JPS5969970A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5969970A
JPS5969970A JP18187082A JP18187082A JPS5969970A JP S5969970 A JPS5969970 A JP S5969970A JP 18187082 A JP18187082 A JP 18187082A JP 18187082 A JP18187082 A JP 18187082A JP S5969970 A JPS5969970 A JP S5969970A
Authority
JP
Japan
Prior art keywords
type region
resistor layer
gate
type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18187082A
Other languages
Japanese (ja)
Inventor
Yoshihide Nakamura
吉秀 中村
Kenjiro Asano
浅野 健二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP18187082A priority Critical patent/JPS5969970A/en
Publication of JPS5969970A publication Critical patent/JPS5969970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7404Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device
    • H01L29/7408Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device the device being a capacitor or a resistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To control the gate current value of a semiconductor device to the demanded largeness by a method wherein in addition to a regular current path to pass through P-N junction in a bulk, a by-pass gate current path according to a resistor layer is formed in parallel therewith to enlarge the apparent gate current, gate sensitivity is made as variable, and the resistance value of the resistor layer is controlled. CONSTITUTION:A selectively formed N type region 5 is formed in an island type in a P type region 4. In other words, P-N junction 9' is ended wholly at the main surface. The fine stripe type resistor layer 21 is formed in the type to make nearly a round of both a gate electrode 13 and a cathode electrode 14 between the under parts of both the electrodes 13, 14. The resistor layer 21 thereof is formed by implanting N-type impurities of phosphorus or antimony, for example, shallowly in the P type region 4 according to the ion implantation method. Or it can be formed by forming a polycrystalline silicon layer containing the prescribed concentration of phosphorus or antimony on the P type region 4. Moreover, as the resistor layer 21, the resistor layer connecting between the arbitrary two points under the gate electrode 13 and under the cathode electrode 14 is favorable.

Description

【発明の詳細な説明】 技術分野 この発明は半導体装置に関し、より詳しくは逆阻止3端
子サイリスクや2方向性3端子ザイリスタ等のゲート電
極伺きの3端子サイリスクにおけるゲート電流感度なら
びにその制御に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a semiconductor device, and more particularly to gate current sensitivity and control thereof in a three-terminal thyristor connected to a gate electrode, such as a reverse blocking three-terminal thyristor or a bidirectional three-terminal zyristor.

背景技術 逆阻止3端子サイリスタや2方向性3端子ザイリスタ等
の3 i/:iit子サイリスタは、ゲートに信号を与
えてターン・オンできるため、各種の分腎で広く利用き
れている。
BACKGROUND TECHNOLOGY 3I/:IIT child thyristors, such as reverse blocking three-terminal thyristors and bidirectional three-terminal thyristors, can be turned on by applying a signal to the gate, and are therefore widely used in various kidney systems.

すなわち、逆阻止3端子サイリスタを例に説明すると、
このサイリスタlは第1図および第21図に示す構造を
有する。第1図はサイリスタ1の平面図を示し、第2図
は第1図のn−n線に沿う断面図を示す。図において、
2.はN型の基板領域で、その両主面に全拡散によって
P欄領域3,4が形成され、さらに一方のP型領域4内
にN型領域5が選JR的に形成されている。6,7はN
型領域2と各P型領域3.4との間のPN接合8,9よ
りも深く杉j戊されたメサtf、ii部で、]、0.1
1は前記メいるガラス等の絶縁保、811膜である。1
2 、 ]、 3 、 コ、 4はそれぞれ前記P型領
域3,4およびN型領域5に形成され/と1.アノード
電極、ケート電イ1叙およO・カソード電極である。
In other words, taking a reverse blocking three-terminal thyristor as an example,
This thyristor l has the structure shown in FIGS. 1 and 21. FIG. 1 shows a plan view of the thyristor 1, and FIG. 2 shows a sectional view taken along line nn in FIG. In the figure,
2. is an N-type substrate region, and P column regions 3 and 4 are formed by full diffusion on both main surfaces thereof, and an N-type region 5 is selectively formed in one P-type region 4. 6 and 7 are N
In the mesa tf, ii section, which is deeper than the PN junctions 8, 9 between the type region 2 and each P-type region 3.4, ], 0.1
Reference numeral 1 denotes the 811 film, which is an insulator such as the above-mentioned glass. 1
2, ], 3, ko, and 4 are formed in the P-type regions 3, 4 and N-type region 5, respectively; and 1. The anode electrode, the cathode electrode, and the cathode electrode.

