JPS616881A - Semiconductor temperature sensor element - Google Patents

Semiconductor temperature sensor element

Info

Publication number
JPS616881A
JPS616881A JP59126322A JP12632284A JPS616881A JP S616881 A JPS616881 A JP S616881A JP 59126322 A JP59126322 A JP 59126322A JP 12632284 A JP12632284 A JP 12632284A JP S616881 A JPS616881 A JP S616881A
Authority
JP
Japan
Prior art keywords
electrodes
type
semiconductor
temperature
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59126322A
Other languages
Japanese (ja)
Other versions
JPH0374004B2 (en
Inventor
Eiji Yamanaka
英二 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP59126322A priority Critical patent/JPS616881A/en
Publication of JPS616881A publication Critical patent/JPS616881A/en
Publication of JPH0374004B2 publication Critical patent/JPH0374004B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a temperature sensor element having novel structure constituted by a semiconductor by making and breaking a conducting path between first and second electrodes by a depletion layer formed to a junction section between a semiconductor layer and a semiconductor region by an ambient temperature. CONSTITUTION:When two Si regions 13 having a conduction type (that is, a P type) reverse to an Si base body 10 are formed at a position between first and second electrodes 11 and 12 in the Si base body 10 so that a clearance is shaped between the regions 13, currents flowing between the first and second electrodes 11 and 12 are reduced. The P type Si regions 13 are floated electrically. When said clearance is narrowed, depletion layers generated in P-N junction sections formed by the two P type regions 13 and the N type base body 10 are overlapped mutually, and the state in which currents do not flow is formed until voltage applied between both electrodes 11 and 12 reaches to a predetermined voltage value. The predetermined voltage value is determined by impurity density (resistivity) in the N type base body 10 and the P type regions 13 and the space of said clearance. Properties of which the voltage value where currents do not flow gradually lowers with the rise of an ambient temperature are utilized.

Description

【発明の詳細な説明】 本発明は所定の温度を検出する温度センサーに関し,特
に半導体にて構成した温度センサー素子に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature sensor for detecting a predetermined temperature, and more particularly to a temperature sensor element made of a semiconductor.

近年,各種センサーの開発が活発化し,温度センサーも
種々の構造のものが開発されている。
In recent years, the development of various sensors has become active, and temperature sensors with various structures have been developed.

本発明の目的は,半導体にて構成した新規な構造の温度
センサー素子を提供するとIKある。
An object of the present invention is to provide a temperature sensor element with a novel structure made of semiconductor.

〔発明の構成〕[Structure of the invention]

本発明によれば,第1導電型の半導体層と,該半導体層
に互に離れた位置に形成された第1及び第2の電極と,
前記半導体層に前記第1及び第2の電極間の位置に形成
された,前記第1導電型とは反対の第2導電型の電気的
に浮遊せる半導体領域とを有し,前記第1及び第2の電
極間に所定の電圧を加えたとき,周囲温度が所定の温度
より低い場合は前記半導体層と前記半導体領域との接合
部分に形成される空乏層が前記第1及び第2の電極間の
導電路を遮断しておシ,前記周囲温度が前記所定の温度
以上の場合は前記空乏層による前記導電路の遮断が解か
れて前記第1及び第2の電極間に電流が流れることを特
徴とする半導体温度センサー素子が得られる。
According to the present invention, a semiconductor layer of a first conductivity type, first and second electrodes formed on the semiconductor layer at positions apart from each other;
an electrically floating semiconductor region of a second conductivity type opposite to the first conductivity type formed in the semiconductor layer at a position between the first and second electrodes; When a predetermined voltage is applied between the second electrodes, if the ambient temperature is lower than a predetermined temperature, a depletion layer formed at the junction between the semiconductor layer and the semiconductor region is connected to the first and second electrodes. If the ambient temperature is equal to or higher than the predetermined temperature, the conductive path is unblocked by the depletion layer and a current flows between the first and second electrodes. A semiconductor temperature sensor element having the following characteristics is obtained.

