JPS60239804A - Correcting method of positional error - Google Patents

Correcting method of positional error

Info

Publication number
JPS60239804A
JPS60239804A JP9611884A JP9611884A JPS60239804A JP S60239804 A JPS60239804 A JP S60239804A JP 9611884 A JP9611884 A JP 9611884A JP 9611884 A JP9611884 A JP 9611884A JP S60239804 A JPS60239804 A JP S60239804A
Authority
JP
Japan
Prior art keywords
movable part
position error
axis direction
error
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9611884A
Other languages
Japanese (ja)
Inventor
Mitsuo Kinoshita
木下 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP9611884A priority Critical patent/JPS60239804A/en
Publication of JPS60239804A publication Critical patent/JPS60239804A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49195Slide, guideway, robot arm deviation

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To remove a positional error due to the swell or the like of a guide rail by correcting the positional error of a direction rectangular to a prescribed axis in accordance with the current position of the prescribed axis direction. CONSTITUTION:When a movable part is moved in the X axis direction, a positional error shown by an error curve is generated in the Y axis direction due to the swell of the guide rail, a fitting error, or the like. Therefore, the whole strokes of a prescribed axis are divided by a fixed moving distance DELTAl and corresponding relation between each dividing area Ai and the changing variable DELTAPi of the positional error is previously measured and stored in a memory. The prescribed changing variable DELTAPi is read out from the memory in every passage of the movable part through each dividing point and the position of the rectangular direction is corrected by the changing variable DELTAPi. If it is defined that the positional error of the rectangular direction when the movable part is located on an area Ai (i=1, 2,...) is Ei (i=1, 2,...), the changing variable DELTAPi (i=1, 2,...) is expressed by DELTAPi=Ei-Ei-1.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は少なくとも2軸方向に移動制御される可動部の
位置誤差補正方法に係り、特にある軸方向の位置を該軸
に直角な軸方向現在位置に基づいて補正し、これにより
テーブルなどの可動部を案内するガイドレールのうねり
ゃガイドレールの取り付は誤差などに起因する位置誤差
を補正する位置誤差補正方法に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a method for correcting position errors of a movable part whose movement is controlled in at least two axes, and in particular, the present invention relates to a method for correcting a position error of a movable part whose movement is controlled in at least two axes, and in particular, the present invention relates to a method for correcting a position error of a movable part whose movement is controlled in at least two axes, and in particular, to The present invention relates to a position error correction method for correcting a position error caused by an error in the mounting of a guide rail that guides a movable part such as a table by correcting it based on the current position.

〈従来技術〉 数値制御工作機械においては位置決め、あるいは通路制
御時ピッチ誤差などにより位置誤差が発生ずる。このた
め数値制御装置は一般に位置誤差補正機能を有し、たと
えば以下の方法により位置誤差の補正を行っている。す
なわち、機械可動部の各軸毎にその移動範囲を複数の区
間に分割すると共に、たとえばX軸については移動範囲
をAXi(l−1,2,3、・・・)に分割すると共に
、各区間に対応して補正量EXi (i = 1.2.
3、・・)を測定してメモリに記憶させておき、機械可
動部のX軸方向現在位置が所定の区間AXiに進入した
際、該区間に対応する前記補正量EXiを読み出し、該
補止量EXiと機械の移動方向(正方向、負方向)とに
基づいて機械可動部のX軸方向現在位置を補正する。
<Prior Art> In numerically controlled machine tools, position errors occur due to pitch errors during positioning or path control. For this reason, numerical control devices generally have a position error correction function, and for example, position errors are corrected by the following method. That is, the movement range of each axis of the mechanical movable part is divided into a plurality of sections, and for example, for the X axis, the movement range is divided into AXi (l-1, 2, 3, ...), and each The correction amount EXi (i = 1.2.
3,...) is measured and stored in the memory, and when the current position of the mechanical movable part in the X-axis direction enters a predetermined section AXi, the correction amount EXi corresponding to the section is read out and the correction amount EXi is The current position of the machine movable part in the X-axis direction is corrected based on the amount EXi and the moving direction (positive direction, negative direction) of the machine.

