JPS5978569A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5978569A
JPS5978569A JP57188664A JP18866482A JPS5978569A JP S5978569 A JPS5978569 A JP S5978569A JP 57188664 A JP57188664 A JP 57188664A JP 18866482 A JP18866482 A JP 18866482A JP S5978569 A JPS5978569 A JP S5978569A
Authority
JP
Japan
Prior art keywords
receiving element
impurity
ion
implanted
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57188664A
Other languages
Japanese (ja)
Other versions
JPH0475666B2 (en
Inventor
Toshio Kimura
利夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57188664A priority Critical patent/JPS5978569A/en
Publication of JPS5978569A publication Critical patent/JPS5978569A/en
Publication of JPH0475666B2 publication Critical patent/JPH0475666B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To integrate a photo receiving element and a MOSIC in the same chip and increase the sensitivity of power of the photo receiving element by forming the specific resistance and the impurity concentration of substrates for a photo receiving element region and a MOSIC region are made different to each other and formed. CONSTITUTION:A donor impurity is selectively ion-implanted into an N type Si wafer 7, only at a MOSIC part, by using a mask 3. Next, an acceptor impurity is ion-implanted by using the mask 3 in order to form a P type WELL. At this time, ion implantation 4 is performed also at the photo receiving element part 5, thus forming a P-N junction photo diode. Successively, the impurity ion-implanted is activated, and further an impurity is driven in so that the WELL can be formed with a depth over some degree and it becomes a junction depth whereby the photo diode becomes high-sensitive. Then, the same treatment as a normal process of manufacturing a CMOS is performed.

Description

【発明の詳細な説明】 本発明は、受光素子とMOS型トランジスタを集積する
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device that integrates a light receiving element and a MOS transistor.

受光素子はILKDと対にし、機械的な変位を検出する
装置として非常に多くの分野で使用されている。しかし
、受光素子の出力が小さいため、制御信号等に用いるに
は、増巾回路が、又デジタル信号にするには、その回路
が必要となる。そこで受光素子と増巾等の回路を同一基
板上に形成した集積回路は、従来よりバイポーラIC内
に受光素子を含むことによって作られている。しかし、
パイボーラエCではMO3工Cに較べて、消費電力が大
きい、動作電源電圧範囲が狭い、動作温度範囲が狭い、
雑音余裕度が小さい、集積度が低い等の欠点を有してい
る。近年、電子機器の小型・軽量・低消費電力化が急速
に進み、さらに工Cの動作速度と集積密度が高まるにつ
れ、消費電力が過大になり、熱設計が難かしくなってき
ている。
The light receiving element is paired with an ILKD and is used in many fields as a device for detecting mechanical displacement. However, since the output of the light-receiving element is small, an amplification circuit is required to use it as a control signal, and an amplification circuit is required to convert it into a digital signal. Therefore, integrated circuits in which a light-receiving element and a circuit such as an amplifier are formed on the same substrate have conventionally been made by including the light-receiving element in a bipolar IC. but,
Compared to MO3C, Piborae C consumes more power, has a narrower operating power supply voltage range, and has a narrower operating temperature range.
It has drawbacks such as low noise margin and low degree of integration. In recent years, electronic devices have rapidly become smaller, lighter, and have lower power consumption, and as the operating speed and integration density of electronic devices have increased, power consumption has become excessive and thermal design has become difficult.

そのため、受光素子を含む集積回路においても、バイポ
ーラトランジスタによる回路では対応できなくなり回路
部のC!MO3化が必須となりつつある。又、受光素子
を含む集積回路は、機構部分に使用される頻度が多いた
め、電源電圧変動が大きく、温度変動も大きく、雑音が
高い等の悪環境化におかれる。この点においても、回路
部の0MO8化は、必須である。本発明は回路部をMO
S型トランジスタで構成し、かかるバイポーラトランジ
スタによる受光素子を含む集積回路の欠点を除失したも
のである。
Therefore, even in integrated circuits that include light-receiving elements, circuits using bipolar transistors cannot cope with the C! Converting to MO3 is becoming essential. Furthermore, since integrated circuits including light receiving elements are frequently used in mechanical parts, they are exposed to adverse environments such as large fluctuations in power supply voltage, large temperature fluctuations, and high noise. In this respect as well, it is essential to convert the circuit section to 0MO8. The present invention allows the circuit section to be
It is constructed of S-type transistors and eliminates the drawbacks of integrated circuits that include light-receiving elements using such bipolar transistors.