次に本発明の実施例について図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

捷ず、第2図を参照して本発明の詳細な説明する。Without further ado, the present invention will be described in detail with reference to FIG.

第2図(4)の素子は2例えばN型の81基体10の両
端に第1及び第一−極11及び12が形成された半導体
抵抗である。この半導体抵抗素子は、第1及び第2の電
極】1及び12間に電界を加えて電流を流す構造のもの
で、流れる電流量はSi基体10の比抵抗で制御される
The element shown in FIG. 2(4) is a semiconductor resistor in which first and first electrodes 11 and 12 are formed at both ends of an N-type 81 substrate 10, for example. This semiconductor resistance element has a structure in which an electric field is applied between the first and second electrodes 1 and 12 to flow a current, and the amount of current flowing is controlled by the specific resistance of the Si substrate 10.

第2図(B)のように+S+基体10に第1及び第2の
電極11及び12間の位置に、Si基体10とは反対の
導電型(即ちP型)の2つの81領域、13を。
As shown in FIG. 2(B), two 81 regions 13 of the conductivity type opposite to that of the Si substrate 10 (i.e., P type) are provided on the +S+ substrate 10 at a position between the first and second electrodes 11 and 12. .

相互間に間隙が形成されるように、形成すると。When formed so that a gap is formed between each other.

第1及び第2の電極11及び12間を流れる電流が減少
する。P型Si領域13は電気的に浮遊している。上記
間隙を狭くすると、2つのP型頭域13とN型基体10
とで形成されるPN接合部に発生する空乏層が互に重な
り合い2両電極11及び12間に印加する電圧が所定の
電圧値になる寸では。
The current flowing between the first and second electrodes 11 and 12 is reduced. P-type Si region 13 is electrically floating. When the gap is narrowed, two P-type head areas 13 and an N-type base body 10 are formed.
When the depletion layers generated in the PN junction formed by the two electrodes overlap each other, the voltage applied between the two electrodes 11 and 12 becomes a predetermined voltage value.

電流が流れない状態が形成される。その所定の電圧値は
、N型基体10及びP型頭域13の不純物密度(比抵抗
)と上記間隙の間隔とで決定される。
A state is formed in which no current flows. The predetermined voltage value is determined by the impurity density (specific resistance) of the N-type substrate 10 and the P-type head region 13 and the interval of the gap.

本発明は、第2図(B)の素子において、N型基体10
及びP型頭域13の不純物密度と上記間隙の間隔とをあ
る状態に設定して、第1及び第2の電極11及び12間
に印加する電圧と2本素子の周囲温度との関係を調べた
結果、電流が流れ々い電圧値が9周囲温度の上昇に従っ
て、低下してくるという性質を発見し、利用したもので
ある。
The present invention provides an N-type substrate 10 in the device shown in FIG. 2(B).
The impurity density of the P-type head region 13 and the interval of the gap are set to a certain state, and the relationship between the voltage applied between the first and second electrodes 11 and 12 and the ambient temperature of the two elements is investigated. As a result, they discovered and utilized the property that current flows slowly and the voltage value decreases as the ambient temperature rises.

即ち9本発明による半導体温度センサー素子は。That is, the semiconductor temperature sensor element according to the present invention is as follows.

第1及び第2の電極11及び12間に所定の電圧を加え
たとき1周囲温度が所定の温度より低い場合はN型Si
基板10と2つのP型領域]3とのPN接合部に形成さ
れる空乏層が第1及び第2の電極11及び12間の導電
路を遮断しており5周囲温度が前記所定の温度以上の場
合は前記空乏層による前記導電路の遮断が解かれて第1
及び第2の電極11及び12間に電流が流れることを特
徴とする。
When a predetermined voltage is applied between the first and second electrodes 11 and 12, if the ambient temperature is lower than the predetermined temperature, the N-type Si
The depletion layer formed at the PN junction between the substrate 10 and the two P-type regions 3 blocks the conductive path between the first and second electrodes 11 and 12, and the ambient temperature 5 is higher than the predetermined temperature. In the case of , the conduction path is unblocked by the depletion layer and the first
A current flows between the second electrodes 11 and 12.