このように従来の位置誤差補正方法においては、ある軸
方向の誤差補正量たとえばX軸方向の誤差補正量はX軸
方向の現在位置のみに依存し、X軸に直角な軸すなわち
Y軸その他の軸方向現在位置には無関係であった。
In this way, in the conventional position error correction method, the error correction amount in a certain axis direction, for example, the error correction amount in the X-axis direction, depends only on the current position in the X-axis direction, and It was unrelated to the current axial position.

〈従来技術の欠点〉 ところで、ワイヤ放電加工機などにおいては、可動部で
あるテーブルを案内するガイドレールのうねりや該ガイ
ドレールの取り付は誤差などに起因して、ある軸方向の
現在位置に応して該軸に直角な軸方向に位置誤差が発生
する。
<Disadvantages of the prior art> By the way, in wire electrical discharge machines and the like, due to waviness of the guide rail that guides the table, which is a movable part, and errors in the installation of the guide rail, it is difficult to maintain the current position in a certain axial direction. Accordingly, a positional error occurs in the axial direction perpendicular to the axis.

しかし、従来の誤差補正方法でばかかる位置誤差を補正
する乙とができず高精度の位置決め制御あるいは通路制
御ができなかった。
However, conventional error correction methods cannot correct such positional errors, making it impossible to perform highly accurate positioning control or path control.

〈発明の目的〉 本発明の目的はテーブルを案内するガイドレールのうね
りやガイドレールの取り付は誤差などに起因する位置誤
差を補正して高精度の位置決め、通路制御ができる位置
誤差補正方法を提供することである。
<Object of the Invention> The object of the present invention is to provide a position error correction method that can perform highly accurate positioning and path control by correcting position errors caused by waviness of the guide rail that guides the table and errors in the installation of the guide rail. It is to provide.

本発明の別の目的は所定軸方向の現在位置に基づいて、
該所定軸に直角な軸方向の位置を補正する位置誤差補正
方法を提供することである。
Another object of the present invention is to, based on the current position in a predetermined axial direction,
It is an object of the present invention to provide a position error correction method for correcting a position in an axial direction perpendicular to the predetermined axis.

〈発明の概要〉 本発明の位置誤差補正方法は、所定軸方向への一定移動
距離Δl毎に該所定軸に直角な軸方向に発生する位置誤
差量を予めメモリに記憶させておき、可動部が前記所定
軸方向に前記一定距離移動する毎に、メモリから所定の
位置誤差量を読み出し、該位置誤差量に基づいて所定軸
に直角な方向の可動部位置を補正する。この方法によれ
ば、ガイドレールのうねりやガイドレールの取り付は誤
差に起因する直角方向誤差を補正することができ高精度
の位置決め制御及び通路制御ができる。
<Summary of the Invention> The position error correction method of the present invention stores in advance the amount of position error that occurs in the axial direction perpendicular to the predetermined axis for every fixed movement distance Δl in the predetermined axis direction, and Each time the movable portion moves the predetermined distance in the direction of the predetermined axis, a predetermined positional error amount is read from the memory, and the position of the movable portion in the direction perpendicular to the predetermined axis is corrected based on the positional error amount. According to this method, it is possible to correct the orthogonal direction error caused by the waviness of the guide rail and the error in the installation of the guide rail, and it is possible to perform highly accurate positioning control and path control.

〈実施例〉 第2図は誤差曲線であり、所定軸(X軸)方向の可動部
の位置Xに応じたY軸方向の位置誤差Eを示している。
<Example> FIG. 2 is an error curve, which shows the positional error E in the Y-axis direction depending on the position X of the movable part in the predetermined axis (X-axis) direction.

