. ) in the range of 1011rt or less,
Hk increases rapidly due to Mn addition. However, M
When 01w6% or more of 71 was added, △θ5° became abnormally large, and the crystallinity and its orientation seemed to deteriorate.

第4図は、第2図の傾向と全く同様であシ、膜形成装置
及び、基板による差はない。
The tendency in FIG. 4 is exactly the same as that in FIG. 2, and there is no difference depending on the film forming apparatus and substrate.

実施例4 カウフマン型イオン源から引き出されたアルゴンイオン
ビームをターゲットに照射するイオンビームスパッタ装
置を用いガラス基板上にGo−08V三元系メディアを
作製した。
Example 4 Go-08V ternary media was fabricated on a glass substrate using an ion beam sputtering device that irradiates a target with an argon ion beam extracted from a Kauffman type ion source.

G O−Hl wt%@寥、 Co−15wt%f3 
s 、 Co −20wt%ΩBの三種のターゲット上
に5rRs角で厚さ1yJのバナジウムベレットを載せ
てイオンビームを照射し、スパッタした。バナジウムベ
レットの個数及び配置にょシガヲス基板上に付着するC
、)−Q8  Vの組成が変った。いずれのターゲット
を用いた場合でもバナジウムが微量浸入することによシ
結晶配向性及び垂直異方性磁界が向上するが、バナジウ
ムの量が10 wt%を越えると結晶配向性及び垂直異
方性磁界のいずれも極端に悪化した。
G O-Hl wt%@寥, Co-15wt%f3
A vanadium pellet having a thickness of 1 yJ and an angle of 5 rRs was placed on three types of targets: s, Co-20 wt% ΩB, and ion beam irradiation was performed to perform sputtering. Due to the number and arrangement of vanadium pellets, C adhering to the substrate
, )-Q8 The composition of V has changed. Regardless of which target is used, the crystal orientation and perpendicular anisotropy magnetic field are improved by the infiltration of a small amount of vanadium, but when the amount of vanadium exceeds 10 wt%, the crystal orientation and perpendicular anisotropy magnetic field are improved. Both conditions deteriorated significantly.

実施例5 前記8インチマグネトロンスパッタ装置を用い、記録再
生評価用5インチフロッピーメディアを作製した。本ス
パッタ装置は、3基の8インチターゲットを備えておシ
、電極IKは、coメタ−ゲット上膜組成がCQs5z
r15 (重量%表示〕となるようにzrベレットを置
いたもの、電極2には、Co−16wt%o、ターゲッ
ト、電極3には、c。
Example 5 Using the 8-inch magnetron sputtering apparatus described above, a 5-inch floppy medium for recording/reproduction evaluation was produced. This sputtering equipment is equipped with three 8-inch targets, and the electrode IK has a co-metal target film composition of CQs5z.
A ZR pellet was placed so that r15 (in weight %) was placed, electrode 2 had Co-16 wt% o, target, and electrode 3 had c.

−16wt%08ターゲツト上にTiベレットを膜組成
が(Coa13 ass )e6T i 4となるよう
に配置した。
A Ti pellet was placed on the -16wt%08 target so that the film composition was (Coal3ass)e6Ti4.

基板は、50μm厚ポリエチレンテレンタヲートを用い
た。一般にPETとか、マイラといわれているものであ
シ、耐熱性に乏しいため、DC電源にょシ膜を形成した
。スパッタの順序としては、別々の基板にCo55 z
r15膜を0.3μm同一条件で形成後一つの基板には
、Co84os16膜を0゜6μm別の基板には、(C
olI4Q als )eaT i 4 Mを0.61
1m作製した。
The substrate used was 50 μm thick polyethylene terrestrial wood. Generally, PET or Mylar is used, and since it has poor heat resistance, a film was formed on the DC power supply. The sputtering order is Co55 z on separate substrates.
After forming an r15 film of 0.3 μm under the same conditions, a Co84os16 film of 0.6 μm was formed on one substrate and a (C
olI4Q als )eaT i 4 M 0.61
1m was made.