本発明による半導体温度センサー素子は、構造的に縦型
電界効果トランジスタ(V−FET )に似ているが1
本発明による半導体温度センサー素子は。
Although the semiconductor temperature sensor element according to the present invention is structurally similar to a vertical field effect transistor (V-FET),
A semiconductor temperature sensor element according to the present invention.

基板10とは反対の導電型の領域13が電気的に浮遊さ
れている2電極の抵抗体(受動素子)であシ・増幅能力
をもたない。つまシ、トランジスタではない。
The region 13 of the conductivity type opposite to that of the substrate 10 is a two-electrode resistor (passive element) in which the region 13 is electrically floating, and has no amplification ability. Sorry, it's not a transistor.

これに対して、 V−FETは3電極能動素子であシ。On the other hand, V-FET is a 3-electrode active element.

もちろん増幅能力をもっており、第3の電極(ダート電
極)は浮遊しておらず、制御の為に電圧が印加される。
Of course, it has an amplification ability, the third electrode (dart electrode) is not floating, and a voltage is applied for control.

なお1本発明による半導体温度センサー素子は。Note that the semiconductor temperature sensor element according to the present invention is as follows.

第3図のように、81基板10の両面に第1及び第2の
電極11及び12を形成すれば、81基板1゜の厚み方
向縦に電流が流れる抵抗体となる。また。
As shown in FIG. 3, if the first and second electrodes 11 and 12 are formed on both sides of the 81 substrate 10, a resistor is formed in which a current flows vertically in the thickness direction of the 81 substrate 1°. Also.

第4図のように、N型Si層1oの片側の面に、第1及
び第2の電極11及び12を作れば、N型81層10に
横方向(Si層10の径方向)に電流が流れる抵抗体と
なる。第4図において、14はP型St基板である。
As shown in FIG. 4, if the first and second electrodes 11 and 12 are formed on one side of the N-type Si layer 1o, a current can be generated in the N-type 81 layer 10 in the lateral direction (in the radial direction of the Si layer 10). becomes a resistor through which the current flows. In FIG. 4, 14 is a P-type St substrate.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

第1図及び第5図はいずれも本発明の実施例による半導
体温度センサー素子を示すものである。
1 and 5 both show semiconductor temperature sensor elements according to embodiments of the present invention.

第5図はP+層3を埋込んだものであり、P+層3とも
のであり、第5図の場合と同様P+層3とP+バンド層
3′とは外部でつながっている。なお、第1図及び第5
図において、工はN+Si基板、2はN一層。
FIG. 5 shows a structure in which the P+ layer 3 is buried, and the P+ layer 3 and the P+ layer 3 are connected to each other externally, as in the case of FIG. 5. In addition, Figures 1 and 5
In the figure, 1 is an N+Si substrate, and 2 is an N single layer.

4はN層である。4 is the N layer.

第1図及び第5図において+ N” S+基板1が第2
図(B)の第1の電極11に対応し、N+層4が第2図
(B)の第2の電極12に対応し、P+層3及びP+ 
、eノド層3′が第2図(B)のP型頭域13に対応す
る。
In Figures 1 and 5, +N''S+ substrate 1 is the second
The N+ layer 4 corresponds to the first electrode 11 in FIG. 2(B), the P+ layer 3 and the P+
, e throat layer 3' corresponds to the P-type head region 13 in FIG. 2(B).

第1図及び第5図には導電路Wを半導体基板の厚み方向
に形成した構造すなわち縦型の例を示したが、第4図に
従って、導電路Wを基板の径方向に形成した構造すなわ
ち横型も可能である。要は。
Although FIGS. 1 and 5 show a structure in which the conductive path W is formed in the thickness direction of the semiconductor substrate, that is, a vertical type example, according to FIG. Horizontal type is also possible. The point is.