X軸方向に可動部を移動させるとガイドレールのうねり
やガイドレールの取り付は誤差などに起因して、Y軸方
向に第1図の誤差曲線で示す位置誤差が発生する。
When the movable part is moved in the X-axis direction, a position error as shown by the error curve in FIG. 1 occurs in the Y-axis direction due to the waviness of the guide rail and errors in the installation of the guide rail.

従って、本発明においては所定軸の全ストロークを一定
移動距離Δlて分割すると共に、各分割領域A、(i=
1.2、・・・)と位置誤差変化分△P1との対応関係
を予め測定してメモリに記憶させておき、可動部が各分
割点を通過する毎に所定の位置誤差変化分ΔP1をメモ
リから読み出し、該位置誤差変化分だけ直角方向の位置
を補正するようにしている。尚、位置誤差変化分△P、
(i=1.2、・・弓は、可動部が領域A1い=1.2
、・・・)に位置するときの直角方向位置誤差をE。
Therefore, in the present invention, the entire stroke of a predetermined axis is divided by a constant movement distance Δl, and each divided area A, (i=
1.2,...) and the position error change ΔP1 is measured in advance and stored in the memory, and each time the movable part passes through each division point, the predetermined position error change ΔP1 is calculated. The position is read from the memory and the position in the orthogonal direction is corrected by the change in position error. In addition, the position error change △P,
(i=1.2,...The bow has a movable part in area A1=1.2
,...), the perpendicular position error is E.

(l−1,2、・・・)とすれば次式 6式%(1) で表現される。If (l-1, 2, ...), then the following formula 6 formula% (1) It is expressed as

すなわち、本発明では第3図に示すように可動部の所定
軸方向(たとえばX軸方向)の現在位置をX1現在位置
より原点側に最も近接している分割点の位置をxI、、
換言すれば現在位置が属する領域A1の原点側分割点の
位置座標値をX とするとき、(a)可動部が+X方向
に移動している場合において、(X−xO)が61以上
になる毎に、換言すれば領域A1+、に進入する毎にΔ
Pi + +の補正を行い(ΔP1+、に相当する数の
補正パルスを発生)、かつx、、を領域A、+、の分割
点位置に変更し、又可動部が負方向に移動している場合
において、XがX。以下になる毎に、換言すれば領域 
Aニー+に進入する毎にΔP1の補正を行い、かつX、
を領域A=、の分割点位置に変更する。
That is, in the present invention, as shown in FIG. 3, the current position of the movable part in a predetermined axis direction (for example, the X-axis direction) is defined as
In other words, when the positional coordinate value of the dividing point on the origin side of area A1 to which the current position belongs is defined as In other words, each time it enters the area A1+, Δ
Pi + + is corrected (a number of correction pulses equivalent to ΔP1+ are generated), and x, is changed to the division point position of area A, +, and the movable part is moved in the negative direction. In the case that X is Each time below, in other words, the area
Each time it enters A knee +, it corrects ΔP1, and
is changed to the dividing point position of area A=.

第1図は本発明の位置誤差補正方法を実現する装置のブ
ロック、第4図は位置誤差補正の処理の流れ図である。
FIG. 1 is a block diagram of an apparatus for implementing the position error correction method of the present invention, and FIG. 4 is a flowchart of the position error correction process.

第1図において、11は数値制御装置、12はNCテー
プ13からNCデータを読み取るNCデータ読取装置、
14はパルス分配器、15は補正パルス発生回路、16
xはパルス分配器からのX軸方向の分配パルスx2と補
正パルス発生口#115からのX軸方向の補正パルスx
cを合成する合成回路、16YはY軸方向の分配パルス
Y。
In FIG. 1, 11 is a numerical control device, 12 is an NC data reader that reads NC data from an NC tape 13,
14 is a pulse distributor, 15 is a correction pulse generation circuit, 16
x is the distribution pulse x2 in the X-axis direction from the pulse distributor and the correction pulse x in the X-axis direction from the correction pulse generation port #115
16Y is the distribution pulse Y in the Y-axis direction.

