JPS5961078A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS5961078A
JPS5961078A JP57172062A JP17206282A JPS5961078A JP S5961078 A JPS5961078 A JP S5961078A JP 57172062 A JP57172062 A JP 57172062A JP 17206282 A JP17206282 A JP 17206282A JP S5961078 A JPS5961078 A JP S5961078A
Authority
JP
Japan
Prior art keywords
type
layers
reaction chamber
reaction
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57172062A
Other languages
Japanese (ja)
Inventor
Masaru Yamano
山野 大
「しぶ」谷 尚
Takashi Shibuya
Masaru Takeuchi
勝 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57172062A priority Critical patent/JPS5961078A/en
Publication of JPS5961078A publication Critical patent/JPS5961078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/206Particular processes or apparatus for continuous treatment of the devices, e.g. roll-to roll processes, multi-chamber deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance the photoelectric conversion efficiency by obtaining an I-type layer of good film quality by a method wherein a plurality of I-type layers of a photovoltaic device are formed respectively in independent reaction chambers. CONSTITUTION:A pluraity of P-I-N junction type power generation regions 1-3 composed of amorphous semiconductors are laminated in the direction of light incidence, and accordingly the photovoltaic device wherein the optical forbidden band gaps of the I-type (intrinsic) layers I1-I3 of each region 1-3 are made different is manufactured. At the time, each I-layer is formed respectively in independent reaction chambers, and layers of the same conductivity type are formed in a common reaction chamber. In other words, e.g., the reaction chambers 16, 18, and 20 are decided as the forming chambers for the I1, I2, and I3 layers respectively, P type layers P1-P3 are formed commonly in the reaction chamber 17, and N type layers N1-N3 are formed commonly in the reaction chamber 19. Amorphous semiconductor layers are formed by moving a substrate 4 to each reaction chamber 16-20. Thereby, the mixture of reaction gas does not occur, and the film of good quality can be formed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は非晶質半導体を用いた光起電力装置の製造方法
(こ関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a photovoltaic device using an amorphous semiconductor.

(ロ)従来技術 低コスト化を実現する非晶質半導体を用いた光起1−力
装前は従来の単結晶半導体から成るそれに較べ此の種装
置に於いて最も重要な光電変換効率の点で劣っており、
何らかの改善か求められている。この光電変換効率の低
い主たる原因の一つとして、光起電力装置が例えば非晶
質シリコンから成る場合、発電に寄与する分光感度波長
帯域が、450nm乃至7QQnmと狭く、特に単結晶
シリコンに比して長波長側の光を有効に利用していない
点が挙げられる。
(b) Conventional technology A photovoltaic device using an amorphous semiconductor that realizes cost reduction 1-The most important point in this type of device is photoelectric conversion efficiency, compared to a conventional device made of a single crystal semiconductor. It is inferior in
Some kind of improvement is required. One of the main reasons for this low photoelectric conversion efficiency is that when a photovoltaic device is made of, for example, amorphous silicon, the spectral sensitivity wavelength band that contributes to power generation is narrow, from 450 nm to 7QQ nm, especially compared to single crystal silicon. However, the problem is that the light on the longer wavelength side is not used effectively.