導電路の幅WとN一層2の不純物密度との関係を−くす
る必要も無く任意に設計して良い。
There is no need to compromise the relationship between the width W of the conductive path and the impurity density of the N layer 2, and it may be designed as desired.

第6図は本発明の一実施例である第1図の構造の素子に
於て、N一層2の不純物密度N−を2×10110l5
’として一定とした場合に、導電路の幅Wを適当に変化
させた時の室温(25℃)下での素子特性を示す。第1
の電極1と第2の電極4との間に印加される電圧を横軸
に、第1及び第2の電極1及び4間に導電路を通って流
れる電流を縦軸にゾロノドしたものである。導電路幅W
が17μmの場合はぼ400Vまでは電流は流れず(電
気抵抗無限大)。
FIG. 6 shows an example of the present invention in which the impurity density N- of the N layer 2 is set to 2×10110l5 in the device having the structure shown in FIG.
The device characteristics at room temperature (25° C.) are shown when the width W of the conductive path is appropriately changed when the width W is kept constant as . 1st
The horizontal axis is the voltage applied between the electrode 1 and the second electrode 4, and the vertical axis is the current flowing through the conductive path between the first and second electrodes 1 and 4. . Conductive path width W
If the voltage is 17 μm, no current will flow up to approximately 400 V (electrical resistance is infinite).

400V以上で急に電流が流れ始める。又、W=3.0
μmの場合は電圧100Vまでは電流が流れず(電気抵
抗無限大)、100Vを越えると急激に電流が流れ始め
る。すなわち、室温に於る素子の阻止電圧は前者で40
0V、後者で100Vということになる。
Current suddenly begins to flow above 400V. Also, W=3.0
In the case of μm, no current flows (electrical resistance is infinite) up to a voltage of 100V, and when the voltage exceeds 100V, the current begins to flow suddenly. In other words, the blocking voltage of the device at room temperature is 40
0V, the latter 100V.

以上の様にN一層2の不純物密度を一定に保ち、導電路
幅Wを適当に変化させれば室温に於る阻止電圧の値を任
意に選べるのである。
As described above, by keeping the impurity density of the N layer 2 constant and changing the conductive path width W appropriately, the value of the blocking voltage at room temperature can be arbitrarily selected.

さて1次に第6図のW= 1.7 μm (阻止電圧4
00V)の素子に−し、阻止電圧の温度変化を調べたも
のを第7図に示す。w=1.7μm + N−不純物密
度が2×10” cm−3,の素子に於て、素子温度を
変化させながら測定した阻止電圧のデータが示されてい
る。
Now, firstly, in Fig. 6, W = 1.7 μm (blocking voltage 4
FIG. 7 shows the temperature change of the blocking voltage of the device (00V). The data shows the blocking voltage measured while varying the device temperature in a device with w=1.7 μm + N- impurity density of 2×10” cm −3 .

この様に温度により、阻止電圧は種々の値に変化する。In this way, the blocking voltage changes to various values depending on the temperature.

以上の振舞に着目して、導電路の不純物密度N−と2幅
Wとを適当に選ぶことにより、阻止状態(抵抗無限大)
から導通状態へ移るポイント(阻止電圧)を温度によっ
て任意に選ぶことが出来ることから1本発明の様な半導
体温度センサー素子が得られるのである。
Focusing on the above behavior, by appropriately selecting the impurity density N- and the two widths W of the conductive path, a blocking state (infinite resistance) can be achieved.
Since the point (blocking voltage) at which the conductive state changes can be arbitrarily selected depending on the temperature, a semiconductor temperature sensor element such as the present invention can be obtained.

尚1本発明の素子は、メタ)bフレームの先端に貼付け
られ、樹脂封止されてリード線が引出され。
Note that the element of the present invention is attached to the tip of the metab frame, sealed with resin, and the lead wires are drawn out.