後でメディアにソリがないように反対面にも同一条件で
膜を形成した。
Later, a film was formed on the opposite side under the same conditions to prevent warping of the media.

スパッタ条件 第5図に、本実施例によって作製したメディアの構成を
示す。メディアAは、犯μmマイヲ8の両面に0.3μ
m厚のCo55z?”I5アモルファス軟磁性膜9と0
.6μm厚のC01140816垂直磁化膜工0を形成
したものであり、メディアBは、5o7Imマイヲ8の
両面に0.3μm厚のCoss zr15アモルファス
軟磁性膜9と0.6μm厚の(Couf3516)%T
i<垂直磁化膜11を形成したものである。
Sputtering Conditions FIG. 5 shows the structure of the media produced according to this example. Media A is 0.3μ on both sides of the criminal μm Myo8.
m thickness Co55z? "I5 amorphous soft magnetic film 9 and 0
.. A 6 μm thick C01140816 perpendicular magnetization film 0 is formed on both sides of the 5o7Im micro 8. Media B has a 0.3 μm thick Coss ZR15 amorphous soft magnetic film 9 and a 0.6 μm thick (Couf3516)%T film on both sides of the 5o7Im micro 8.
i<perpendicularly magnetized film 11 is formed.

メディアAとメディアBを、1.3μm厚パーマロイ主
磁極−補助磁極タイブヘッドで記録再生したときの記録
密度特性を第6図に示す。第6図は両対数グラフ上でプ
ロットしである。縦軸は、相対出力、横軸は記録密度を
(KFRPI)の単位で記しである。同図から、メディ
アBの方が、セカンドビーク・サードビークの出力がか
なり大きくなっている。このことは、C0−o5膜にT
Z’を添加したc(、−os−Tz三元素垂直磁化膜が
、実用上においても、cQ−08二元素膜よシも優れて
おり、100KFRP工以上の超高密度磁気配録を十分
可能ならしめうる。
FIG. 6 shows the recording density characteristics when recording and reproducing media A and B using a 1.3 μm thick permalloy main pole-auxiliary pole type head. FIG. 6 is plotted on a log-log graph. The vertical axis represents relative output, and the horizontal axis represents recording density in units of (KFRPI). From the figure, the second beak and third beak outputs of media B are considerably larger. This means that T in the C0-o5 film
The Z'-doped c(,-os-Tz three-element perpendicular magnetization film is superior to the cQ-08 two-element film in practice, and is fully capable of ultra-high-density magnetic alignment of 100 KFRP or higher). It can be learned.

実施例6 8インチターゲットを有するマグネトロンスパッタ装置
を用い、5インチのアルマイト処理したプルミディスク
上に、非磁性アモルファスC050Ta5(1(重量%
)を0.5μm形成させ、ディスクCにばC08408
!6を0.3μm、ディスクDには(Co8<08 +
s )96M 7L 4 をQ、3nm作製した。構成
図は、第7図に示した。0.5μm非磁性アモルファス
co5゜Tc5nを下層に設けたのは、アルマイト処理
したディスク表面の粗さを緩和させることと、その上の
C0840816と(CO840B +e )男M n
sの磁気特性を上昇させるためである。
Example 6 Non-magnetic amorphous C050Ta5 (1 (wt%)
) is formed to a thickness of 0.5 μm, and C08408 is formed on disk C.
! 6 is 0.3 μm, and disk D is (Co8<08 +
s) 96M 7L 4 was prepared with Q and 3 nm. The configuration diagram is shown in FIG. The reason for providing the 0.5 μm non-magnetic amorphous co5°Tc5n layer as the lower layer was to reduce the roughness of the alumite-treated disk surface, and to form the C0840816 and (CO840B +e) male M n on it.
This is to improve the magnetic properties of s.

上記2種のディスクを用い、5インチウインチェスター
ディスクドフィブで記録再生を行った。
Recording and reproduction were performed on a 5-inch Winchester Disc DoFib using the above two types of discs.