断る点に鑑み第1図に示す如き、非晶質半導体からなる
複数のPIN接合型発電領域(1)、(2)、(3)を
光入射方向に複数積層すると共1こ、各発電領域(1)
、(2)、(3)の主に発電作用するI型(真性)@σ
す(12) 、(13)の光学的禁止帯(+g lio
 p tを光入射側より順次小さくした積R型の光起電
力装置が提案されている。即ち、発fftに寄与する分
光感度波長帯域は各発電領域(1)、(2)、(3)の
光学的禁止帯幅Eoptに依存するため1こ、該光学的
禁止帯幅Eoptか光入射側から順次それが小さくなる
配置にあると、入射光エネルギは、その短波長側のもの
か装置の比較的浅い領域で有効に発電に寄与すると共に
、長波長側のものが装置の浅い領域で吸収されることな
く装置の比較的深い領域1こまで進んでそこで有効に発
電に寄与する結果、装置全体として大きな光電変換効率
が得られるう 尚、第1図(こ於いて、(4)はガラス・耐熱プラスチ
・リフ等の司光性且つ絶縁abの基板、(5)は該基板
(4)」二に11ニ成された酸化スズ等の透明な第1電
極、(6)は積ルラされた第1、第2、第5の発電領域
(1)、(2)、(3)を第1゛11Lt!割5)と共
に挟持するアルミニウム等の第27ji極である。そ1
.−C,上記第1、第2、第6の発電領域(1)、(2
)、(3)は夫々光入射側から第1、第2、第3のP型
層(Pl)、(P2)、(P5)、l型層(11)、(
12)、(I3)及びN型層(N1)、(N2)、(N
3)を持〕でいる。
In view of the above points, as shown in FIG. (1)
, (2), (3), type I (intrinsic) @σ, which mainly acts as a power generator
(12), (13) optical forbidden band (+g lio
A product R type photovoltaic device in which p t is made smaller sequentially from the light incidence side has been proposed. That is, since the spectral sensitivity wavelength band contributing to the light emission fft depends on the optical forbidden band width Eopt of each power generation region (1), (2), and (3), the optical band gap Eopt or the light incidence If the incident light energy is arranged so that it decreases sequentially from the side, the energy of the incident light on the short wavelength side will effectively contribute to power generation in a relatively shallow area of the device, and the energy on the long wavelength side will contribute effectively to power generation in the shallow area of the device. As a result of advancing to one relatively deep region of the device without being absorbed and effectively contributing to power generation there, a large photoelectric conversion efficiency can be obtained as a whole of the device. A light-dispersing and insulating AB substrate such as glass, heat-resistant plastic, or the like, (5) a transparent first electrode made of tin oxide or the like formed on the substrate (4), and (6) a laminated aluminum substrate. The 27th electrode is made of aluminum or the like and holds the first, second, and fifth power generation regions (1), (2), and (3) together with the first (11Lt!5). Part 1
.. -C, the first, second, and sixth power generation areas (1), (2
), (3) are the first, second, and third P-type layers (Pl), (P2), (P5), L-type layers (11), (from the light incident side, respectively).
12), (I3) and N-type layers (N1), (N2), (N
3).

周知の如く非晶質半導体は反応ガス雰囲気中でのグロー
放11こより形成することができ、例えばシ97SiH
i+ガス雰囲気中でのグロー放?!1こよりB2の非晶
質シリコン(a−5i)が得られ、斯る雰囲気にヅボラ
ンB2H6を添加することによりP型の1ls1か、ま
たホスフィン1用3を添加することによりN型のa−5
iか夫々得られる。この様に非晶質半導体は反応ガス雰
囲気中でのグロー放電により形成さ1t、しかも不純物
ガスを添加するだけで所望の導電型の制御が可能である
As is well known, an amorphous semiconductor can be formed by glow emission in a reactive gas atmosphere, for example, Si97SiH.
Glow emission in i+ gas atmosphere? ! B2 amorphous silicon (a-5i) is obtained from 1, and by adding duborane B2H6 to such an atmosphere, P-type 1ls1 is obtained, and by adding phosphine 1 and 3, N-type a-5 is obtained.
i can be obtained respectively. In this way, an amorphous semiconductor is formed by glow discharge in a reactive gas atmosphere, and the desired conductivity type can be controlled simply by adding an impurity gas.

従って、上述の如きPIN接合を有する第1、第2、第
3の発電領域(1)、(2)、(3)を積層せしめた光
起電力装置にあっては、第2図の如く単一の反応室(7
)から成る反応装置に於いて、反応室に導入される反応
ガスを切替える方法により形成されるか、若しくは第3
図の如くP型、■型、N型の各層(P+XP20P5)
、(I j)(12)(13)、(N+)(N2)(N
3)を夫々独立したP型反応室(8)、l型反応室(9
)、N型反応室(+01で形成する方法が採られている
っ尚、第2図並びに第3図に於いて、0皿2 はグロー
放電を生起する一対の放電電極、(13)  は反応ガ
ス導入管、(141・は排気管、(15)は各反応室(
8)+9+00)の出入口(こ位置し基板(4)の移動
を可能ならしめる開閉自在のシャ・ツタである。
Therefore, in a photovoltaic device in which the first, second, and third power generation regions (1), (2), and (3) having the above-mentioned PIN junction are laminated, a simple structure as shown in FIG. 1 reaction chamber (7
), the reaction gas introduced into the reaction chamber may be switched, or the third
As shown in the figure, each layer of P type, ■ type, and N type (P+XP20P5)
, (I j) (12) (13), (N+) (N2) (N
3) into independent P-type reaction chambers (8) and L-type reaction chambers (9).
), an N-type reaction chamber (+01). Gas inlet pipe, (141) is exhaust pipe, (15) is each reaction chamber (
8) +9+00) entrance (located here) is a shutter that can be opened and closed to allow movement of the board (4).

