JPS5975610A - Iron base magnetic alloy thin film and manufacture thereof - Google Patents

Iron base magnetic alloy thin film and manufacture thereof

Info

Publication number
JPS5975610A
JPS5975610A JP18593182A JP18593182A JPS5975610A JP S5975610 A JPS5975610 A JP S5975610A JP 18593182 A JP18593182 A JP 18593182A JP 18593182 A JP18593182 A JP 18593182A JP S5975610 A JPS5975610 A JP S5975610A
Authority
JP
Japan
Prior art keywords
iron
thin film
alloy thin
film
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18593182A
Other languages
Japanese (ja)
Inventor
Katsuya Mitsuoka
光岡 勝也
Tsuneo Yoshinari
吉成 恒男
Shinji Narushige
成重 真治
Masaaki Sano
雅章 佐野
Akira Kumagai
昭 熊谷
Mitsuo Sato
佐藤 満雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18593182A priority Critical patent/JPS5975610A/en
Publication of JPS5975610A publication Critical patent/JPS5975610A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel

Abstract

PURPOSE:To obtain a magnetic alloy thin film having big magnetic flux and high initial permeability in high-frequency region by forming said film out of alloy of iron and transition metal or Sn which shows a body-centered cubic structure single phase when quantity of elements of metal except iron becomes over quantity for solid solution in an equilibrium diagram and consists of uniaxial magnetic anisotropic film. CONSTITUTION:A glass base 122 having steps is arranged in a chamber 121 and a target 123 is arranged opposite to the glass base 122 and a shutter 124 is placed between the base 122 and the target 123. On surfaces of two sides of the galss base 122, a permanent magnet 125 for applying a magnetic field in one direction in process of depositing a magnetic film and a heater 126 is provided at the back of the glass base and heating temperature for the glass base 122 is controlled by a thermoelectric couple 128. RF sputtering system above described is used to form iron base magnetic alloy thin film of uniaxially anisotropic, in which metallic particles obtained by combining more than one kind of transition metals and Sn so as to become over the quantity for solid solution in equilibrium diagram is compulsorily dissolved into solid solution with being applied outer magnetic field by the permanent magnet 125.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明の鉄基磁性合金薄膜に係シ、特に磁気記録用の薄
膜へラドコアおよび磁気センサーに適した高透磁率の磁
性合金薄膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an iron-based magnetic alloy thin film, and particularly to a magnetic alloy thin film with high magnetic permeability suitable for thin film rad cores for magnetic recording and magnetic sensors.

〔従来技術〕[Prior art]

従来の薄膜ヘッドのコア拐料に約80重量%Nrp e
合金(以下パーマロイと呼ぷ)が使われている。この材
料は高周波領域で高速のスイッチング動作を行える点に
特徴がある。パーマロイの磁気特性値として、膜厚2μ
n】の薄膜は飽和磁束密iB、がIT(テス2)、初透
磁率値μが1500以」二を有する。高密度記録化にむ
け、パーマロイの代替拐料としてB、が1.5T以上、
μが1500以上の特性値を有する材料が望まれている
Approximately 80% by weight of Nrp e is added to the core material of the conventional thin film head.
An alloy (hereinafter referred to as permalloy) is used. This material is characterized by its ability to perform high-speed switching operations in the high frequency range. As permalloy's magnetic property value, the film thickness is 2μ.
The thin film has a saturation magnetic flux density iB of IT (Test 2) and an initial magnetic permeability value μ of 1500 or more. For high-density recording, B as an alternative to permalloy is 1.5T or more.
A material having a characteristic value of μ of 1500 or more is desired.

このような動向の中、パーマロイの代替月料として、結
晶構造によりアモルファス合金系と結晶質合金系の二柚
類の系統に分類できる。
Under these trends, as an alternative to permalloy, permalloy can be classified into two types, amorphous alloy type and crystalline alloy type, depending on the crystal structure.

°ア1モルフッ合金系は今までにスパッタ、溶湯急冷等
の各種急冷法により数多くの研究開発が成されてきた。
A large amount of research and development has been carried out on the 1-morph fluoride alloy system using various quenching methods such as sputtering and molten metal quenching.

しかし、アモルファス合金については各種の良好な特性
が示されたが、磁気的経年現象に関しては明確に判って
なく、アモルファスであるがために信頼性に欠けていた
However, although various good properties have been shown for amorphous alloys, magnetic aging phenomena are not clearly understood, and because they are amorphous, they lack reliability.

結晶質合金系ではパーマロイをベイスとして添加元素を
加えた三元系合金とパーマロイとは全く異質の二元系合
金とがある。パーマロイをベイスとした三元系合金はパ
ーマロイより各種特性の改良向上は期待できるが主目的
である高密度記録化の要請(B、≧1.51” Jはパ
ーマロイをベイスとしているがために期待できない。
Among crystalline alloys, there are ternary alloys that have Permalloy as a base and add additional elements, and binary alloys that are completely different from Permalloy. Ternary alloys based on permalloy can be expected to improve various properties over permalloy, but the main purpose is to achieve high-density recording (B, ≥1.51" J), which is expected because it is based on permalloy. Can not.

