JPS60137054A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS60137054A
JPS60137054A JP25053583A JP25053583A JPS60137054A JP S60137054 A JPS60137054 A JP S60137054A JP 25053583 A JP25053583 A JP 25053583A JP 25053583 A JP25053583 A JP 25053583A JP S60137054 A JPS60137054 A JP S60137054A
Authority
JP
Japan
Prior art keywords
region
resistance
type
high concentration
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25053583A
Other languages
Japanese (ja)
Inventor
Takeshi Takanori
高乗 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP25053583A priority Critical patent/JPS60137054A/en
Publication of JPS60137054A publication Critical patent/JPS60137054A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To continuously vary a resistance value by altering the thickness of a depletion layer by forming a high density region which passes a resistance region which passes a resistance region at the front surface of diffusion in a reverse conductive type to a resistance region formed in a semiconductor layer in the resistance region. CONSTITUTION:After an N type buried layer 2 is formed in a P type silicon substrate 1, an N type island region 4 surrounded by a separating P type region 3 at the periphery is formed on the layer 2. Then, a plurality of high density N type regions 6 having a depth reaching the layer 1 at the front surface of diffusion are formed in the region 4. Then, a selectively diffused region is formed in a portion which includes the regions 6 to form a P type resistance region 5. Then, electrodes 7, 8 are formed on the regions 6, 5. A reverse bias is applied between the electrodes 7 and 8, and the resistance value is continuously altered by varying the thickness of a depletion layer of the region 5.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、Pn接合への逆バイアス電圧の印加によっ
て空乏層の厚さが変化することを利用して抵抗の値を変
えることが可能な半導体集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a semiconductor integrated circuit in which the value of resistance can be changed by utilizing the change in the thickness of a depletion layer by applying a reverse bias voltage to a Pn junction. It is related to circuits.

従来例の構成とその問題点 半導体集積回路において、可変抵抗素子の要望が強く、
神々の電気回路に応用が考えられている。
Conventional configurations and their problems In semiconductor integrated circuits, there is a strong demand for variable resistance elements.
Applications are being considered for electrical circuits for the gods.

従来は、第1図に示すように、aとbの2端子間に高抵
抗R,および低抵抗R2とダイオードDの直列接続体が
並列に接続された回路構成をなし、これを半導体基板に
集積化した構造となっている。
Conventionally, as shown in Fig. 1, a circuit configuration was formed in which a series connection body of a high resistance R, a low resistance R2, and a diode D were connected in parallel between two terminals a and b, and this was connected to a semiconductor substrate. It has an integrated structure.

この構造の可変抵抗素子の電圧−電流特性の代表例を第
2図に示す。ダイオードにかかるバイアス電圧が低い場
合および逆バイアスの場合には、ダイオードがOFF状
態であるので可変抵抗素子のON状態となり抵抗値はR
2で決まる値となる。
A typical example of the voltage-current characteristics of a variable resistance element having this structure is shown in FIG. When the bias voltage applied to the diode is low or reverse biased, the diode is in the OFF state, so the variable resistance element is in the ON state and the resistance value is R.
The value is determined by 2.

ところで、この構造では、可変できる抵抗値かで制御で
きない不都合もあった。
However, this structure also has the disadvantage that it cannot be controlled by the variable resistance value.

発明の目的 本発明は、上記の不都合をことごとく排除するで連続的
に変化することを利用して連続的に抵抗値を変えること
古ができる半導体集積回路の提供を目的とするものであ
る。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a semiconductor integrated circuit which eliminates all of the above-mentioned disadvantages and allows the resistance value to be continuously changed by utilizing continuous change.

発明の構成 本発明の半導体集積回路は、−導電形の半導体基板上に
形成された逆導電形の半導体層中にこれとは逆導電形の
抵抗領域が形成され、同抵抗領域内にこれとけ逆導電形
で拡散前面が同抵抗領域を貫通する高濃度領域が形成さ
れ、前記抵抗領域と前記高濃度領域に電極が形成された
構造のものである。この構造によれば、抵抗の実効断面
積が空乏層厚さの変化により変わることができ抵抗の値
を連続的に可変にすることができる。
Structure of the Invention In the semiconductor integrated circuit of the present invention, a resistance region of an opposite conductivity type is formed in a semiconductor layer of an opposite conductivity type formed on a semiconductor substrate of a negative conductivity type, and a resistance region of a conductivity type opposite to the semiconductor layer is formed on a semiconductor substrate of a negative conductivity type. It has a structure in which a high concentration region of opposite conductivity type and a diffusion front penetrating the same resistance region is formed, and electrodes are formed in the resistance region and the high concentration region. According to this structure, the effective cross-sectional area of the resistor can be changed by changing the thickness of the depletion layer, and the value of the resistor can be continuously varied.