i/))発明が解決しようとする問題点然し乍ら、装置
全体として高い光電変換効率を得るべく上述の如くl型
層(I1)、(I2)、(I3)の光学的禁]ヒ帯幅E
optを異ならしめるために、例えば第11型1?Q(
11)を非晶質シリコンナイトライド(a−5ixNl
−x)で構成し、第21型層(I2)をa−5iで構成
すると共に、第31型層を非晶質シリコンスズ(a−5
iγ−5t%1−Y)で構成すると、各l型層(11)
、(12)、(I3)を形成する際の反応ガスが異4「
ろことになり、第2図並びに第4図に示した様な反応装
置を用いて反応形成したのでは、各l型層(I1)、(
12)、(13)を形成すべき反応の直前に行なわれた
反応(こ於いて使用された反応ガスが僅かながらも残留
し、所望の光学的禁出帯幅Eoptが得られないのみな
らず、局在準位密度の増加1ζよる膜質の低下をもたら
し、ひいては装置特性の劣化を招く原因となっていた。
i/)) Problems to be Solved by the Invention However, in order to obtain a high photoelectric conversion efficiency as a whole of the device, the optical band width E of the l-type layers (I1), (I2), and (I3) is adjusted as described above.
In order to make the opt different, for example, the 11th type 1? Q(
11) to amorphous silicon nitride (a-5ixNl
-x), the 21st type layer (I2) is made of a-5i, and the 31st type layer is amorphous silicon tin (a-5i).
iγ-5t%1-Y), each l-type layer (11)
, (12), (I3) when the reaction gas is different 4''
Therefore, if the reaction formation was performed using the reaction apparatus shown in FIGS. 2 and 4, each l-type layer (I1), (
12), the reaction carried out immediately before the reaction to form (13) (in which a small amount of the reaction gas used remains, and not only the desired optical forbidden band width Eopt cannot be obtained) , the film quality deteriorates due to the increase in localized level density 1ζ, which in turn causes deterioration of device characteristics.

に))問題点を解決するための手段 本発明は斯る点に擢みて為されたものであって光学的禁
l−帯幅Eoptの異なるl型層を主体とする複数の非
晶質半導体発電領域を光入射方向に積層した光起電力装
置の複数のl型層を夫々独立した反応室で形成すると共
に、同一導電型層については共通の反応室で形成するこ
とにより、上記間、i点を解決したものである。
B)) Means for Solving the Problems The present invention has been made in view of the above points, and is based on a plurality of amorphous semiconductors mainly composed of l-type layers having different optical band widths Eopt. By forming a plurality of l-type layers of a photovoltaic device in which power generation regions are laminated in the direction of light incidence in separate reaction chambers, and forming layers of the same conductivity type in a common reaction chamber, This solves the problem.

(ホ)実施例 第4図は第1図1こ示した如き光学的禁[1一帯幅Eo
pjの異なるl型層(I1)、(I2)、(13)を主
体とするPIN接合型の第1、第2、第3の発電領域(
1)、(2)、(3)を形成するに好適な反応装置“・
!を示1.ている。同図に於いて従来の第2図、第3図
と同]7もの1こついては同番号が伺(7てあり、(1
1)I12)・は一対の放電電極、(13)・・は反応
ガス導入管、(14)は排気管、(囚・はシ←・ツタで
、異なるとこうは反応室の各担当である。即ち、開閉自
在のシャ、・ツタ(15)を挾んで連続的に5室縦列配
置された第1〜第5の反応室(1G)〜(囚)の内、5
室は光学的禁1ト、帯幅Fop【の異なる3個の第1、
第2、第6I型層(I1)、(I2)、(I3)の夫々
を独立して担当すると共(こ、残り2室の各々は第1.
9@2、第3P型層並びにN型層(” 1 )(、P2
 ) (P3 )、(N1)(N2 ) (N3 )の
各同−褌電型を共通(こ担当する。具体的には第1反応
室(16)か第11型層(11)を、第2反応室(1コ
がP型層(Pl)(P2XP3)を、第3反応室(18
)か第21型層(12)を、第4反応室(i印がN型層
(N+ ) (N2 ) (N3 )をそして第5反応
室がか第31型層(工3)を夫々担当する。
(E) Embodiment FIG. 4 shows the optical prohibition [1 band width Eo] as shown in FIG.
PIN junction type first, second and third power generation regions (I1), (I2) and (13) having different pj are
Reactor suitable for forming 1), (2), and (3)
! Shows 1. ing. In the same figure, the same number as the conventional figure 2 and figure 3] 7 is the same number.
1) I12) is a pair of discharge electrodes, (13)... is a reaction gas inlet pipe, (14) is an exhaust pipe, (I12) is an exhaust pipe, and these are in charge of each reaction chamber. That is, 5 of the 1st to 5th reaction chambers (1G) to 5 chambers (1G) to 5 chambers (5 chambers) are arranged in tandem with the ivy (15) in between, which can be opened and closed freely.
The chamber is optically restricted, and has three different widths Fop.
The second and sixth I-type layers (I1), (I2), and (I3) are independently responsible for each of the layers (I1), (I2), and (I3) (each of the remaining two chambers is for the first and sixth I-type layers (I1), (I2), and I3).
9@2, third P-type layer and N-type layer (" 1 ) (, P2
) (P3), (N1), (N2), and (N3). 2 reaction chambers (1 contains P type layer (Pl) (P2XP3), 3rd reaction chamber (18
) is in charge of the 21st type layer (12), the 4th reaction chamber (i mark is in charge of the N type layer (N+) (N2) (N3), and the 5th reaction chamber is in charge of the 31st type layer (technique 3), respectively. do.