高密度記録化の要d青を満足できる二元系合金としてp
e−8t磁性薄膜が報告されている(特開昭52−11
2797 )。この■I′e−8i磁性薄膜(5〜7j
!i斂%5i−pe)ではB、は約1.8T、μは膜厚
0.98μmで約2000であるが、膜厚1.9μm程
度になると約300に低下する。
p as a binary alloy that can satisfy the requirements for high-density recording.
e-8t magnetic thin film has been reported (Japanese Unexamined Patent Publication No. 52-11
2797). This ■I'e-8i magnetic thin film (5~7j
! %5i-pe), B is about 1.8 T, and μ is about 2000 at a film thickness of 0.98 μm, but decreases to about 300 when the film thickness becomes about 1.9 μm.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、大きな磁束密度と高周波領域で高い初
透磁率とを有する鉄基磁性合金薄膜およびその製造方法
を提供することにある。
An object of the present invention is to provide an iron-based magnetic alloy thin film having a large magnetic flux density and high initial permeability in a high frequency region, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明者らは、高密度記録化の観点からパーマロイの代
替制料としての要求特性値、(B、;≧、5T1μ≧1
.500)を満足し得る材料の探索を行なった。
The present inventors have determined the required characteristic values as an alternative material to permalloy from the viewpoint of high-density recording.
.. We have searched for materials that can satisfy the requirements (500).

従来、金属単体で強磁性を示す物質としてFe(13,
さ2.16T)、Co (Bl=1.79’l’ )、
Nr(B、、0.6T)が知られているが、膜厚2μI
n程度を刊する膜体ではμの値は1500未満であった
Conventionally, Fe(13,
2.16T), Co (Bl=1.79'l'),
Nr(B,,0.6T) is known, but the film thickness is 2 μI.
The value of μ was less than 1,500 in the case of a film with a rating of about n.

飽和磁束密度(B、)をある程度以上維持しなからμの
飴を1500以上とするだめにFe、COに異柚の元素
を添加した二元系合金が考えられる。
In order to maintain the saturation magnetic flux density (B,) above a certain level and to increase μ to 1500 or more, a binary alloy in which a different element is added to Fe and CO is considered.

ここでは、Bmが要求特性値に余裕のある鉄をベイスに
して月料開発を進めた。
Here, we proceeded with monthly charge development using iron as a base whose Bm has a margin in the required characteristic values.

一般に、−軸異方性を有する磁性薄膜では透磁率値は次
式で表現できる。
Generally, the magnetic permeability value of a magnetic thin film having -axis anisotropy can be expressed by the following equation.

ここに、μは透磁率値、B、は飽和磁化値、μ。は真空
中の透磁率値で4πxio−7、l(Aは異方性磁界で
ある。従って、−μを大きくするにはB、を大きくする
か、iIAを小さくしなければならない。
Here, μ is the magnetic permeability value, B is the saturation magnetization value, and μ. is the magnetic permeability value in vacuum, 4πxio-7, l (A is the anisotropic magnetic field. Therefore, to increase -μ, B must be increased or iIA must be decreased.

鉄基磁性合金薄膜ではI(Aは Hム= HA (1’ I + 1.−、I A (λ
)+11ム(I)  ・・・(2)で表わされる。ここ
に、HA(p)はpe −pe原子対の短距離規則性配
列による寄与であり、HA(λ)はひずみを回復しよう
とする応力から生ずる寄与であり、またt(*(j)は
膜形成時に生ずる諸々の寄与である。
In iron-based magnetic alloy thin films, I (A is H = HA (1' I + 1.-, I A (λ
)+11mu(I)...It is expressed as (2). Here, HA(p) is the contribution due to the short-range regular arrangement of pe-pe atomic pairs, HA(λ) is the contribution resulting from the stress to recover the strain, and t(*(j) is These are various contributions that occur during film formation.

(2)ニオイて、μを大きくするため、従って)(Aを
小さくするためには、各種急冷法によってFeに他の金
属を強制固溶させると合金の結晶粒が小さくな、1A(
p)を小さくすることができる。ここで各種急冷法には
、真空蒸着法、スパッタリング法、イオングレーティン
グ法、メッキ法およびスゲラットクリーニング法等を挙
げることができる。
(2) In order to increase μ, therefore)
p) can be made small. Here, the various quenching methods include a vacuum evaporation method, a sputtering method, an ion grating method, a plating method, a sgelat cleaning method, and the like.

)(A(匂は各種急冷法にょシ膜形成する際に生ずる寄
与項であシ、HA(i)を小さくするためには各種急冷
法の製造条件の確立が必要となる。例えばスパッタ法の
製造条件のパラメータとしては、基板温度、基板バイア
ス電圧、放置時のArガス圧、および人力パワー等が列
挙できる。
) (A (Odor is a contributing factor that occurs when forming a film using various quenching methods. In order to reduce HA(i), it is necessary to establish manufacturing conditions for various quenching methods. For example, when using a sputtering method, Parameters of manufacturing conditions include substrate temperature, substrate bias voltage, Ar gas pressure during standing, and human power.

HA(λ)は磁性膜特有の磁歪定数に起因する。HA (λ) is caused by a magnetostriction constant specific to a magnetic film.