]二組の→ノーイリスタ1を使用する場合は、アノード
電4i阪E、 2とカソード電4永l 4との間に、ア
ノード電極]2が正電位となる所定の電圧を与えておい
て、ゲート電極13とカソード電4di、14間にゲー
ト電流(■oT)を流してターン・オンきせる。
] When using two sets of →noirristors 1, a predetermined voltage is applied between the anode electrode 4, 2 and the cathode electrode 4, so that the anode electrode 2 has a positive potential. A gate current (■oT) is caused to flow between the gate electrode 13 and the cathode electrodes 4di and 14 to turn them on.

また、導通状態のサイリスタlのアノード%m 4im
 ] 2とカソード電イ余14との間に、カソード電イ
命コ−4が正電位となる逆電圧を与えて、ターン・オフ
させる。
Also, the anode %m of the thyristor l in the conductive state 4im
] A reverse voltage is applied between the cathode electrode 2 and the cathode electrode 14 so that the cathode electrode 4 has a positive potential, thereby turning it off.

上記のターン−オン動作において、サイリスタ]、をタ
ーン・オンさせるに必要なゲート亀泥の値が小さい程、
消費電力が小さくなるので、特に電池を電源とするよう
な電子@器においては、この値が1及的に小さい、いわ
ゆる高感度サイリスクが要求される。しかしながら、ケ
ート電流が5μA以rptcもなると、ノイズ等によっ
て誤動作しやすくなるという問題点がある。一方、実際
に18感度ザイリスタのR’ff要そのものは、サイリ
スクの全需要のうちの権く一部であり、大部分はゲート
電流IJ)10〜50μ八程度σ〕、いわゆる中感度サ
イリスクか要求されている。しかるに、高感度サイリス
ク吉中感度サイリスクを全く別の股泪にすることは、原
価高となってψましくないし、中感度づイリスクにおい
ても、用途によって要求さノするゲート屯MC範囲は種
々ある。このため、高感度サイリスクから中感度サイリ
スクまで、若干の変更でカバーできるようなサイリスク
が要望される。
In the turn-on operation described above, the smaller the gate value required to turn on the thyristor,
Since power consumption is reduced, a so-called high-sensitivity risk is required, especially in electronic devices that use batteries as a power source. However, if the gate current exceeds 5 μA rptc, there is a problem that malfunctions are likely to occur due to noise or the like. On the other hand, in reality, the R'ff requirement of the 18-sensitivity Zyristor itself is a significant part of the total demand for the thyristor, and most of it is the gate current IJ) of about 10 to 50 μ8 σ], the so-called medium-sensitivity thyrisk requirement. has been done. However, it would be unreasonable to make the high-sensitivity risk and the medium-sensitivity risk completely different because it would increase the cost, and even for medium-sensitivity risks, there are various gate MC ranges required depending on the application. . Therefore, there is a need for a CyRisk that can cover the range from high sensitivity CyRisk to medium sensitivity CyRisk with a few changes.

発明の開示 この発明は、上記の問題点を解決し、要望を満足できる
半導体装置を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and provide a semiconductor device that can satisfy the demands.

この発明は簡単に白えば、ゲート電流の制御の7’j 
メPc $ l!14 (ト、 3 ;i%子サすリス
クノゲー1−− カソード間、2方向性3り、■子すイ
リスクの第1陽極とカソード間を、バルク内ま/ζはバ
ルク」二に形成した細条状の抵抗層で接続したことを特
徴とするものである。
Simply put, this invention is based on 7'j of gate current control.
Me PC $l! 14 (T, 3; i%) between the cathode, two-way 3, ■ between the first anode and the cathode of the secondary, within the bulk or ζ is the bulk. It is characterized by being connected by a strip-shaped resistance layer.