検温部分に直付けさせて使用されるものであることは当
然であるー 次に第8図を参照して本発明による半導体温度センサー
素子の使用法を説明する。即ち、第1回動ファン200
と電源(例えばAClooV)との間の接続線に直列に
挿入接続して、恒温槽(室)300内の温度検知用セン
サーとして用いる。恒温槽300内の温度が上昇して所
定の温度に達すると、半導体温度センサー素子100に
電流が流れ(即ち、半導体温度センサー素子100がO
N状態となり)、冷却ファン200が回転して、恒温槽
300内の温度を低下させる。恒温槽300内の温度が
下がれば、半導体温度センサー素子100も再びOFF
となシ、冷却ファン200は回転をストノゾする。
It goes without saying that it is used by directly attaching it to the temperature measuring part.Next, how to use the semiconductor temperature sensor element according to the present invention will be explained with reference to FIG. That is, the first rotating fan 200
It is inserted and connected in series to the connection line between the power supply (for example, AClooV) and used as a temperature detection sensor in the thermostatic chamber (room) 300. When the temperature inside the thermostatic chamber 300 rises and reaches a predetermined temperature, a current flows through the semiconductor temperature sensor element 100 (that is, when the semiconductor temperature sensor element 100 turns O
(N state), the cooling fan 200 rotates, and the temperature inside the constant temperature bath 300 is lowered. When the temperature inside the thermostatic chamber 300 drops, the semiconductor temperature sensor element 100 is also turned off again.
Then, the cooling fan 200 starts rotating.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、半導体にて構成し
た新規な構造の温度センサー素子を得ることができる。
As explained above, according to the present invention, it is possible to obtain a temperature sensor element with a novel structure made of a semiconductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による半導体温度センサー素
子の断面図、第2図〜第4図は本発明の詳細な説明する
だめの素子断面図、第5図は本発明の別の実施例による
半導体温度センサー素子の断面図、第6図は第1図の実
施例の室温における素子特性を示した図、第7図は第1
図の実施例の阻止電圧の温度依存特性を示した図、第8
図は本発明による半導体温度センサー素子の使用例を示
した図である。 1及び11・第1の電極、4及び12・・−第2の電極
、2及び]0・・・N型Si層、3.3’及び13・第
1図      第5図 第6図 i且止電−1[() 阻止電圧() 第2図 (A) (B)
FIG. 1 is a cross-sectional view of a semiconductor temperature sensor element according to an embodiment of the present invention, FIGS. 2 to 4 are cross-sectional views of the element for detailed explanation of the present invention, and FIG. 5 is another embodiment of the present invention. A cross-sectional view of a semiconductor temperature sensor element according to an example, FIG. 6 is a diagram showing the element characteristics at room temperature of the embodiment of FIG. 1, and FIG.
Figure 8 shows the temperature dependence characteristics of the blocking voltage of the embodiment shown in the figure.
The figure is a diagram showing an example of use of the semiconductor temperature sensor element according to the present invention. 1 and 11・first electrode, 4 and 12...-second electrode, 2 and ]0...N-type Si layer, 3.3' and 13・Fig. 1 Fig. 5 Fig. 6 i and Stopping voltage -1 [() Blocking voltage () Figure 2 (A) (B)

Claims (1)