HA(λ)を小さくするには、磁歪定数の小さな値を選
ぶとよい。磁歪定数の選び方は以下に述べる方法で行な
った。
In order to reduce HA(λ), it is preferable to select a small value of the magnetostriction constant. The magnetostriction constant was selected using the method described below.

辿′帛、(1栽気へラドコア等において磁性膜形成部は
段差部を有している。
(1) The magnetic film forming part in the rad core etc. has a stepped part.

磁性i(V膜を平坦部に膜形成する場合と段差部に膜形
成する場合とで膜全体の平均の透磁率値は異なる。即ち
、第1図に示すようにガラス基板2の一512坦部で膜
(例えば、鉄基磁性合金薄膜l)を形成すると磁歪定数
が少々異なっても高周波領域での初透磁率値は変化しな
い。しかし、第2図に示すようにカラス板1而に5μI
llの段差(絶縁物3)を有し、200μmピッチで膜
1を形成すると、磁歪冗数の大きさにょシ高周波領域で
の初透磁率値は大きく変化する。この関係を示したのが
第3第3図において、磁歪定数λの絶対値が2×10−
6〜−2X10−6の範囲では段差部のμ/平坦部のμ
の値が1に近く、段差部で膜形成された時の畠周波領域
での初透磁率値は殆ど変化しなくなることが判る。従っ
て初透磁率値は膜形成部分に段差部が治ると大きく変化
するが、磁歪定数λの絶対値を一2XlO””〜2X1
0−’の範囲とすると要求特性値を満足することが期待
できる。
The average magnetic permeability value of the entire film is different depending on whether the magnetic i(V film is formed on a flat part or on a stepped part. That is, as shown in FIG. If a film (for example, an iron-based magnetic alloy thin film l) is formed on the glass plate 1, the initial magnetic permeability value in the high frequency region will not change even if the magnetostriction constant is slightly different.However, as shown in Fig.
When the film 1 is formed at a pitch of 200 μm and has a step difference (insulator 3) of 1.1 mm, the initial magnetic permeability value in the high frequency region changes greatly depending on the magnitude of the magnetostriction redundancy. This relationship is shown in Figure 3, where the absolute value of the magnetostriction constant λ is 2 x 10-
In the range of 6 to -2X10-6, μ of stepped portion/μ of flat portion
It can be seen that the value of is close to 1, and the initial permeability value in the Hatake frequency region when the film is formed at the stepped portion hardly changes. Therefore, the initial magnetic permeability value changes greatly when the step part in the film formation area heals, but the absolute value of the magnetostriction constant λ
If the range is 0-', it can be expected that the required characteristic values will be satisfied.

次に磁歪定数λを一2X10−’ 〜2XlO−’+7
)イiL囲内に維持できる合金組成について検討した。
Next, set the magnetostriction constant λ to -2X10-'~2XlO-'+7
) An alloy composition that can be maintained within the iL range was investigated.

第4図〜第9図から磁歪定数の面からの好適の各添加元
素鼠と飽和磁束密度(1’ Jを示す。
4 to 9 show suitable additive elements and saturation magnetic flux density (1'J) from the viewpoint of magnetostriction constant.

第1表 しかし、第10図の平衡状態図によると、4事情%から
9重量%T1成分までは体心立方構造とFe、’rt金
属間化合物の2相混相となっている。
Table 1 However, according to the equilibrium diagram in FIG. 10, the T1 component from 4% to 9% by weight has a two-phase mixed phase of a body-centered cubic structure and Fe and 'rt intermetallic compounds.

それを反映して第11図の実線で示す様に混相となシ始
める組成、3重量%Ti成分から飽和磁束密度は急激に
減少し始めることが知られている。
Reflecting this, it is known that the saturation magnetic flux density begins to decrease rapidly from a composition where a mixed phase starts to occur, ie, a Ti component of 3% by weight, as shown by the solid line in FIG.

ところが、スパッタ法等の各種急冷法によりFe中にT
iが強制固溶され、約15重量%Tiまで体心立方構造
単相となっている。
However, T is added to Fe by various rapid cooling methods such as sputtering.
i is forcibly dissolved in solid solution, and up to about 15% by weight Ti has a single phase body-centered cubic structure.

このような傾向はIll i以外の遷移金属、特にMn
 、N4 、Mo、Ptの他Snについても同様であり
、体心立方晶構造単相とすることによって飽和磁束密度
を大きくすることができる。
This tendency is observed in transition metals other than Illi, especially Mn.
, N4, Mo, Pt, and Sn, and the saturation magnetic flux density can be increased by forming a body-centered cubic crystal structure in a single phase.

棟た式(1)の透磁率値は一軸異方性を有する磁性薄j
換に関するものであるから、式(2)のl(Aを小さく
するだめには一軸異方性を有する膜を形成することが条
件となる。
The magnetic permeability value of Equation (1) is the magnetic thin film with uniaxial anisotropy.
Since this relates to conversion, in order to reduce l(A in equation (2)), it is necessary to form a film having uniaxial anisotropy.