すなわち、バルク内のP ’N接合を通る正規のゲート
電流路の他に、このゲート電流路に並列に前記抵抗j¥
1によるバイパスゲート電流路を形成して、みかけ上の
ゲート電流を増大し、ゲート惹度を変化するようにし、
しかも前記抵抗層の抵抗値を制御することンCよって、
バイパスケ−1−% it路に流れるゲート電流分を変
えて・ゲート電流値を要求される大きさに制御し得ると
いう作用効果を奏する。
That is, in addition to the normal gate current path passing through the P'N junction in the bulk, the resistor j\ is connected in parallel to this gate current path.
1 to form a bypass gate current path to increase the apparent gate current and change the gate attraction,
Moreover, by controlling the resistance value of the resistance layer,
By changing the amount of gate current flowing through the bypass circuit, the gate current value can be controlled to a required level.

発明を実施する7こめの最良の形態 以下、この発明の実施例を図面を参照して説明する。7 Best Modes for Carrying Out the Invention Embodiments of the present invention will be described below with reference to the drawings.

第3図はこの発明の一実施例の逆阻止3端子ザイリスタ
20の平面図を示し、第4図は第3図のrv−■Igに
沿う断面図を示す。図において、次の点を除いては第1
図および第2図と同様であるため、同一部分ま7il:
は対応部分には同一参照符号をイリシている。第1図お
よび第2図と相違する点は、第1に、P壁領域4内に選
択的に形成されたN型領域5が島状に形成されているこ
とである。換言すれば、PN接合9′が全部上1iJJ
において終端していることである。第2に、ケート′屯
イφ・(13の]・とカソード電極、極14の土との間
に、両電4!&’、 l 3 、 I 4をほぼ一周す
る形状て細条状の抵抗層21が形成されていることであ
る。この抵抗層21は、例えばiJ型不純物であるリン
やアンチモンを、イオンn:、入〃、てP壁領域4内に
浅り1」ち込んで形成される。あるいは、P型領域4十
にリンやアンチモンを所定濃度で含む多結晶ンリニjン
層を形成することによって月蛭成できる。
FIG. 3 shows a plan view of a reverse blocking three-terminal zyristor 20 according to an embodiment of the present invention, and FIG. 4 shows a sectional view taken along the line rv--Ig in FIG. In the figure, the first
Since it is similar to Fig. 2 and Fig. 2, the same parts are included:
The same reference numerals are used for corresponding parts. The first difference from FIGS. 1 and 2 is that the N-type region 5 selectively formed within the P-wall region 4 is formed in the form of an island. In other words, the PN junction 9' is all above 1iJJ
It ends at . Second, between the cathode electrode and the soil of the pole 14, there is a strip-like structure that goes around the electrodes 4!&', l3, and I4. A resistive layer 21 is formed.This resistive layer 21 is formed by implanting, for example, iJ-type impurities such as phosphorus or antimony into the P wall region 4 at a shallow depth of 1". Alternatively, it can be formed by forming a polycrystalline layer containing phosphorus or antimony at a predetermined concentration in the P-type region 40.