浮上量を小さくするため、標準の3600rpm力・ら
11000rpに落とした。浮上量は、0.2μm程度
である。磁気ヘッドは、標準のM ?+、 −Z TL
−フェツイトでギャップは1μmであった。ディスクC
とディスクDを用いた場合の記録密度特性を第8図に示
す。
In order to reduce the flying height, the standard 3600rpm force was reduced to 11000rpm. The flying height is about 0.2 μm. Is the magnetic head a standard M? +, -Z TL
- The gap was 1 μm in fezite. Disc C
FIG. 8 shows the recording density characteristics when disc D is used.

縦軸は相対出力、横軸は記録密度C単位はKFRPI)
である。Mnを4チ添加したディスクDは、ディスクC
に較べ、セカンドピーク値で倍の出力を得ている。
The vertical axis is relative output, the horizontal axis is recording density (C unit is KFRPI)
It is. Disk D with 4 tMn added is disk C.
Compared to this, twice the output is obtained at the second peak value.

尚、本発明は前記実施例に制約され々い。C0−o  
8−Tj、Co−0S−V、C00s −Mn 、 C
O−08−Cu等の3元合金を作製しうるスパッタ以外
の他の手段、例えば、電子ビーム蒸着、メッキ、ロール
法等でも良い。また実施例2では、対向ターゲット方式
の改良装置を用いた例を挙げたが、CO−os −Cu
 3元合金で最良の垂直磁気異方性を有する成分組成が
決定されれば、対向する二個のターゲットともに同一3
元材質を用い、同一の直流もしくは為周波電源を使用す
る方式でもよい。また実施例1及び実施例3は基板を水
冷しているが、基板加熱を行うとco−08二元合金膜
は例えばHk=6800と高くなるが、Ti、V、Mn
、Cu添加によりHkは更に高くなる。
Note that the present invention is not limited to the above embodiments. C0-o
8-Tj, Co-0S-V, C00s-Mn, C
Methods other than sputtering that can produce a ternary alloy such as O-08-Cu, such as electron beam evaporation, plating, and a roll method, may also be used. In addition, in Example 2, an example was given in which an improved device of the facing target method was used, but CO-os-Cu
Once the component composition that has the best perpendicular magnetic anisotropy in a ternary alloy is determined, both of the two opposing targets have the same 3
It is also possible to use the same DC or frequency power source using the same original material. Further, in Examples 1 and 3, the substrate was water-cooled, but if the substrate was heated, the co-08 binary alloy film would have a high Hk of 6800, for example, but Ti, V, Mn
, Hk becomes even higher by adding Cu.