次に第1、第2、第6の発電領域(1)、(2)、(3
)が下表の如き具体的構成にある時の製造方法につき説
明する。
Next, the first, second, and sixth power generation areas (1), (2), (3
) has a specific configuration as shown in the table below.

所望形状にバターニングされた第1電極(5)まで作成
済みの基板(4)をトレイにセ・リドし、第2反応室(
171の放電電極(11)07J間に配置し、斯る反応
室(171に所定の反応ガスを満してグロー放電を生起
せしめ第1P型層(Pl)を形成し、形成後第1反応室
口6)に逆移動せしめ第11型層(11)を形成し、次
いで第4反応室09)でjliN型層(N1)を重畳し
゛C第1発電領域(1)を形成する。同様(こし℃、第
2、第3の発電領域(2)、(3)の第2、第3P型(
1’2)、(Pりが第4反応室09で、第21型層(1
2)か第3反応室玉で、第61型層(13)か第5反応
室(4))で、第2、f63 N 型11 (N2人(
N3)が第4反応室(191で夫々形成される。第5図
は上記各層の形成順序を模式的に示したものである。そ
して、下表に、各層齋こ対−りる反応ガスの組成を示す
The prepared substrate (4) up to the first electrode (5), which has been patterned into a desired shape, is placed on a tray and placed in the second reaction chamber (
The reaction chamber (171 is filled with a predetermined reaction gas to generate a glow discharge to form a first P-type layer (Pl), and after the formation, the first P-type layer (Pl) is placed between the discharge electrodes (11) 07J of 171, An 11th type layer (11) is formed by reverse movement in the opening 6), and then a JliN type layer (N1) is superimposed on the fourth reaction chamber 09) to form a ``C first power generation region (1)''. Similarly (Koshi ℃, second and third P type of second and third power generation areas (2) and (3) (
1'2), (P layer is in the fourth reaction chamber 09, and the 21st type layer (1
2) or 3rd reaction chamber ball, 61st type layer (13) or 5th reaction chamber (4)), 2nd, f63 N type 11 (N2 people (
N3) are formed in the fourth reaction chamber (191). Fig. 5 schematically shows the formation order of each layer. The table below shows the reaction gas for each layer. Indicates the composition.

向、基板(4)は全ての層形成時、250℃の温度に保
たれると共に、その他キャリアガスとしての水素ガスか
含まれている。
On the other hand, the substrate (4) is maintained at a temperature of 250° C. during the formation of all layers, and also contains hydrogen gas as a carrier gas.

一方、上述の如く光学的禁止帯幅の異なるI型層(zi
入(工2)、(13)は導電型決定不純物を含まない雰
囲気中で形成された所謂ノンドープ層であるものの、僅
かながらN型の性質を呈することが知られており、斯る
N型を補償するためにP型の不純物か微量にドープされ
ることがある。従って、本発明に於いて称せられる「I
型(真性)」とは真の1型に限らず、ノンドープの僅か
なN型、N型不純物を微量に含んだN型、及びP型不純
物か微量にドープされた僅かなP型をも含んでいる。
On the other hand, as mentioned above, the I-type layer (zi
Although the layers (step 2) and (13) are so-called non-doped layers formed in an atmosphere that does not contain impurities that determine the conductivity type, they are known to exhibit slightly N-type properties, and are known to exhibit N-type properties. A small amount of P-type impurity may be doped for compensation. Therefore, the "I" referred to in the present invention
Type (intrinsic) is not limited to true type 1, but also includes a small amount of non-doped N type, N type containing a small amount of N type impurity, and a small amount of P type doped with a P type impurity. I'm here.