外部(1剋場を印加せず、地磁気下で膜形成を行うと一
軸磁気異方性を有する膜とならない。少なくとも膜の容
易軸方向の保磁力の5倍以上の外部磁界を印加すると一
軸磁気異方性を示すようになる。
If a film is formed under geomagnetism without applying an external magnetic field, the film will not have uniaxial magnetic anisotropy.If an external magnetic field of at least 5 times the coercive force in the easy axis direction of the film is applied, uniaxial magnetic anisotropy will not be obtained. It begins to show anisotropy.

更に大きな印加磁界を印加するならば好ましい傾向を示
す。数十エルステッドの外部磁場下で0.05μm以上
の鉄基磁性合金薄膜を形成すると、形成された膜は容易
軸方向の保磁力で2エルステツド以下とすることができ
る。積層構造に形成することによシ1エルステッド以下
の保磁力も達成できる。
If a larger applied magnetic field is applied, a favorable tendency is shown. When an iron-based magnetic alloy thin film of 0.05 μm or more is formed under an external magnetic field of several tens of oersteds, the formed film can have a coercive force of 2 oersteds or less in the easy axis direction. By forming a laminated structure, a coercive force of less than 1 Oersted can be achieved.

スパッタ法の手段によシ膜形成した場合、基板温度、■
t1F1電力レベル、スパッタ時のArガス圧等の付着
パラメータを注意深く制御することにより、良質(即ち
、低保磁力)の膜が形成できる。
When the film is formed by sputtering, the substrate temperature, ■
By carefully controlling deposition parameters such as t1F1 power level and Ar gas pressure during sputtering, films of good quality (ie, low coercivity) can be formed.

第12図は、本発明の製造方法に用いられる几Fスパッ
タ装置の構成の一例を示す。第12図において、チャツ
バ−121内に段差部を有するガラス基板122が設け
られ、このガラス基板122に対向してターゲット12
3が設けられ、これらの間にシャッター124が介設さ
れている。
FIG. 12 shows an example of the configuration of a F sputtering apparatus used in the manufacturing method of the present invention. In FIG. 12, a glass substrate 122 having a stepped portion is provided in a chat bar 121, and a target 12 is placed opposite to this glass substrate 122.
3 are provided, and a shutter 124 is interposed between them.

またガラス基板122の両側面側に磁性膜堆積時、磁界
を一方向に印加するための永久磁石125が設けられ、
ガラス基板の裏面側にはヒータ126が取り付けられ、
カラス基板122の加熱温度は熱血対127によシA整
されるようになっている。
Furthermore, permanent magnets 125 are provided on both side surfaces of the glass substrate 122 for applying a magnetic field in one direction when depositing a magnetic film.
A heater 126 is attached to the back side of the glass substrate,
The heating temperature of the glass substrate 122 is adjusted by the hot-blooded pair 127.

このよりな1モFスパツタ装置において、遷移金属およ
びi9nのいずれか1 f、fi以上の金属を平衡状態
図上、固溶旬・以上となるように組付せて得られる金属
粒子を永久磁石125によって外部磁場を印加しつつ、
強制固溶すれば体心立方晶41り造単相の一軸異方性の
鉄基磁性合金薄膜を製造できる。
In this rigid 1MoF sputtering device, metal particles obtained by assembling transition metals and metals of 1f, fi or more in a state of solid solution or more on an equilibrium phase diagram are placed in a permanent magnet. While applying an external magnetic field by 125,
If the solid solution is forced, a body-centered cubic 41 structure single-phase uniaxially anisotropic iron-based magnetic alloy thin film can be produced.

〔発明の実施例〕[Embodiments of the invention]

、M12図におけるカラス基板122上の磁場分布を第
13図に示す。第13図からガラス基板122上には6
00C以上の磁場が印加されていることが判る。そこで
ターゲット123の大きさを100mmφ×3問厚さと
した。ターゲット組成(8重量%l’jl i  F 
e )では2相混相となシ、このため月料が硬く、圧延
、鍛造が困難であるので、軸釣技術を用いてターゲット
123を作製した。
, M12, the magnetic field distribution on the glass substrate 122 is shown in FIG. From FIG. 13, there are 6
It can be seen that a magnetic field of 00C or higher is applied. Therefore, the size of the target 123 was set to 100 mmφ×3 thickness. Target composition (8% by weight l'jl i F
In e), the target 123 was made of a two-phase mixed phase, which made the material hard and difficult to roll and forge.

基板は16mmX16配×1關厚のノブラス基板を用い
た。
The substrate used was a Nobrass substrate of 16 mm x 16 dimensions x 1 inch thick.

第14図υ、下記スパッタ条件下で膜形成した厚さ1μ
mのFe  I(N r膜のX線回折結果を示す。
Figure 14 υ, film thickness 1μ formed under the following sputtering conditions
The results of X-ray diffraction of a FeI(Nr film of m) are shown.