実施例の説明 第3図(ajは本発明の半導体集積回路の特徴部分であ
る抵抗領域内に電流方向に対して垂直に複数個の高濃度
のn影領域が抵抗領域を貫通して形成された構造の上面
図、第3図(b)はその上面図のXX′線部の縦断面図
である。本実施例はP形シリコン基板1の中に作り込ま
れたn形の埋め込み層2の上部には周囲がP形の分離領
域3で包囲されたn形の島領域4があり、この島領域4
の中にP形の抵抗領域5が形成され、この抵抗領域内に
拡散前面が抵抗領域を貫通しn形埋め込み層2に達する
高濃度n影領域6が形成され、高濃度n影領域6と抵抗
領域5にそれぞれ電極アと8が設けられている。なお9
は、電極とのオーミックコンタクトをはかる高濃度のオ
ーミック接触層である。
Description of the Embodiment FIG. 3 (aj is a characteristic part of the semiconductor integrated circuit of the present invention in which a plurality of high concentration n-shaded regions are formed perpendicularly to the current direction in the resistor region penetrating the resistor region. FIG. 3(b) is a vertical cross-sectional view taken along line XX' of the top view.This embodiment shows an n-type buried layer 2 formed in a p-type silicon substrate 1. There is an n-type island region 4 surrounded by a P-type isolation region 3 on the upper part of the island region 4.
A P-type resistance region 5 is formed in the resistance region, and a high concentration n shadow region 6 is formed in which the diffusion front penetrates the resistance region and reaches the n type buried layer 2. Electrodes A and 8 are provided in the resistance region 5, respectively. Note 9
is a highly doped ohmic contact layer that makes ohmic contact with the electrode.

次に、−に記の構造を得るための製造方法を第4図〜第
7図を参照して具体的に説明する。なお第4図〜第7図
は、第3図(a)のYY’線部の製造縦断面図である。
Next, a manufacturing method for obtaining the structure shown in (-) will be specifically explained with reference to FIGS. 4 to 7. Note that FIGS. 4 to 7 are manufacturing longitudinal cross-sectional views taken along line YY' in FIG. 3(a).

まず、P形シリコン基板1の中に酸化シリコン膜をマス
クとしてアンチモンSbあるいは砒素ASをスピンオン
法やイオン注入法あるいはカプセル法により選択的にド
ープしてn形埋め込み層2を形成する。こののち、表面
の酸化シリコン膜をすべて除去し、引き続いて表面全体
に比抵抗が0.5〜10ΩCTTIのn形シリコン層を
1〜30μmの厚さにエピタキシャル成長させ、表面に
酸化シリコン膜10を形成する。この酸化シリコン膜1
oをマスクとしてn形埋め込み層2を包囲する領域にボ
ロンBを選択的にドープしてP形分離領域3を作り込み
島領域4を形成する(第4図)。
First, an n-type buried layer 2 is formed in a P-type silicon substrate 1 by selectively doping antimony Sb or arsenic AS by a spin-on method, an ion implantation method, or a capsule method using a silicon oxide film as a mask. After this, all the silicon oxide film on the surface is removed, and then an n-type silicon layer with a resistivity of 0.5 to 10 ΩCTTI is epitaxially grown on the entire surface to a thickness of 1 to 30 μm to form a silicon oxide film 10 on the surface. do. This silicon oxide film 1
Boron B is selectively doped into a region surrounding the n-type buried layer 2 using the mask 0 as a mask to form a p-type isolation region 3 and an island region 4 (FIG. 4).