本発明は、受光素子とM OS型トランジスタを同一チ
ノブ内に集積し、且つ受光素子の能力をより高感度化し
た半導体装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device in which a light receiving element and a MOS transistor are integrated in the same chinobu, and the ability of the light receiving element is made more sensitive.

以下実施例に基づいて本発明の詳細な説明する。The present invention will be described in detail below based on examples.

まず従来のCMOS I O製造プロセスを第1図に示
す。
First, a conventional CMOS IO manufacturing process is shown in FIG.

α)同図Aに於て、10ρ・cm程度のn型S」ウェハ
ー1の全面にドナー不純物(リン原子)をイオン打込み
する 2゜ b)同図Bに於て、P型WELLを形成するため、マス
クろを用いアクセプタ不純物(はう素原子)をイオン打
込みする 4゜ C)イオン打込みした不純物を活性化、さらにある程度
(ドナー不純物は10μ毒程度、アクセブタ不純物では
8μm程度)の深さまでのWELLを形成するため、ド
ライブインする。
α) In Figure A, donor impurities (phosphorus atoms) are ion-implanted into the entire surface of the n-type S'' wafer 1 of approximately 10ρ cm. 2゜b) In Figure B, a P-type WELL is formed. Therefore, the acceptor impurity (boron atoms) is ion-implanted using a mask filter. 4°C) Activates the ion-implanted impurity, and then implants the implanted impurity to a certain depth (approximately 10 μm for donor impurities and approximately 8 μm for acceptor impurities). Drive-in to form WELL.

d)以下、P型・n型ストッパー形成 LOOO3酸化 ボリンリコン配線・ゲート形成 p型不純物拡散 コンタクト穴形成 AL配線 保護膜形成 パッド穴形成 等のプロセスとなる。d) Below, P type/n type stopper formation LOOO3 oxidation Bolin Recon wiring/gate formation p-type impurity diffusion contact hole formation AL wiring Protective film formation pad hole formation etc. process.

次に、受光素子(フォトダイオード)を含むCMO8工
0製造プロセスを第2図に示す。
Next, FIG. 2 shows a CMO 8-0 manufacturing process including a light receiving element (photodiode).

e)同図Aにおいて、後工程でつくられるp型WELL
との接合で、最適なフォトダイオードとなる任意のη型
S1ウェハー(比抵抗50Ω・cm程度)7に、マスク
6全用い選択的にMO3工C部分のみに、ドナー不純物
をイオン打込みする 2゜ f)同図Bに於て、p型W B L Lを形成するため
、マスク3を用いアクセプタ不純物をイオン打込みする
 4゜ この時、受光素子部5にもイオン打込み4し、p −n
接合フォトダイオードを形成する。
e) In Figure A, the p-type WELL created in the subsequent process
Donor impurity is ion-implanted into an arbitrary η-type S1 wafer (resistivity of about 50 Ω cm) 7, which will become an optimal photodiode, using the entire mask 6 and selectively implanting donor impurities into only the MO3 process C part 2°. f) In the same figure B, in order to form p-type WBLL, acceptor impurity is ion-implanted using mask 3. 4゜At this time, ions are also implanted into light-receiving element part 5, and p-n
Form a junction photodiode.

7)イオン打込みした不純物を活性化、さらにある程度
以上の深さでWELLが形成でき、かつフォトダイオー
ドが高感度化する接合深さとなるように、不純物をドラ
イブインする。
7) Activate the ion-implanted impurity and drive in the impurity so that a WELL can be formed to a certain depth or more and the junction depth is such that the photodiode has high sensitivity.

フォトダイオードの接合深さは、入射する光の波長によ
り、波長が比較的短いときには接合深さを浅く、入射光
波長が比較的長いときには、接合深さを深くすることに
より、高感度化できる。これは、入射光波長が長いほど
、光の半導体への浸入する距離が深くなるためである。
The junction depth of the photodiode depends on the wavelength of the incident light; when the wavelength of the incident light is relatively short, the junction depth is made shallow, and when the wavelength of the incident light is relatively long, the junction depth is made deep, thereby increasing the sensitivity. This is because the longer the wavelength of the incident light, the deeper the distance that the light penetrates into the semiconductor.

h)以下、前記通常0M08IC製造プロセスと同一。h) The following is the same as the above-mentioned normal 0M08IC manufacturing process.