ターゲット組成  8 j(i量%1゛+ −pe到達
真空度    2.6X10−’PaPa以下プレスパ
ラ間 1時間 スパッタ時間   1時間 Arガス圧    0.12 P a以下入力パワー 
   5 X 10’ワツト/ n?付着率    2
00人/分 基板温度     300C 陽極−陰極間隔  40mm C0Ka線を用いた30度〜100度の回折角では、F
e2Ti化合物による回折ピークは観測できず、体心立
方晶による回折ピークしか測定でき  ゛ない。その回
折角からpe−’l’i膜の格子定数が求まる。第15
図に格子定数のTi濃度依存性を示す。スパッタ膜で求
まる格子定数はバルク材料で求まった格子定数のTi濃
度依存性の延長線上の値となる。このことよりp e 
 Ill i膜は強制固溶合金膜となる。
Target composition 8 j (i amount% 1゛+ -pe Ultimate vacuum 2.6X10-' PaPa or less Pre-para time 1 hour Sputtering time 1 hour Ar gas pressure 0.12 Pa or less Input power
5 x 10'w/n? Adhesion rate 2
00 people/min Substrate temperature 300C Anode-cathode spacing 40mm At a diffraction angle of 30 degrees to 100 degrees using C0Ka line, F
The diffraction peak due to the e2Ti compound cannot be observed, and only the diffraction peak due to the body-centered cubic crystal can be measured. The lattice constant of the pe-'l'i film can be determined from the diffraction angle. 15th
The figure shows the dependence of the lattice constant on Ti concentration. The lattice constant determined for the sputtered film is an extension of the Ti concentration dependence of the lattice constant determined for the bulk material. From this, p e
The Illi film becomes a forced solid solution alloy film.

次に、磁気特性を向上させるために作製条件の検討をし
だ。磁気特性として容易軸方向の保磁力(tlcr+)
、困1111G軸方向の保磁力(1−1ciJ及びIM
I−12の透磁率、2oMti、の透磁率を測定した。
Next, we investigated manufacturing conditions to improve magnetic properties. Easy axial coercive force (tlcr+) as a magnetic property
, 1111G axial coercive force (1-1ciJ and IM
The magnetic permeability of I-12, 2oMti, was measured.

良好な磁気特性とし゛C1d保磁力が小さい程、透磁率
が大きい程望む傾向となる。
The smaller the C1d coercive force and the larger the magnetic permeability, the better the magnetic properties are desired.

入力パワーによる磁気特性の変化を調べたのが1・1↓
16図および第17図である。この時、作製条件は下記
の通りでめった。
1・1↓ investigated the change in magnetic properties due to input power
16 and 17. At this time, the manufacturing conditions were as follows.

ターゲット組成  8型開%II i  p Q到達真
空IAt     2.6 X 10−’ Pa以下グ
レスパツタsy間 1時間 スパッタ時間   1時間 Arカス圧    0.12Pa 基板温度     200C 膜厚       lμn1 この結果よp人力パワーが2.2 X 10’ W/n
?の時磁気特性が良くなる。
Target composition 8 mold opening % II i p Q ultimate vacuum IAt 2.6 X 10-' Pa or less Glare sputtering time 1 hour Sputtering time 1 hour Ar gas pressure 0.12 Pa Substrate temperature 200C Film thickness lμn1 From this result, p manual power is 2.2 x 10' W/n
? When , the magnetic properties become better.

この入力パワーを用いて、Arカス圧による磁気特性の
変化を調べたのが第18図及び第19図である。この時
、作製条件は下記の通りである。
Using this input power, changes in magnetic properties due to Ar gas pressure were investigated as shown in FIGS. 18 and 19. At this time, the manufacturing conditions are as follows.

プレスパツタ時間 1時間 スパッタ時間   1時間 入力パワー    2.2 X 10’ W/y♂基板
温度     200C 膜厚       1μm この結果より、Arガス圧が低い程、つt、bO,12
I) aとする時磁気特性は良好となる。
Press sputtering time: 1 hour Sputtering time: 1 hour Input power: 2.2 x 10' W/y♂Substrate temperature: 200C Film thickness: 1μm From these results, the lower the Ar gas pressure, the more t, bO, 12
I) When set to a, the magnetic properties are good.

次に基板温度による磁気特性の変化をC4べたのが第2
0図及び21図です。作製条件は下記の通りである。
Next, the change in magnetic properties due to substrate temperature was plotted on C4.
Figures 0 and 21. The manufacturing conditions are as follows.

プレスパツタ時間 1時間 スパッタ時間   1時間 人力パワー    2.2 X 10’ W/n?A 
r jj ス圧    0.12Pa膜厚      
 1μm 基板温度を200Cとしだ時、磁気特性は良好となる。
Press sputtering time 1 hour Sputtering time 1 hour Human power 2.2 X 10' W/n? A
r jj Stress pressure 0.12Pa Film thickness
1 μm When the substrate temperature is set to 200C, the magnetic properties become good.

以上の作製条件の検討よシ、厚さ1μmのFe−Ti膜
の最適形成条件は次の通シである。
Considering the above manufacturing conditions, the optimal conditions for forming a Fe--Ti film with a thickness of 1 μm are as follows.

ターゲット組成  8重量%Ill i  p e到達
3空度    2.6X10−’PaPa以下ダレスタ
フ2時間時間 スパッタ時間   3分以上 入力パワー    2.2 X 104 W/靜Arカ
ス圧    0.12 P a 基板温度     200C 膜厚       1μ0】 この条件下で形成したFe −’p l膜の磁気特性は
下目己の通りである。
Target composition 8% by weightIll i p eAchieved 3 degree of emptyness 2.6X10-'PaPa or less Dulles tough 2 hours Sputtering time 3 minutes or more Input power 2.2 Film thickness: 1μ0] The magnetic properties of the Fe-'pl film formed under these conditions are as shown below.