次に、島領域4内にリンpff:イオン注入法あるいは
熱拡散法により選択的に拡散させ拡散前面がn形埋め込
み層2に達する深さの高濃度n影領域6を複数個形成す
る(第5図)。なおこの拡散工程は、トランジスタのコ
レクタ抵抗減少のためのコレクタウオール領域形成と同
時になされる。
Next, a plurality of high-concentration n shadow regions 6 are formed in the island region 4 by selectively diffusing phosphorus PFF by ion implantation or thermal diffusion to a depth where the diffusion front reaches the n-type buried layer 2. Figure 5). Note that this diffusion step is performed simultaneously with the formation of a collector all region for reducing the collector resistance of the transistor.

この後、酸化シリコン膜10を全て除去し、新たに酸化
シリコン膜11を形成し、この酸化シリコン膜11をマ
スクとして高濃度n影領域6を含む部分に表面不純物濃
度が1017〜1o”/C1t!の選択拡散領域をボロ
ンで形成しP形の抵抗領域5を形成する。つづいて、高
濃度n影領域6内にトランジスタのエミッタ領域形成と
同時に電極とのオーミックコンタクトをはかるため高濃
度のオーミック接触j曽9を形成する(第6図)。
After that, the silicon oxide film 10 is completely removed, a new silicon oxide film 11 is formed, and using this silicon oxide film 11 as a mask, the surface impurity concentration is 1017 to 1o''/C1t in the portion including the high concentration n shadow region 6. A selective diffusion region ! is formed of boron to form a P-type resistance region 5. Next, a high concentration ohmic film is formed in the high concentration n shadow region 6 in order to form an emitter region of the transistor and at the same time make ohmic contact with the electrode. A contact j so 9 is formed (FIG. 6).

しかるのち、抵抗領域5の両端部分およびオーミック接
触1曽9内に電極を形成するためコンタクト部分を露出
させ、これらの部分に高純度のアルミニウムAβあるい
はシリコンSiを重量比で1%含んだA4を用いて電極
7と8を形成する(第7図)。
After that, the contact portions are exposed to form electrodes at both ends of the resistance region 5 and in the ohmic contact 9, and A4 containing 1% by weight of high-purity aluminum Aβ or silicon Si is applied to these portions. The electrodes 7 and 8 are formed using the same method (FIG. 7).

以上の工程を経て高濃度n影領域6に繋がる電極7に抵
抗電極8よりも高い電圧を印加すると、空乏層が抵抗領
域6内に広がり抵抗の実効断面積を小さくして抵抗値を
大きくできる可変抵抗器が形成される。
When a voltage higher than that applied to the resistive electrode 8 is applied to the electrode 7 connected to the high concentration n shadow region 6 through the above steps, a depletion layer spreads within the resistive region 6, reducing the effective cross-sectional area of the resistor and increasing the resistance value. A variable resistor is formed.

以上説明した本発明の半導体集積回路の製造方法では、
高濃度n影領域6に繋がる電極7を各高濃度n影領域6
の表面にコンタクト窓をあけて取り出しているが、抵抗
の値によってはこの高濃度n影領域60表面にコンタク
ト窓が形成できないほど狭い場合がある。この場合には
、第8図で示すように高濃度n影領域6を抵抗領域6内
に形成すると同時に抵抗領域外にも高濃度n影領域12
を形成し、n形埋め込み層2を通じて両者を接続し、抵
抗領域外の広い高濃度n影領域12にコンタクト窓をお
けて電極7を形成する構造にするとともできる。
In the method for manufacturing a semiconductor integrated circuit of the present invention described above,
The electrodes 7 connected to the high concentration n shadow areas 6 are connected to each high concentration n shadow area 6.
Although a contact window is formed on the surface of the n-shade region 60 to take out the contact window, the contact window may be so narrow that a contact window cannot be formed on the surface of the high concentration n shadow region 60 depending on the resistance value. In this case, as shown in FIG. 8, a high concentration n shadow region 6 is formed within the resistance region 6, and at the same time a high concentration n shadow region 12 is formed outside the resistance region.
It is also possible to form a structure in which the two are connected through the n-type buried layer 2, and the electrode 7 is formed by placing a contact window in a wide high concentration n shadow region 12 outside the resistance region.