と補正パルス発生回路15から発生するY軸方向の補正
パルスYcを合成する合成回路、17X、17Yはサー
ボ回路、18X、18Yはモータ、19X、19Yはボ
ールネジ、20はテーブルなどの可動部である。
17X and 17Y are servo circuits, 18X and 18Y are motors, 19X and 19Y are ball screws, and 20 is a movable part such as a table. .

(a)予めX軸方向へ可動部を移動させると共に、一定
移動距離Δp毎のY軸方向位置誤差E、を測定し、該誤
差E1を用いて位置誤差補正方法P。
(a) A position error correction method P in which the movable part is moved in the X-axis direction in advance, and the Y-axis direction position error E is measured for every fixed movement distance Δp, and the error E1 is used.

を(1)式よりめ、位置誤差変化分ΔP1と領域A、の
番号lとの対応関係を不揮発性メモIJ11aに記憶さ
せておく。又、同様にY軸方向への一定移動距離毎にX
軸方向位置誤差を測定して位置誤差変化分を不揮発性メ
モIJ 11 aに記憶させておく。
From equation (1), the correspondence between the positional error change ΔP1 and the number l of area A is stored in the nonvolatile memo IJ11a. Similarly, for every fixed movement distance in the Y-axis direction,
The axial position error is measured and the change in position error is stored in the non-volatile memo IJ 11a.

(b)この状態て可動部を原点復帰させ、しかる後操作
パネル上のスタート釦を押圧すればプロセッサllbは
、1→lとすると共に、Ncデータ読取装置12をして
NCテープ13から1ブロック分のNCデータを読み取
らす。
(b) In this state, if the movable part is returned to its origin and the start button on the operation panel is pressed, the processor llb will change from 1 to l, and the NC data reader 12 will read one block from the NC tape 13. Read the NC data for the minute.

(c)プロセッサllbはROM11cに記憶されてい
る制御プログラムの制御により読み取ったNCデータが
プログラムエンドを示すMO2であるかをどうかを判別
し、MO2であればNC処理を終了する。
(c) Under the control of the control program stored in the ROM 11c, the processor llb determines whether the read NC data is MO2 indicating the end of the program, and if it is MO2, ends the NC process.

(d)一方、プロセッサ11bは読み取ったNCデータ
がプログラムエンドを示すMO2てなく位置決め指令あ
るいは通路指令データであれば以下の通路制御処理を実
行する。すなわち、各軸のインクリメンタル値(2軸制
御であればX i 、 Yi)をめ、ついで該インクリ
メンタル値と指令送り速度とから所定の短い時間へTの
間に各軸方向へ移動すべき移動量ΔX1△Yをめ、これ
らΔX1ΔYをΔT毎にパルス分配器14に入力する。
(d) On the other hand, if the read NC data is not MO2 indicating the program end but is positioning command or path command data, the processor 11b executes the path control process described below. In other words, determine the incremental value of each axis (X i , Yi in case of two-axis control), and then calculate the amount of movement to be made in each axis direction during a predetermined short period of time T from the incremental value and the command feed rate. ΔX1ΔY, and these ΔX1ΔY are input to the pulse distributor 14 every ΔT.

パルス分配器14は入力データ(ΔX1△Y)に基づい
−(パルス分配演算を行って各軸分前パルスX、、Y、
を発生し、該分配パルスをサーボ回路17X、17Yに
入力し、モータ18X、18Yを回転させる。これによ
り、ボールネジ19x119Yが回転し、可動部20は
ボールネジの回転方向に応じた方向に移動する。
The pulse distributor 14 performs -(pulse distribution calculation) based on the input data (ΔX1ΔY) to generate the previous pulses X, Y,
The distributed pulses are input to the servo circuits 17X and 17Y, and the motors 18X and 18Y are rotated. As a result, the ball screw 19x119Y rotates, and the movable part 20 moves in a direction corresponding to the rotational direction of the ball screw.