より具体的に説明すると、1.4m1oのサイリスク2
0において、P副領域4の表面不純物濃度は1OIs 
atoms /、 オー タテh ルが、ゲート電極1
3とカソード電極14との間の印加電圧、すなわちケ−
ト電圧(v()T)を帆6v一定にした条件のドで、抵
抗層21を設けない場合は、ゲート電流が数μA以下で
ある。これVC対して抵抗層21の長さを3.47鴎、
幅をコ、5μA一定として、ゲート電流稲1.を10μ
Alこしようとする場合は、抵抗層21の比抵抗ρSを
約260”/、にする。同様に、稲、−20μへの場合
はpS中130%にし、■。T−30μへの場合i’j
: P s : 87 rJDK ’a ’iii f
 ル。
To explain more specifically, Cyrisk 2 of 1.4 m1o
0, the surface impurity concentration of the P subregion 4 is 1OIs
atoms/, the outer layer is the gate electrode 1
3 and the cathode electrode 14, that is, the voltage applied between the cathode electrode 14 and the cathode electrode 14.
Under the condition that the gate voltage (v()T) is constant at 6V, and the resistance layer 21 is not provided, the gate current is several μA or less. For this VC, the length of the resistance layer 21 is 3.47mm,
With the width constant at 5 μA, the gate current is 1. 10μ
When using Al, set the specific resistance ρS of the resistance layer 21 to about 260"/. Similarly, when using rice, -20μ, set it to 130% in pS, and ■. When using T-30μ, set i 'j
: P s : 87 rJDK 'a 'iii f
Le.

なお、上記実施例では抵抗1「ご21が、ゲート電(函
13およびカソード電極14をほぼ一周するように杉成
する場合について示したが、ゲート電極13の下とカソ
ード電極14の下゛との間の任意の2点間を結ぶもので
あればよい。
In the above embodiment, the case where the resistor 1 and the resistor 21 are arranged so as to go around the gate electrode (the box 13 and the cathode electrode 14) is shown, Any two points between them may be connected.

さらに、この発明は逆阻1イニ3端子サイリスクのみな
らず、2方向性3端子サイリスタ等の他のサイリスクに
ついても同骸に実施てきる。
Furthermore, the present invention can be applied not only to reverse blocking one-in-three-terminal thyristors but also to other thyristors such as bidirectional three-terminal thyristors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の逆阻止3端子サイリスクを
示し、第1□□□は平面図で、第2図は第1図のB−1
1線に沿う断面図である。第3図および第41メ)はこ
の発明の一実施例である逆阻止3端子サイリスクを示L
1第3図は平面図、第4図は第3図のy−yhに沿う[
1シ「面図である。 2 ・ −導電型領域(N型領域)、 3.4・・ 反対導電型領域(P型領域)、5・・・・
・・第2の一導電型領域(N型領域)、]−2・・ ア
ノード電極、 13 ・・−ゲ − ト γ= 手It 114  ・
・  カ ソ − ・ド′亀イψJ121・ 抵抗層。
Figures 1 and 2 show a conventional reverse-blocking three-terminal circuit. Figure 1 is a plan view, and Figure 2 is B-1 in Figure 1.
FIG. 1 is a cross-sectional view along line 1; Figures 3 and 41) show a reverse-blocking three-terminal circuit that is an embodiment of the present invention.
1 Figure 3 is a plan view, Figure 4 is along y-yh in Figure 3 [
1 is a side view. 2. - conductivity type region (N type region), 3.4... opposite conductivity type region (P type region), 5...
...Second one-conductivity type region (N-type region), ]-2... Anode electrode, 13...-Gate γ= Hand It 114
・Caso ・Do'kame ψJ121・Resistance layer.

Claims (1)

【特許請求の範囲】 1−導電型領域の両主面に反対導電型領域を有し、前記
反対導電型領域の少なくとも一方に第2の一導電型領域
を形成し、前記各反対導電型領域と第2の一導電型領域
とにそれぞれ電極を形成してなる半導体装Wにおいて、 前記第2の一導電型領域が形成された反対導電型領域の
電極と第2の一導電型領域の電極との間を、細条状の抵
抗層で接続したことを特徴とする半導体装置。 2、  ifi記抵抗層が、半導体装置のバルク内に形
成されたイオン注入層である、特許請求の範囲第1項記
載の半導体装置。 3 前記抵抗層が、半導体装置のバルク上に形成された
多結晶ンリコン層である、特許請求の範囲第1項記載の
半導体装置。
[Claims] 1- A conductivity type region has opposite conductivity type regions on both main surfaces, a second one conductivity type region is formed in at least one of the opposite conductivity type regions, and each of the opposite conductivity type regions and a second one-conductivity type region, in which an electrode is formed in the opposite conductivity type region where the second one-conductivity type region is formed, and an electrode in the second one-conductivity type region. A semiconductor device characterized in that a strip-shaped resistance layer is connected between the two. 2. The semiconductor device according to claim 1, wherein the resistance layer is an ion implantation layer formed in the bulk of the semiconductor device. 3. The semiconductor device according to claim 1, wherein the resistance layer is a polycrystalline silicon layer formed on the bulk of the semiconductor device.
JP18187082A 1982-10-15 1982-10-15 Semiconductor device Pending JPS5969970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18187082A JPS5969970A (en) 1982-10-15 1982-10-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18187082A JPS5969970A (en) 1982-10-15 1982-10-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5969970A true JPS5969970A (en) 1984-04-20