以上実施例の半導体集積回路のf1゛4造では、抵抗領
域内に拡散前面が抵抗領域を貫通した高濃度n影領域が
、抵抗の電流方向に対して垂直に存在している。このた
め、高濃度n影領域と抵抗領域間に逆バイアスを印加す
ると抵抗領域が高濃度n影領域より不純物濃度が薄いの
で抵抗領域側に大部分空乏層が広がる。すると抵抗領域
を通過する電流の実効断面積が高濃度n影領域の両側よ
り小さくなる。その結果抵抗値が大きくかつ変化率も大
きくなる。このように逆バイアス電圧を連続的に変化さ
せると空乏層の広がりが連続的に変化し、それによって
抵抗の実効断面積が連続的に変化することにより抵抗価
も連続的に変化させることができる。
In the f1-4 structure of the semiconductor integrated circuit of the above embodiment, a high concentration n shadow region in which the diffusion front penetrates the resistor region exists perpendicularly to the current direction of the resistor. Therefore, when a reverse bias is applied between the high concentration n shadow region and the resistance region, the depletion layer mostly spreads toward the resistance region because the impurity concentration of the resistance region is lower than that of the high concentration n shadow region. Then, the effective cross-sectional area of the current passing through the resistance region becomes smaller than that on both sides of the high concentration n shadow region. As a result, the resistance value becomes large and the rate of change also becomes large. In this way, by continuously changing the reverse bias voltage, the spread of the depletion layer changes continuously, and as a result, the effective cross-sectional area of the resistance changes continuously, and the resistance value can also change continuously. .

また、抵抗の絶対値および抵抗の変化:¥、l−J:第
3図(a)に示すように高濃度n影領域6の長さβa、
ギャップβbおよび個数によって決定することができ、
低抵抗から高抵抗1で高範囲の可変抵抗素子か可能とな
る効果が奏される。
In addition, the absolute value of resistance and the change in resistance: ¥, l-J: As shown in FIG.
It can be determined by the gap βb and the number of pieces,
The effect is that a variable resistance element with a high range from low resistance to high resistance 1 can be used.

また、高濃度n影領域6がn形の島領域4に連繋しCい
るため、抵抗領域の接合面には必ず逆バイアスがかかり
、抵抗電流のリーク電流は発生しない効果も奏される。
Further, since the high concentration n shadow region 6 is connected to the n-type island region 4, a reverse bias is always applied to the junction surface of the resistance region, and there is also an effect that no leakage current of the resistance current occurs.