又、プロセッサllbは61秒毎に各軸方向の現在位置
X1yを次式 %式%(2) (3) により更新し、更に各軸の残移動量X1、y、を次X−
ΔX−+x、−・・ (4) y、−△Y→y1・・・ (5) により更新しく Xr % Y rの初期値は各軸イン
クリメンタル値である)、次式 %式%(6) が成立するかどうかを判別する。尚、Xz’Jz X、
、ylはRAM11dに記憶されている。
In addition, the processor llb updates the current position X1y in each axis direction every 61 seconds using the following formula % formula % (2) (3), and further updates the remaining movement amount X1, y of each axis by the next X-
ΔX-+x, -... (4) y, -△Y→y1... (5) Xr % Y The initial value of r is an incremental value for each axis), the following formula % formula % (6) Determine whether it holds true. Furthermore, Xz'Jz
, yl are stored in the RAM 11d.

(6)式が満たされれば、現ブロックのパルス分配処理
が終了したものとして次のブロックのNCデータを読み
取らせ該NCデータに基づいて上記処理を繰り返す。
If the formula (6) is satisfied, it is assumed that the pulse distribution processing of the current block has been completed, and the NC data of the next block is read and the above processing is repeated based on the NC data.

(e)一方、(6)式が満たされていなければ、プロセ
ッサllbは以下の処理を行う。尚、以下においては可
動部がX軸方向へ移動している場合におけるY軸方向の
位置誤差補正について説明するが、可動部がY軸方向へ
移動している場合におけるX軸方向の位置誤差補正も同
様に行われる。
(e) On the other hand, if equation (6) is not satisfied, processor llb performs the following processing. In addition, in the following, we will explain position error correction in the Y-axis direction when the movable part is moving in the X-axis direction, but position error correction in the X-axis direction when the movable part is moving in the Y-axis direction will be explained. is also done in the same way.

さて、(6)式が満たされていなければプロセッサ11
bは次式 x−x≧0・・・・・ (7) が成立するかどうかを判別する。尚、X−よ第3図に示
すように現在位置Xより原点側に最も近接している分割
点のX軸方向位置座標値、換言すれば現在位置Xが属す
る領域をA、の原点側分割点のX軸方向位置座標値であ
る。
Now, if equation (6) is not satisfied, the processor 11
b determines whether the following formula x-x≧0 (7) holds true. As shown in Figure 3, X- is the X-axis position coordinate value of the dividing point closest to the origin side than the current position X, in other words, the area to which the current position X belongs is divided into the origin side of This is the position coordinate value of the point in the X-axis direction.

(f)(7)式が満たされていない場合には、可動部2
0が−X方向に移動して分割点を通過したものとしてプ
ロセッサllbは不揮発性メモリ11aから領域番号l
に対応する位置誤差変化分ΔP、を読み出し、該位置誤
差変化分△P、に相当する数の補正パルスYcをY軸所
定方向に出力することを補正パルス発生回路15に指示
する。又、プロセッサllbは次式 %式%(8) (9) によりlとX を更新し、パルス分配処理を続行する。
(f) If formula (7) is not satisfied, the movable part 2
Assuming that 0 has moved in the -X direction and passed the dividing point, processor llb retrieves area number l from nonvolatile memory 11a.
, and instructs the correction pulse generation circuit 15 to output a number of correction pulses Yc corresponding to the position error change ΔP in a predetermined Y-axis direction. In addition, processor llb updates l and

尚、補正パルスの方向(符号)は以下のように決定され
る。すなわち、位置誤差変化分ΔP1が正で、移動方向
が+X方向であればY軸方向補正パルスYcの符号をマ
イナス、移動方向が−X方向であれば補正パルスYCの
符号をプラス、又位置誤差変化分△P1が負で、移動方
向が+XX回向あれば補正パルスYcの符号をプラス、
移動方向が−X方向であれば補正パルスYcの符号をマ
イナスにする。
Note that the direction (sign) of the correction pulse is determined as follows. That is, if the position error change ΔP1 is positive and the moving direction is +X direction, the sign of the Y-axis correction pulse Yc is negative, and if the moving direction is -X direction, the sign of the correction pulse YC is positive, and the position error is If the change △P1 is negative and the moving direction is +XX turns, add the sign of the correction pulse Yc,
If the moving direction is the -X direction, the sign of the correction pulse Yc is made negative.