Family

ID=16108282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18187082A Pending JPS5969970A (en) 1982-10-15 1982-10-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5969970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235706A2 (en) * 1986-02-27 1987-09-09 Kabushiki Kaisha Toshiba Thyristor having a resistance element coupled to its gate, and method of making the same
JPH0550655U (en) * 1991-12-11 1993-07-02 日本無線株式会社 Button battery holder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387676A (en) * 1977-01-13 1978-08-02 Toshiba Corp Semiconductor control rectifier
JPS5447492A (en) * 1977-09-21 1979-04-14 Nec Corp Thyristor
JPS5556658A (en) * 1978-10-23 1980-04-25 Nec Corp Thyristor
JPS5565461A (en) * 1978-11-10 1980-05-16 Oki Electric Ind Co Ltd Semiconductor switch
JPS5641179A (en) * 1979-09-10 1981-04-17 Mitsubishi Heavy Ind Ltd Liquid dredger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387676A (en) * 1977-01-13 1978-08-02 Toshiba Corp Semiconductor control rectifier
JPS5447492A (en) * 1977-09-21 1979-04-14 Nec Corp Thyristor
JPS5556658A (en) * 1978-10-23 1980-04-25 Nec Corp Thyristor
JPS5565461A (en) * 1978-11-10 1980-05-16 Oki Electric Ind Co Ltd Semiconductor switch
JPS5641179A (en) * 1979-09-10 1981-04-17 Mitsubishi Heavy Ind Ltd Liquid dredger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235706A2 (en) * 1986-02-27 1987-09-09 Kabushiki Kaisha Toshiba Thyristor having a resistance element coupled to its gate, and method of making the same
JPH0550655U (en) * 1991-12-11 1993-07-02 日本無線株式会社 Button battery holder

Similar Documents

Publication Publication Date Title
US4209713A (en) Semiconductor integrated circuit device in which difficulties caused by parasitic transistors are eliminated
US4967256A (en) Overvoltage protector
US3078196A (en) Semiconductive switch
JPS5969970A (en) Semiconductor device
US6552393B2 (en) Power MOS transistor having increased drain current path
KR960000763Y1 (en) Magnetic detection device
US4942312A (en) Integrated-circuit having two NMOS depletion mode transistors for producing stable DC voltage
JPS59104180A (en) Variable capacity diode
JPH01268050A (en) Diffused resistor element
JPH02268462A (en) Semiconductor device
KR930000901B1 (en) Semiconductor device
JPS6338266A (en) Constant-voltage diode
JPS58197760A (en) Semiconductor device
JP2767239B2 (en) Semiconductor device
JPH04130658A (en) Polycrystalline silicon resistor for semiconductor device
JPH0612821B2 (en) Semiconductor device
JPS6298772A (en) Semiconductor device
JP2785797B2 (en) Semiconductor temperature sensor element
JPS616881A (en) Semiconductor temperature sensor element
JPH0728035B2 (en) Semiconductor device
JPH0494572A (en) Lateral type thyristor
JPS593866B2 (en) hand tai souchi no seizou houhou
JPH028916A (en) Constant-voltage circuit
JPH0269970A (en) Electrostatic protection apparatus for integrated circuit
JPS60137054A (en) Semiconductor integrated circuit