本発明は、以上説明したように、co−08BIAに、
Tj、V、Mi、Cuを10重量%以下含有させ、C6
−o、g二元合金における垂直磁気異方性の限界を犬き
く上回る垂直磁気記録媒体を作り出し、現在の記録密度
特性を大幅に改善した超高密反磁気記録媒体を作シ出す
ものである。
As explained above, the present invention provides co-08BIA with
Contains Tj, V, Mi, Cu at 10% by weight or less, C6
The objective is to create a perpendicular magnetic recording medium that greatly exceeds the limit of perpendicular magnetic anisotropy in -o, g binary alloys, and to create an ultra-high density diamagnetic recording medium that greatly improves current recording density characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する図である。第2図は実
施例2を説明するためのもので、CU添加量に対する異
方性磁界Hkの変化を示したもの、第3図及び第4図は
、実施例3を説明するためのもので、それぞれ装置の構
成図、M n量に対する膜特性の変化を示し、たもの、
第5図、第6図は、実施例5を説明するだめのもので、
メディアの構成図及びそれぞれのメディアの記録密度特
性、第7図、第8図は、実施例6を説明するだめのもの
で磁気ディスクの構成図及びそれぞれの磁気ディスクの
記録密度特性である。 1・・c(,08合金ターゲツト 2・・直流電源 3・・CQOBMn合金ターゲット 4・・直流電源 5・・基板 6・、・電磁石 7・・基板ホルダー 8・・マイラ(50μm) 9− e COZ 7膜(0,3μm)川・・COO8
膜(0,6μm) 11 * 脅Co O8T @膜(0,6ttm)12
・・アルミディスク(1,9+u+)13・eアルマイ
ト 14”−COT(LMCo、5μm) 15拳・COO8膜あるいは、C603M11膜(0,
3μm〕 以   上 出願人 株式会社諏訪精工舎 代理人 弁理士最 上  務 第10 Cu  (w七カ 第2図 十 第3図 M工(wt  %) 第4図 第5図 第6図 第7図
FIG. 1 is a diagram illustrating the present invention in detail. Figure 2 is for explaining Example 2, and shows the change in anisotropic magnetic field Hk with respect to the amount of CU added, and Figures 3 and 4 are for explaining Example 3. , respectively, showing the configuration diagram of the device and the change in film properties with respect to the amount of Mn.
FIG. 5 and FIG. 6 are for explaining the fifth embodiment.
The configuration diagram of the media and the recording density characteristics of each medium, FIGS. 7 and 8 are for explaining the sixth embodiment, and are the configuration diagram of the magnetic disk and the recording density characteristics of each magnetic disk. 1...c(,08 alloy target 2...DC power supply 3...CQOBMn alloy target 4...DC power supply 5...Substrate 6...Electromagnet 7...Substrate holder 8...Mylar (50μm) 9-e COZ 7 membranes (0.3μm) River...COO8
Membrane (0.6μm) 11 * Threatened Co O8T @ Membrane (0.6ttm) 12
・・Aluminum disk (1,9+u+) 13・e anodized aluminum 14”-COT (LMCo, 5 μm) 15 fist・COO8 film or C603M11 film (0,
3 μm] Applicant Suwa Seikosha Co., Ltd. Agent Patent Attorney Mogami No. 10 Cu (w7ka Figure 2 10 Figure 3 M (wt %) Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] コハルトトオスミウムに加えて、チタニウム、バナジウ
ム、マンガン、銅のうち少なくとも一種を含有すること
を特徴とする垂直磁気記録媒体。
A perpendicular magnetic recording medium characterized by containing at least one of titanium, vanadium, manganese, and copper in addition to cohardt osmium.
JP57190475A 1982-10-29 1982-10-29 Vertical magnetic recording medium Pending JPS5979507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57190475A JPS5979507A (en) 1982-10-29 1982-10-29 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57190475A JPS5979507A (en) 1982-10-29 1982-10-29 Vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5979507A true JPS5979507A (en) 1984-05-08

Family

ID=16258724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190475A Pending JPS5979507A (en) 1982-10-29 1982-10-29 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5979507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923763A (en) * 1984-11-14 1990-05-08 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923763A (en) * 1984-11-14 1990-05-08 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium

Similar Documents

Publication Publication Date Title
US5834085A (en) Grain isolated multilayer perpendicular recording medium
JPS6255208B2 (en)
JPS5965416A (en) Perpendicular magnetic recording medium
JPS5979507A (en) Vertical magnetic recording medium
JPH0230567B2 (en)
JPH0418023B2 (en)
JPS5961012A (en) Vertical magnetic recording medium
JPS5980911A (en) Vertically magnetized recording medium
JPS5965417A (en) Perpendicular magnetic recording medium
JPS5979508A (en) Vertical magnetic recording medium
JPS5980910A (en) Vertically magnetized recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JP2796058B2 (en) Magnetic recording media
JPS5980913A (en) Vertically magnetized recording medium
JPS5980909A (en) Vertically magnetized recording medium
JPS5978505A (en) Vertical magnetic recording medium
JPH056254B2 (en)
JPS5914617A (en) Vertical magnetic recording medium
JPH0570205B2 (en)
JP2824998B2 (en) Magnetic film
JPS5978506A (en) Vertical magnetic recording medium
JPH056256B2 (en)
JPS63124213A (en) Perpendicular magnetic recording medium
JPH06103555A (en) Perpendicular magnetic recording medium
JPS6184005A (en) Magnetic recording material