補正パルス発生回路15は数値制御装置11から補正パ
ルス発生指示(補正軸、その方向、補正パルス数)があ
れば所定の符号付き補正パルスYを指示された数発生す
る。この補正パルスY。は合成回路16Yを介してサー
ボ回路17Yに入力され、これにより可動部のY軸方向
位置はΔP1だけ補正される乙とになる。
When the correction pulse generation circuit 15 receives a correction pulse generation instruction (correction axis, its direction, and number of correction pulses) from the numerical control device 11, it generates the specified number of predetermined signed correction pulses Y. This correction pulse Y. is input to the servo circuit 17Y via the synthesis circuit 16Y, whereby the position of the movable part in the Y-axis direction is corrected by ΔP1.

(う)一方、(7)式が満1こされている場合にはプロ
セッサllbは次式 %式%(10) が満たされているかどうかを判別する。
(C) On the other hand, if the expression (7) is satisfied, the processor llb determines whether the following expression % (10) is satisfied.

(h)(10)式が満たされていなければ上記パルス分
配処理を繰り返す。
(h) If equation (10) is not satisfied, repeat the pulse distribution process.

(i)一方、(10)式が満たされていれば可動部が+
X方向に移動して領域A、の分割点を通過したものとし
て、プロセッサllbは次式%式%(11) により1を更新し、不揮発性メモ+J 11 aから領
域番号1に対応する位置誤差補正方法P、を読み出し、
補正パルス発生回路15にY軸所定方向にΔP、に相当
する数の補正パルスY。を出力する乙とを指示すると共
に、次式 %式%(12) によりX、を更新し、上記通路制御処理を繰り返す尚、
補正パルス発生回路15は数値制御装置11からの補正
パルス発生指示により所定数の補正パルスY を合成回
路16Yに出力し、Y軸方向の位置誤差を補正する。
(i) On the other hand, if equation (10) is satisfied, the movable part is +
Assuming that it has moved in the X direction and passed through the dividing point of area A, processor llb updates 1 using the following formula % formula % (11), and calculates the position error corresponding to area number 1 from the nonvolatile memo +J 11 a. Read the correction method P,
A number of correction pulses Y corresponding to ΔP are supplied to the correction pulse generation circuit 15 in a predetermined direction of the Y axis. At the same time as instructing B to output , X is updated using the following formula % formula % (12), and the above passage control process is repeated.
The correction pulse generation circuit 15 outputs a predetermined number of correction pulses Y to the synthesis circuit 16Y in response to a correction pulse generation instruction from the numerical control device 11, thereby correcting the position error in the Y-axis direction.

以上実施例では(2)、(3)式で与えられるXあるい
はyを用いて分割点を通過したかいなかを判別しtコが
、可動部の実際の位置を検出し、該位置を用いて分割点
を通過したかどうかを判別してもよい。又、各領域A1
の領域番号lに対応させプ7t’yiil傾至亦JI/
徘へp ん言ν債す^温をtこついて説明したが、△P
1に代えて(1)式のElを記憶させ、プロセッサをし
て(1)式の演算を行わせて△P1を算出するようにす
ることもてきる。
In the above embodiment, X or y given by equations (2) and (3) is used to determine whether the dividing point has been passed or not, and the controller detects the actual position of the movable part and uses this position to determine whether the dividing point has been passed or not. It may also be determined whether the dividing point has been passed. Also, each area A1
7t'yiil inclination 亦JI/
I tried to explain to him that I had to talk to him, but △P
It is also possible to store El in equation (1) instead of 1 and have the processor perform the calculation in equation (1) to calculate ΔP1.