チタン含有!   8重量% 不規則〔110:] (体心立方構造ン組成はぼ膜面に
垂直 飽和磁束密度   1.5テスラ以上 容易軸方向の保磁力 2エルステツド以下透磁率   
   1500以上 異方性磁界    8エルステッド以下因みに上記と同
様な条件で膜厚を2μIrlとした場合、透磁率は約7
00程度であった。
Contains titanium! 8% by weight Irregular [110:] (Body-centered cubic structure composition perpendicular to the blister plane Saturation magnetic flux density 1.5 Tesla or more Easy axial coercive force 2 Oersted or less Magnetic permeability
Anisotropic magnetic field of 1500 or more, 8 oersted or less Incidentally, if the film thickness is 2μIrl under the same conditions as above, the magnetic permeability is about 7
It was about 00.

第22図は、8重量%Ill i  p e磁性合金薄
膜(−軸異方性膜)のB −)−1特性を示す5第22
図において、膜厚1μm、2μmのときの磁化容易軸方
向の保磁力()−(cP+)はそれぞれ1.620e。
Figure 22 shows the B-)-1 characteristics of an 8 wt% IlliPe magnetic alloy thin film (-axis anisotropic film).
In the figure, the coercive force ()-(cP+) in the direction of the easy magnetization axis is 1.620e when the film thicknesses are 1 μm and 2 μm, respectively.

1.900eであシ、膜厚I Ill 、 2 In 
ノときの磁化困難軸方向の保磁力(1−1cHJはそれ
ぞれ0.90Qe 、  1.68 (’)eである。
1.900e thickness, film thickness Ill, 2 In
The coercive force in the direction of the hard magnetization axis (1-1cHJ is 0.90Qe and 1.68(')e, respectively) when

したがって本実施例において、磁化容易軸方向の保磁力
(t−1cm)は2Q6以下の小さい値とすることがで
きることが判る。
Therefore, it can be seen that in this example, the coercive force (t-1 cm) in the direction of the easy axis of magnetization can be set to a small value of 2Q6 or less.