この製造工程によりMO3工C部分6は通常の製造工程
で作成される場合と、WELL深さが異なるのみで、ト
ランジスタの特性上同一となり、工程も第1図Aと第2
図Aに示されるように、フォト工程が1回増加するだけ
である。又、フォトダイオード部分5については、最適
の接合深さ、最適の基板不純物濃度にすることができる
。さらに、第2図Aに示されるように、ドナー不純物が
イオン打込みされないことにより、ドナー不純物のイオ
ン打込みによる基板表面の結晶格子の乱れをなくすこと
ができる。結晶格子が乱れると、乱れたンリコン原子が
、電子・正孔の再結合中心となり、少数キャリアのライ
フタイムが減少する。
Through this manufacturing process, the MO3 workpiece C part 6 is the same in terms of transistor characteristics, with the only difference being the WELL depth, compared to when it is created through a normal manufacturing process.
As shown in Figure A, only one photo step is required. Further, for the photodiode portion 5, the optimum junction depth and substrate impurity concentration can be set to an optimum value. Furthermore, as shown in FIG. 2A, since the donor impurity is not ion-implanted, it is possible to eliminate disturbances in the crystal lattice on the substrate surface caused by the ion-implantation of the donor impurity. When the crystal lattice is disordered, the disordered phosphor atoms become centers for recombination of electrons and holes, reducing the lifetime of minority carriers.

すなわち、光入射によって生れた電子・正孔が、電流と
ならずに、半導体中で再結合してしまい、フォトダイオ
ードの効率の減少につながる。又、フォトダイオードの
p型WEL、T、部分に、余分なドナー不純物の存在を
、がなり少なく、すなわちもとの基板中に含まれる数だ
けにおさえられるため、p型WELL中の不純物濃度(
ドナ一原子子アクセフタ原子)を必要最少限にできる。
In other words, electrons and holes generated by light incidence recombine in the semiconductor instead of becoming a current, leading to a decrease in the efficiency of the photodiode. In addition, since the presence of extra donor impurities in the p-type WELL, T, portion of the photodiode can be suppressed to a small number, that is, to the number contained in the original substrate, the impurity concentration in the p-type WELL (
(donor single atom, acceptor atom) can be minimized.

このことはキャリアの不純物散乱を最少限におさえるこ
とになり、キャリアの拡散長を長くできる。このことは
フォトダイオードの効率の増加につながる。
This minimizes the impurity scattering of carriers and increases the carrier diffusion length. This leads to an increase in photodiode efficiency.

すなわち、受光素子部分にドナー不純物をイオン打込み
しないために、キャリアのライフタイム及び拡散長を長
くでき、フォトダイオードの高効率化が達成できる。
That is, since donor impurities are not ion-implanted into the light-receiving element portion, carrier lifetime and diffusion length can be lengthened, and high efficiency of the photodiode can be achieved.

上記の例では、n型基板LOCO3−3iゲートプロセ
スについて述べたが、同様にp型基板L○c o s、
さらにブレチーS1ゲート、ALアゲートロセスにも適
用できる。
In the above example, the n-type substrate LOCO3-3i gate process was described, but the p-type substrate L○cos,
Furthermore, it can be applied to Bletchy S1 gate and AL agate process.

本発明は、受光素子とM OS 工Cを同一チノブ内に
構成することにより、配線容量による伝播時間、遅れ時
間等を小さくでき、実装面積を小さくできる。また、受
光素子信号をMO3IOで増幅することにより、出力信
号をそのまま制御信号に用いる、さらに複数の受光素子
とマイクロ・プロセッサを内蔵することにより、より高
度な制御信号を発生させ、用いることができるなどすぐ
れた効果を有する。
In the present invention, by configuring the light receiving element and the MOS device C in the same chinobu, propagation time, delay time, etc. due to wiring capacitance can be reduced, and the mounting area can be reduced. In addition, by amplifying the light receiving element signal with MO3IO, the output signal can be used as a control signal as it is, and by incorporating multiple light receiving elements and a microprocessor, more advanced control signals can be generated and used. It has excellent effects such as