【特許請求の範囲】[Claims] 1、第1導電型の半導体層と、該半導体層に互に離れた
位置に形成された第1及び第2の電極と、前記半導体層
に前記第1及び第2の電極間の位置に形成された、前記
第1導電型とは反対の第2導電型の電気的に浮遊せる半
導体領域とを有し、前記第1及び第2の電極間に所定の
電圧を加えたとき、周囲温度が所定の温度より低い場合
は前記半導体層と前記半導体領域との接合部分に形成さ
れる空乏層が前記第1及び第2の電極間の導電路を遮断
しており、前記周囲温度が前記所定の温度以上の場合は
前記空乏層による前記導電路の遮断が解かれて前記第1
及び第2の電極間に電流が流れることを特徴とする半導
体温度センサー素子。
1. A semiconductor layer of a first conductivity type, first and second electrodes formed on the semiconductor layer at positions apart from each other, and formed on the semiconductor layer at a position between the first and second electrodes. an electrically floating semiconductor region of a second conductivity type opposite to the first conductivity type, and when a predetermined voltage is applied between the first and second electrodes, the ambient temperature increases. If the temperature is lower than the predetermined temperature, the depletion layer formed at the junction between the semiconductor layer and the semiconductor region blocks the conductive path between the first and second electrodes, and the ambient temperature is lower than the predetermined temperature. If the temperature is higher than the temperature, the depletion layer unblocks the conductive path and the first
and a semiconductor temperature sensor element, characterized in that a current flows between the second electrode.
JP59126322A 1984-06-21 1984-06-21 Semiconductor temperature sensor element Granted JPS616881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59126322A JPS616881A (en) 1984-06-21 1984-06-21 Semiconductor temperature sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59126322A JPS616881A (en) 1984-06-21 1984-06-21 Semiconductor temperature sensor element

Publications (2)

Publication Number Publication Date
JPS616881A true JPS616881A (en) 1986-01-13
JPH0374004B2 JPH0374004B2 (en) 1991-11-25

Family

ID=14932313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59126322A Granted JPS616881A (en) 1984-06-21 1984-06-21 Semiconductor temperature sensor element

Country Status (1)

Country Link
JP (1) JPS616881A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002172A1 (en) * 1993-07-07 1995-01-19 Siemens Aktiengesellschaft Temperature sensor with a p-n junction
JPH09280966A (en) * 1996-04-10 1997-10-31 Nec Corp Semiconductor temperature sensor element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129191A (en) * 1975-05-02 1976-11-10 Fujitsu Ltd Semiconductor device
JPS531191A (en) * 1976-05-19 1978-01-07 Basf Ag Catalysts for manufacturing ethylene oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129191A (en) * 1975-05-02 1976-11-10 Fujitsu Ltd Semiconductor device
JPS531191A (en) * 1976-05-19 1978-01-07 Basf Ag Catalysts for manufacturing ethylene oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002172A1 (en) * 1993-07-07 1995-01-19 Siemens Aktiengesellschaft Temperature sensor with a p-n junction
US5821599A (en) * 1993-07-07 1998-10-13 Siemens Aktiengesellschaft Temperature sensor having a p-n junction
JPH09280966A (en) * 1996-04-10 1997-10-31 Nec Corp Semiconductor temperature sensor element

Also Published As

Publication number Publication date
JPH0374004B2 (en) 1991-11-25

Similar Documents

Publication Publication Date Title
KR100471521B1 (en) Power semiconductor devices with a temperature sensor circuit
US6144085A (en) Power transistor device having hot-location and cool-location temperature sensors
JPS5998557A (en) Mos transistor
JP2007511076A5 (en)
JP2003533894A (en) Magnetic field sensor
EP0338516A2 (en) Power MOSFET having a current sensing element of high accuracy
US20210183849A1 (en) Power mos device having an integrated current sensor and manufacturing process thereof
JPH0126181B2 (en)
JPH08167694A (en) Protection circuit for semiconductor device
JP2601143B2 (en) Semiconductor device
JPS616881A (en) Semiconductor temperature sensor element
JP2854900B2 (en) Semiconductor device
JP2002162303A (en) Pressure sensor
KR970053847A (en) Antistatic circuit for semiconductor device and manufacturing method thereof
US6940133B1 (en) Integrated trim structure utilizing dynamic doping
JPH05505061A (en) ESD protection structure with variable voltage stress
JPH01125987A (en) Semiconductor variable capacitance device
JP2002368222A (en) Semiconductor device with overheating detecting function
JPS6024054A (en) Semiconductor device
JPS5821370A (en) Semiconductor device
JPH04130658A (en) Polycrystalline silicon resistor for semiconductor device
JPH07240510A (en) Semiconductor device
JPS61214572A (en) Semiconductor device
JPH03240240A (en) Semiconductor device
JPH0697467A (en) Semiconductor device