又、この薄膜はμmf特性において優れた高周波特性を
示し、商い抵抗値を所有していることが判る。更に、積
層構造に伺着させることで、全層数を多くする程、並び
に中1fJJ絶は層の厚みを薄くする程、茜周波領域で
のil!磁率磁率一段と高くなる。
Furthermore, it can be seen that this thin film exhibits excellent high frequency characteristics in μmf characteristics and possesses a high resistance value. Furthermore, by making it adhere to the laminated structure, the more the total number of layers is increased, and the thinner the layer thickness is, the more the illumination in the Akane frequency region becomes. Magnetic susceptibility becomes even higher.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、パーマロイ以上の高飽和磁束密度を有
し、かつ高周波領域での初透磁率の大きな一軸異方性膜
を形成できるので磁気記録用の薄膜ヘッドのコア拐料に
適用でき、高密度記録化に適する。
According to the present invention, it is possible to form a uniaxially anisotropic film having a high saturation magnetic flux density higher than permalloy and a high initial magnetic permeability in a high frequency region, so that it can be applied to a core material of a thin film head for magnetic recording. Suitable for high-density recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基板の平坦部に磁性膜を形成した斜視図、第2
図は段差部に磁性膜を形成した斜視図、第3図は磁歪定
数とμ段差/μ平坦の関係を示す線図、第4図は磁歪定
数と合金中のTi濃度との関係を示す線図、第5図は磁
歪定数と合金中のA4+1bU度との関係を示す線図、
第6図は磁歪定数と合金中のN1濃度との関係を示す線
図、第7図は磁歪定数と合金中のMO濃度との関係を示
す線図、第8図は磁歪定数と合金中のSn濃度との関係
を示す線図、第9図は磁歪定数と合金中のPt濃度との
関係を示す図、第10図はFe  Ill i二元系合
金の相し1、第11図は飽和磁束密度のTiai依存1
’lEを示す線図、第12図は本発明の製造方法に使用
される几Fスパック装置dの一例を示すhり成図、第1
3図(A)および第13図(BJはMS12図のタパツ
タ装置の基板上におけるX方向及びX方向のイ1ル場の
強さを示す線図、第14図はFe−Tl膜のX線回折パ
ターンを示す線図、第15図は格子定数とT1濃度との
関係を示す線図、第16図及び第17図は入力パフ−に
よる磁気特性の変化を7Jミす線図、第18図及び第1
9図はArガス圧による磁気特性の変化を示す線図、第
20図及び第21図は基板温度による磁気特性の変化を
示す線図、第22図は厚さ1.2μn1を有するp 6
−Ti膜のB −H1fll 線をそれぞれ示す線図で
ある。 1・・・鉄基磁性合金薄膜、2・・・ガラス基板、3・
・°絶縁物、121・・・チャンバー、122・・・ガ
ラス基板、123・・・ターゲット、124・・・シャ
ッター、125・・・永久磁石、126・・・ヒータ、
127・・・熱第1.−図 TiLル(c!、 z ) 弔5図 Mn   51je  バ3   (u−7,%)第6
図 /V7  ヲ$  /l <wt、y=)第9図 Mo濃度(−%) 弔80 S八 濃刈乏 (らLC7) 卒q図 Pt  L度 (wt、’/−) 范lO目 l02 −r7 g L (wtg 第1/図 Tt  濃バf−<wt、%) 第15図 Ti濃fg−(wt型 躬“76図 入υlマワー(W/Tす 怖/’7日 ?(7)パワー(’N/mz) 范/8図 AI−力°スJIt (Pa) へ1力又斤−(Pa) も70図 基板音度(°C) X1o3弔21日 基板温度(°C) 弔22図 one
Figure 1 is a perspective view of a magnetic film formed on the flat part of the substrate, Figure 2
The figure is a perspective view of a magnetic film formed on the step part, Figure 3 is a line diagram showing the relationship between the magnetostriction constant and μ step/μ flatness, and Figure 4 is a line diagram showing the relationship between the magnetostriction constant and the Ti concentration in the alloy. Figure 5 is a diagram showing the relationship between the magnetostriction constant and the A4+1bU degree in the alloy,
Figure 6 is a diagram showing the relationship between the magnetostriction constant and the N1 concentration in the alloy, Figure 7 is a diagram showing the relationship between the magnetostriction constant and the MO concentration in the alloy, and Figure 8 is a diagram showing the relationship between the magnetostriction constant and the MO concentration in the alloy. A diagram showing the relationship between the Sn concentration, Figure 9 is a diagram showing the relationship between the magnetostriction constant and the Pt concentration in the alloy, Figure 10 is the phase 1 of the Fe Ill i binary alloy, and Figure 11 is the saturated one. Tiai dependence of magnetic flux density 1
Fig. 12 is a diagram showing an example of the F-spack apparatus d used in the manufacturing method of the present invention;
3(A) and 13 (BJ is a diagram showing the strength of the illumination field in the X direction and in the A diagram showing the diffraction pattern, Figure 15 is a diagram showing the relationship between lattice constant and T1 concentration, Figures 16 and 17 are diagrams showing changes in magnetic properties due to input puff, and Figure 18 is a diagram showing the change in magnetic properties due to input puff. and the first
Figure 9 is a diagram showing changes in magnetic properties due to Ar gas pressure, Figures 20 and 21 are diagrams showing changes in magnetic properties due to substrate temperature, and Figure 22 is a graph showing changes in magnetic properties due to substrate temperature.
FIG. 3 is a diagram showing B-H1fll lines of the -Ti film. 1... Iron-based magnetic alloy thin film, 2... Glass substrate, 3...
・°Insulator, 121...Chamber, 122...Glass substrate, 123...Target, 124...Shutter, 125...Permanent magnet, 126...Heater,
127...Fever 1st. -Figure TiL le (c!, z) Funeral figure 5 Mn 51je Ba3 (u-7,%) 6th
Figure/V7 wo$ /l <wt, y=) Figure 9 Mo concentration (-%) 80 S8 Nokari Hiroshi (LC7) Graduation q figure Pt L degree (wt, '/-) 范lOth l02 -r7 g L (wtg 1st/Fig. ) Power ('N/mz) Fan/8 Figure AI-Force JIt (Pa) To 1 Power Mata- (Pa) Also Figure 70 Board Soundness (°C) X1o3 21st Board Temperature (°C) Funeral 22 drawing one

Claims (1)