〈発明の効果〉 以上説明したように本発明によれば、所定軸方向の現在
位置に応じて該所定軸に直角な方向の位置誤差を補正す
るように構成したから、ガイドレールのうねりやガイド
レールの取り付は誤差などに起因する位置誤差をなくす
乙とができ高精度の。 位置決めあるいは通路制御を行
うことができる。
<Effects of the Invention> As explained above, according to the present invention, since the position error in the direction perpendicular to the predetermined axis is corrected according to the current position in the predetermined axis direction, the waviness of the guide rail and the guide rail are corrected. The rail installation can be performed with high precision to eliminate positional errors caused by errors. Positioning or path control can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実現する装置のブロック図、第2
図は誤差曲線図、第3図は補正方法の説明図、第4図は
本発明にかかる位置誤差補正方法の処理の流れ図である
。 11・・・数値制御装置、lla・・・不揮発性メモリ
、1]b・・・プロセッサ、14・・・パルス分配器、
15・・・補正パルス発生回路、16X、16Y・・・
合成回路、17X、17Y・・・サーボ回路、18X、
18Y・・・モータ、19X、19Y・・・ボールネジ
、20・・・可動部 特許出願人 ファナック株式会社 代理人 弁理士 齋藤千幹 第1図 第2図 第3図 第4図
Fig. 1 is a block diagram of an apparatus for implementing the method of the present invention;
This figure is an error curve diagram, FIG. 3 is an explanatory diagram of the correction method, and FIG. 4 is a flowchart of processing of the position error correction method according to the present invention. 11... Numerical control device, lla... Nonvolatile memory, 1]b... Processor, 14... Pulse distributor,
15... Correction pulse generation circuit, 16X, 16Y...
Composite circuit, 17X, 17Y...servo circuit, 18X,
18Y...Motor, 19X, 19Y...Ball screw, 20...Movable part Patent applicant Fanuc Corporation representative Patent attorney Chiki Saito Figure 1 Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも2軸方向へ移動制御される可動部の位
置誤差補正方法において、所定軸方向への一定移動距離
△l毎に他の軸方向に発生する位置誤差量を記憶させて
おき、可動部が所定軸方向へ前記一定距離移動する毎に
前記位置誤差量に基いて他の軸方向の位置を補正するこ
とを特徴どする位置誤差補正方法。 ゛
(1) In a position error correction method for a movable part whose movement is controlled in at least two axial directions, the amount of position error occurring in other axial directions is memorized for each fixed movement distance Δl in a predetermined axial direction, and the movable part is A position error correction method, comprising: correcting a position in another axis direction based on the position error amount each time the part moves the predetermined distance in the predetermined axis direction.゛
(2)補正パルスを発生して前記他の軸方向の位置誤差
を補正すると共に、位置誤差量が正の場合には、所定軸
正方向へ可動部が移動するとき補正パルスの符号を負と
し、負方向へ移動するとき正とし、又前記位置誤差量が
負の場合には、所定軸正方向へ可動部が移動するとき補
正パルスの符号を正とし、負方向へ移動するとき負とす
ることを特徴とする特許請求の範囲第(1)項記載の位
置誤差補正方法。
(2) A correction pulse is generated to correct the position error in the other axis direction, and if the position error amount is positive, the sign of the correction pulse is set to be negative when the movable part moves in the positive direction of the predetermined axis. , the sign of the correction pulse is positive when moving in the negative direction, and when the position error amount is negative, the sign of the correction pulse is positive when the movable part moves in the positive direction of the predetermined axis, and negative when moving in the negative direction. A position error correction method according to claim (1).
(3)可動部の所定軸方向の現在位置をXとすると共に
、全ストロークをΔlで分割し、現在位置から原点側に
最も近い分割点の位置をX とする時、 x<x、になったとき負方向移動に基づく補正パルスを
発生すると共に、次式 %式% によりX。を更新し、 x−xO)Δlζこなった時正方向移動に基づく補正パ
ルスを発生すると共に、次式 %式% によりX、を更新する乙とを特徴とする特許請求の範囲
第(2)項記載の位置誤差補正方法。
(3) When the current position of the movable part in the predetermined axis direction is X, the entire stroke is divided by Δl, and the position of the dividing point closest to the origin from the current position is X, then x<x. When this occurs, a correction pulse is generated based on the movement in the negative direction, and X is calculated using the following formula. Claim (2) is characterized in that x-xO)Δlζ is changed, a correction pulse is generated based on the movement in the positive direction, and X is updated by the following formula %. Position error correction method described in section.
JP9611884A 1984-05-14 1984-05-14 Correcting method of positional error Pending JPS60239804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9611884A JPS60239804A (en) 1984-05-14 1984-05-14 Correcting method of positional error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9611884A JPS60239804A (en) 1984-05-14 1984-05-14 Correcting method of positional error