また本発明で、フォト・インタラプタ、フォトカブラ、
回転数検出等の信号を、この受光素子とMO8型トラン
ジスタを集積する半導体装置により、受光素子への外付
は回路なしに得ることも可能である。
The present invention also provides a photo interrupter, a photo coupler,
By using a semiconductor device that integrates this light receiving element and an MO8 type transistor, it is also possible to obtain signals such as rotation speed detection without external circuitry to the light receiving element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、通常のQ M OS I C製造プロセスの
p型WELLを構成するまでの概略を示している。 第2図は、受光素子とM′oS型トランジスタを集積し
た半導体装置製造プロセスのp型WELLを構成するま
での概略を示す。 第1図Aは、全面ドナー不純物イオン打込み工程図。第
1図Bは、p型WELLイオン打込み工程図。第2図A
は、受光素子部をマスクし、選択的にドナー不純物をイ
オン打込みする工程図。第2図Bは、受光素子部分のp
型領域及びM OS XC部のp型WELL領域イオン
打込み工程図。 1ニア1型(比抵抗10Ω−cm ) S1基板2:ド
ナー不純物打込み 3=マスク(レジスト) 4:アクセプター不純物打込み 5:受光素子部分 (S:MO8工C部分
FIG. 1 shows an outline of a typical QMOS IC manufacturing process up to the construction of a p-type WELL. FIG. 2 schematically shows a process for manufacturing a semiconductor device in which a light receiving element and an M'oS type transistor are integrated, up to the construction of a p-type WELL. FIG. 1A is a diagram showing the entire surface donor impurity ion implantation process. FIG. 1B is a p-type WELL ion implantation process diagram. Figure 2A
is a process diagram for selectively ion-implanting donor impurities while masking the light-receiving element portion. Figure 2B shows p of the light receiving element part.
FIG. 4 is a process diagram of ion implantation of the p-type WELL region of the type region and the MOS XC section. 1 near 1 type (specific resistance 10 Ω-cm) S1 substrate 2: Donor impurity implantation 3 = mask (resist) 4: Acceptor impurity implantation 5: Light receiving element part (S: MO8 process C part

Claims (1)

【特許請求の範囲】[Claims] 同一半導体基板上に、受光素子部とMO8IOとを有し
、受光素子領域とMO8工C領域の基板の比抵抗及び不
純物濃度が異なっていることを特徴とする半導体装置。
1. A semiconductor device comprising a light-receiving element section and a MO8IO on the same semiconductor substrate, the light-receiving element region and the MO8I-C region having different resistivities and impurity concentrations in the substrate.
JP57188664A 1982-10-27 1982-10-27 Semiconductor device Granted JPS5978569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57188664A JPS5978569A (en) 1982-10-27 1982-10-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57188664A JPS5978569A (en) 1982-10-27 1982-10-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5978569A true JPS5978569A (en) 1984-05-07
JPH0475666B2 JPH0475666B2 (en) 1992-12-01

Family

ID=16227685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57188664A Granted JPS5978569A (en) 1982-10-27 1982-10-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5978569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191453A (en) * 1987-10-02 1989-04-11 Fuji Photo Film Co Ltd Solid-state image sensing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483386A (en) * 1977-12-15 1979-07-03 Matsushita Electric Ind Co Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483386A (en) * 1977-12-15 1979-07-03 Matsushita Electric Ind Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191453A (en) * 1987-10-02 1989-04-11 Fuji Photo Film Co Ltd Solid-state image sensing device

Also Published As

Publication number Publication date
JPH0475666B2 (en) 1992-12-01

Similar Documents

Publication Publication Date Title
US6100556A (en) Method of forming a semiconductor image sensor and structure
KR100647959B1 (en) Cmos image sensor
KR890004476B1 (en) Semiconductor optical detection device
JPH0467789B2 (en)
JPH01205564A (en) Optical semiconductor device and its manufacture
US20080230817A1 (en) Semiconductor photodetector device
US6306679B1 (en) Photodiode having transparent insulating film around gate islands above P-N junction
JP4344319B2 (en) Method of manufacturing an integrated pin diode and related circuit structure
CN101373782A (en) Semiconductor device and manufacturing method thereof
US4920395A (en) High sensitivity photodiode
US5950079A (en) Semiconductor processing methods of forming complementary metal oxide semiconductor memory and other circuitry
US6465862B1 (en) Method and apparatus for implementing efficient CMOS photo sensors
JPS5978569A (en) Semiconductor device
KR20060093385A (en) Image sensor
KR20190140220A (en) Semiconductor Integrated Circuit Device Having Electrostatic Discharge Protecting Circuit and Method of Manufacturing The same
JPH0276260A (en) Integrated semiconductor device and its manufacture
KR900005127B1 (en) Silicon photo diode for low sensing
US20230317869A1 (en) Photodiodes
JPH0555538A (en) Semiconductor light receiving device
JP3139454B2 (en) Photodetector with built-in circuit
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
KR100520466B1 (en) Image sensor and manufacturing method
JP3553715B2 (en) Optical semiconductor device
JPS61258471A (en) Semiconductor integrated circuit device
JPS6346782A (en) Semiconductor photo-detecting and amplifying device