【特許請求の範囲】 1、鉄と遷移金属およびSnのいずれか1種類以上の金
属とより成る合金で構成され、鉄以外の金属の元素量が
平衡状態図上、固溶量以上で体心立方晶構造単相をなし
、かつ−軸磁気異方性膜で形成されていることを特徴と
する鉄基磁性合金薄膜。 2、鉄基磁性合金薄膜が段差部を有する基体上に形成さ
れ、この膜の磁気ひずみ値の範囲が+2×10−6〜−
2X10−’であることを特徴とする特許請求の範囲第
1項記載の鉄基磁性合金薄膜。 3、遷移金属がTi、Mn、Ni、Moまたはptであ
ることを特徴とする特許請求の範囲第1項記載の鉄基磁
性合金薄膜。 4、Ti濃度が4〜9重量%、M口濃度が12〜17重
蹴%、Ni濃度が29〜32重量%、MO濃度が6〜1
1重量%、Sn濃度が6.5〜8重量%、およびpt濃
度が24.5〜25.5重量%の範囲にある少なくとも
1種類以上の金属と残部peとよシ構成されたことを特
徴とする特許請求の範囲第3項記載の鉄基磁性合金薄膜
。 5.0.05ミクロン以上の膜厚を有し、磁化容易軸方
向の保磁力が2エルステツド以下であることを特徴とす
る特許請求の範囲第1項記載の鉄基磁性合金薄膜。 6、遷移金属およびSnのいずれか1種以上の金属を平
衡状態図上、固溶量以上となるようにFeと組合せて得
られる金属微粒子を一軸磁気異方性となるような条件で
外部磁場を印加し、強制固溶させて膜を形成させること
を特徴とする鉄基磁性合金薄膜の製造方法。 7、金属微粒子が、真空蒸着法、スパッタリング法、イ
オンフレーティング法、メッキ法およびスプラットクリ
ーニング法のいずれかの方法で形成されることを特徴と
する特許請求の範囲第6項記載の鉄基磁性合金薄膜の製
造方法。 8、膜の磁化容易軸方向の保持力の少なくとも5倍以上
の外部磁場を印加して膜を形成することを特徴とする特
許請求の範囲第6項記載の鉄基磁性合金薄膜の製造方法
[Scope of Claims] 1. Consisting of an alloy consisting of iron and one or more of transition metals and Sn, when the amount of elements other than iron is equal to or greater than the amount of solid solution in the equilibrium phase diagram, the body center An iron-based magnetic alloy thin film having a single-phase cubic crystal structure and being formed of a -axis magnetically anisotropic film. 2. An iron-based magnetic alloy thin film is formed on a substrate having a stepped portion, and the magnetostriction value of this film ranges from +2 × 10-6 to -
2. The iron-based magnetic alloy thin film according to claim 1, which is 2X10-'. 3. The iron-based magnetic alloy thin film according to claim 1, wherein the transition metal is Ti, Mn, Ni, Mo or pt. 4. Ti concentration is 4-9% by weight, M concentration is 12-17% by weight, Ni concentration is 29-32% by weight, MO concentration is 6-1
1% by weight, Sn concentration in the range of 6.5 to 8% by weight, and PT concentration in the range of 24.5 to 25.5% by weight, and at least one metal, with the balance being PE. An iron-based magnetic alloy thin film according to claim 3. 5. The iron-based magnetic alloy thin film according to claim 1, having a thickness of 0.05 microns or more and a coercive force in the direction of the easy axis of magnetization of 2 oersteds or less. 6. Metal fine particles obtained by combining one or more of transition metals and Sn with Fe in an amount equal to or higher than the solid solution amount on the equilibrium phase diagram are exposed to an external magnetic field under conditions that result in uniaxial magnetic anisotropy. 1. A method for producing an iron-based magnetic alloy thin film, the method comprising: applying a solid solution to form a film through forced solid solution. 7. Iron-based magnetism according to claim 6, characterized in that the metal fine particles are formed by any one of a vacuum evaporation method, a sputtering method, an ion plating method, a plating method, and a splat cleaning method. Method for manufacturing alloy thin film. 8. The method for producing an iron-based magnetic alloy thin film according to claim 6, characterized in that the film is formed by applying an external magnetic field of at least five times the coercive force in the direction of the easy axis of magnetization of the film.
JP18593182A 1982-10-25 1982-10-25 Iron base magnetic alloy thin film and manufacture thereof Pending JPS5975610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18593182A JPS5975610A (en) 1982-10-25 1982-10-25 Iron base magnetic alloy thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18593182A JPS5975610A (en) 1982-10-25 1982-10-25 Iron base magnetic alloy thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5975610A true JPS5975610A (en) 1984-04-28

Family

ID=16179378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18593182A Pending JPS5975610A (en) 1982-10-25 1982-10-25 Iron base magnetic alloy thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5975610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226605A (en) * 1986-03-28 1987-10-05 Hitachi Ltd Ferromagnetic thin film and magnetic head using the same
JPH0629131A (en) * 1992-07-08 1994-02-04 Amorphous Denshi Device Kenkyusho:Kk Thin film magnetic core for magnetic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226605A (en) * 1986-03-28 1987-10-05 Hitachi Ltd Ferromagnetic thin film and magnetic head using the same
JPH0629131A (en) * 1992-07-08 1994-02-04 Amorphous Denshi Device Kenkyusho:Kk Thin film magnetic core for magnetic element

Similar Documents

Publication Publication Date Title
JPS63119209A (en) Soft magnetic thin-film
US4707417A (en) Magnetic composite film
JPS609855A (en) Magnetic alloy
JPS5975610A (en) Iron base magnetic alloy thin film and manufacture thereof
EP0178634B1 (en) Amorphous soft magnetic thin film
US4747888A (en) Amorphous soft magnetic thin film
JP2710440B2 (en) Soft magnetic alloy film
JPS60101709A (en) Vertical magnetic recording medium
JP2710453B2 (en) Soft magnetic alloy film
JP2839554B2 (en) Magnetic film and magnetic head using the same
JPH0727822B2 (en) Fe-Co magnetic multilayer film and magnetic head
JPS6039157A (en) Manufacture of amorphous magnetic alloy
JPH03265105A (en) Soft magnetic laminate film
JP2784105B2 (en) Soft magnetic thin film
JP2707213B2 (en) Iron-based soft magnetic thin film alloy for magnetic head and method of manufacturing the same
JPH0439905A (en) Magnetically soft alloy film
JP3233538B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
JP3087265B2 (en) Magnetic alloy
JPH02152209A (en) Soft magnetic film
JP2551008B2 (en) Soft magnetic thin film
JP2727274B2 (en) Soft magnetic thin film
JPH02152208A (en) Soft magnetic alloy film
JPS6184005A (en) Magnetic recording material
JPS62104107A (en) Soft magnetic thin film
JPH0513223A (en) Magnetic head