発明の効果 以上のように、本発明によれば抵抗値を連続的に変化し
うる半導体集積回路を提供できるので、工業的価値が高
い。
Effects of the Invention As described above, the present invention has high industrial value because it can provide a semiconductor integrated circuit whose resistance value can be changed continuously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の可変抵抗素子の回路図、第2図は第1
図の電圧−電流特性図、第3図(2L) (b)はそれ
ぞれ本発明の可変抵抗素子の上面図、断面構造図、第4
図〜第7図は本発明の1実施例にかかる1・・・・・P
形シリコン基板、2・・・・・n形埋め込み層、3・・
・・P形分離領域、4・・・・・n形の島領域、5・・
・P形の抵抗領域、6・・・・・・高濃度n形領域、7
・・・バイアス電圧供給用電極、8・・・・・抵抗電極
、9・・・・・オーミック接触層、10.11・・・・
・・酸化シリコン膜、12・・・・・抵抗領域外のコン
タクト用高濃度n形領域。 代理人の氏名 弁理士 中 屋敷 男 ほか1名第1爾
 a 第2図 第 3 口 第4図
Figure 1 is a circuit diagram of a conventional variable resistance element, and Figure 2 is a circuit diagram of a conventional variable resistance element.
The voltage-current characteristic diagram in Figure 3 (2L) (b) is a top view, cross-sectional structure diagram, and Figure 4 (b) of the variable resistance element of the present invention, respectively.
Figures 1 to 7 are 1...P according to one embodiment of the present invention.
shaped silicon substrate, 2... n-type buried layer, 3...
...P-type isolation region, 4...N-type island region, 5...
・P-type resistance region, 6...High concentration n-type region, 7
... Bias voltage supply electrode, 8 ... Resistance electrode, 9 ... Ohmic contact layer, 10.11 ...
...Silicon oxide film, 12...High concentration n-type region for contact outside the resistance region. Name of agent Patent attorney Nakayashiki Otoko and 1 other person Figure 2 Figure 3 Portion Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1) −導電形の半導体基板上に形成された逆導電形
の半導体層中に一導電形の抵抗領域が形成され、同抵抗
領域内に逆導電形で拡散前面が前記抵抗領域を貫通する
高濃度領域が形成され、前記抵抗領域と前記高濃度領域
に電極が形成されていることを特徴とする半導体集積回
路。
(1) - A resistance region of one conductivity type is formed in a semiconductor layer of an opposite conductivity type formed on a semiconductor substrate of a conductivity type, and a diffusion front surface of the opposite conductivity type penetrates the resistance region within the same resistance region. A semiconductor integrated circuit characterized in that a high concentration region is formed, and electrodes are formed in the resistance region and the high concentration region.
(2)抵抗領域直下の半導体基板中に、これとは逆導電
形の埋め込み層が形成されていることを特徴とする特許
請求の範囲第1項に記載の半導体集積回路。
(2) The semiconductor integrated circuit according to claim 1, wherein a buried layer of a conductivity type opposite to that of the resistive region is formed in the semiconductor substrate directly below the resistive region.
(3) 高濃度領域が埋め込み層と連繋していることを
特徴とする特許請求の範囲第1項又は第2項に記載の半
導体集積回路。
(3) The semiconductor integrated circuit according to claim 1 or 2, wherein the high concentration region is connected to the buried layer.
(4)半導体層の抵抗領域を包囲する部分に、逆導電形
の高濃度領域が作り込まれていることを特徴とする特許 集積回路。
(4) A patented integrated circuit characterized in that a high concentration region of opposite conductivity type is formed in a portion surrounding a resistive region of a semiconductor layer.
(5)埋め込み層が高濃度領域の連結用領域をなし抵抗
領域を包囲する部分に作り込まれた高濃度領域に電極が
形成されていることを特徴とする特許請求の範囲第1項
,第2項.第3項.第4項いずれかに記載の半導体集積
回路。
(5) The buried layer serves as a connection region for the high concentration region and the electrode is formed in the high concentration region formed in a portion surrounding the resistance region. Section 2. Section 3. 4. The semiconductor integrated circuit according to any one of Item 4.
JP25053583A 1983-12-26 1983-12-26 Semiconductor integrated circuit Pending JPS60137054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25053583A JPS60137054A (en) 1983-12-26 1983-12-26 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25053583A JPS60137054A (en) 1983-12-26 1983-12-26 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS60137054A true JPS60137054A (en) 1985-07-20

Family

ID=17209343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25053583A Pending JPS60137054A (en) 1983-12-26 1983-12-26 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS60137054A (en)

Similar Documents

Publication Publication Date Title
JPS5938742B2 (en) transistor
JPS5691478A (en) Manufacture of punch-through type diode
US2993998A (en) Transistor combinations
US3436282A (en) Method of manufacturing semiconductor devices
US4009484A (en) Integrated circuit isolation using gold-doped polysilicon
US3617822A (en) Semiconductor integrated circuit
US3786318A (en) Semiconductor device having channel preventing structure
US3372316A (en) Integral grid and multichannel field effect devices
US3936856A (en) Space-charge-limited integrated circuit structure
JPS60137054A (en) Semiconductor integrated circuit
US4063278A (en) Semiconductor switch having sensitive gate characteristics at high temperatures
JP2627330B2 (en) Voltage drop control diode
JPS5811743B2 (en) Handout Taisouchino Seizouhouhou
US4067038A (en) Substrate fed logic and method of fabrication
JPH02186675A (en) High breakdown strength planar type semiconductor element and manufacture thereof
US4663647A (en) Buried-resistance semiconductor device and fabrication process
JP4046995B2 (en) Optical semiconductor device
JPS6048906B2 (en) Protection circuit for integrated circuit devices
JPS6327865B2 (en)
JPS60123062A (en) Manufacture of semiconductor integrated circuit
GB1017777A (en) Improvements in and relating to semi-conductor devices
JPH0312782B2 (en)
JPH05864B2 (en)
JPH02163940A (en) Semiconductor device
GB1151517A (en) Asymmetrical Triggering Diode