Publications (1)

Publication Number Publication Date
JPS60239804A true JPS60239804A (en) 1985-11-28

Family

ID=14156465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9611884A Pending JPS60239804A (en) 1984-05-14 1984-05-14 Correcting method of positional error

Country Status (1)

Country Link
JP (1) JPS60239804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337402A (en) * 1986-08-01 1988-02-18 Mitsui Seiki Kogyo Co Ltd Method for correcting three-dimensional position in numerically controlled machine tool
JPS6457309A (en) * 1987-08-27 1989-03-03 Kiriu Machine Mfg Method for correcting traveling of numerical controller
JPH0432906A (en) * 1990-05-23 1992-02-04 Makino Milling Mach Co Ltd Pitch error correcting method of multi-axial numerically controlled machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337402A (en) * 1986-08-01 1988-02-18 Mitsui Seiki Kogyo Co Ltd Method for correcting three-dimensional position in numerically controlled machine tool
JPS6457309A (en) * 1987-08-27 1989-03-03 Kiriu Machine Mfg Method for correcting traveling of numerical controller
JPH0432906A (en) * 1990-05-23 1992-02-04 Makino Milling Mach Co Ltd Pitch error correcting method of multi-axial numerically controlled machine

Similar Documents

Publication Publication Date Title
KR880002554B1 (en) Numerially controlled cutting method
KR101485932B1 (en) Method and device for generating tool path
US5237509A (en) Method and apparatus for compensating positional errors
US4649252A (en) Wire-cut electric discharge machining method
CN100480917C (en) Method and apparatus for driving numerically controlled machine to execute space circular arc interpolation process
US4963805A (en) Numerical control apparatus for machining non-circular workpieces
EP0068027B1 (en) Shape correcting system for wire cut electric discharge machining
US5031107A (en) Numerical control apparatus for machining non-circular workpieces
JP3552753B2 (en) Wire squareness control method
JPS60239804A (en) Correcting method of positional error
US4521721A (en) Numerical control method
KR0161010B1 (en) Modification method of moving path in accordance with diameteral change of work
EP0413825B1 (en) Involute-interpolation speed control method
EP0451795A2 (en) Numerical control unit with compensation for offset error
US3731175A (en) Servo system for velocity and position control
JPS6234754A (en) Surface machining method
JPS6234753A (en) Surface machining method
US4276792A (en) Method for continuous path control of a machine tool
JPS60230203A (en) Position error correcting method
JPS6154528B2 (en)
JPS6337402A (en) Method for correcting three-dimensional position in numerically controlled machine tool
JPH02156308A (en) Numerical controller
JPS62130411A (en) Numerical control method
JPH04176516A (en) Second cut machining method and second cut machining controller in wire electric discharge machining
JPS62130412A (en) Numerical control method