また、積層構造も3層に限定されるものでなく、タンデ
ム型、4層構造以上の積層型であっても良い。
Furthermore, the laminated structure is not limited to three layers, and may be a tandem type or a laminated type with four or more layers.

(へ)効果 本発明は以上の説明から明らかな如く、光学的禁止帯幅
の異なる複数のI型層を夫々独立した個別の反応室で形
成すると共に、同一導電型層は共通の反応室で形成する
ので、反応室を必要最小限に抑えた状態で主として発電
作用に寄与するI型層の光学的禁止帯幅を予め定められ
た値に正確に制御することが可能となり、その結果良好
な模質を得ることかでき、光電変換効率の高い光起電力
装置を提供することができる。
(F) Effect As is clear from the above description, the present invention forms a plurality of I-type layers having different optical band gaps in separate reaction chambers, and layers of the same conductivity type in a common reaction chamber. As a result, it is possible to accurately control the optical band gap of the I-type layer, which mainly contributes to power generation, to a predetermined value while minimizing the size of the reaction chamber. A photovoltaic device with high photovoltaic conversion efficiency can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明製造方法によって製造されて好適な光起
電力装置を示す側面図、第2図並びに第5図は従来の反
応装置を示す概念図、第4図は本発明製造方法に用いら
れる反応装置を示す概念図第5図は本発明製造方法の順
序を示す模式図で、(1)、(2)、(3)は第1、第
2、第3発電領域、06)〜(2)1)は第1〜第5反
応室、(11)、(12)、(13)は第1、第2、第
3■型層を夫々示している、 出願人 三洋電機株式会社 代理人 弁理士 佐野 静 夫f′′′パ、hl、l 第1図 い 第;2図 第8図 手  続  補  正  書(自発) 昭和57年10月7日 特許庁長官殿 光起電力装置の製造方法 ろ、補正をする者 特許出願人 住所 守口市京阪本通2丁目18番地 名称(188)三洋電機株式会社 代表者 井 植   薫 4、代理人 住所 守口型京阪本通2工目18番地 明細口 6、 補正の内容 明細書全文を別紙の通り補正します。 (明細書の浄書につき内容に変更なし)387
FIG. 1 is a side view showing a preferred photovoltaic device manufactured by the manufacturing method of the present invention, FIGS. 2 and 5 are conceptual diagrams showing a conventional reaction device, and FIG. Fig. 5 is a schematic diagram showing the order of the production method of the present invention, where (1), (2), and (3) are the first, second, and third power generation areas; 2) 1) indicates the first to fifth reaction chambers, and (11), (12), and (13) indicate the first, second, and third type layers, respectively. Applicant: Sanyo Electric Co., Ltd. Agent Patent Attorney Shizuo Sano f'''Pa, hl, l Figure 1, Figure 2, Figure 8 Procedures Amendment (spontaneous) October 7, 1980 To the Commissioner of the Japan Patent Office Manufacture of photovoltaic devices Method, person making amendment Patent applicant Address: 2-18 Keihan Hondori, Moriguchi City Name (188) Sanyo Electric Co., Ltd. Representative: Kaoru Iue 4, Agent address: Moriguchi-shi Keihan Hondori 2-18, Details 6. Contents of amendment The entire statement will be amended as shown in the attached sheet. (There is no change in the contents due to engraving of the specification) 387

Claims (1)

【特許請求の範囲】[Claims] (1)  光学的禁止帯幅の異なるI型(真性)層を主
体とする複数の非晶質半導体発電領域を光入射方向に積
層した光起電力装置の製造方法であって上記複数のI型
層は夫々独立した反応室で形成されると共に、同一導電
型層は共通の反応室で形成されることを特徴とした光起
電力装置の製造方法。
(1) A method for manufacturing a photovoltaic device in which a plurality of amorphous semiconductor power generation regions mainly composed of I-type (intrinsic) layers having different optical band gaps are laminated in the light incident direction, wherein the plurality of I-type 1. A method for manufacturing a photovoltaic device, characterized in that the layers are formed in independent reaction chambers, and layers of the same conductivity type are formed in a common reaction chamber.
JP57172062A 1982-09-29 1982-09-29 Manufacture of photovoltaic device Pending JPS5961078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57172062A JPS5961078A (en) 1982-09-29 1982-09-29 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57172062A JPS5961078A (en) 1982-09-29 1982-09-29 Manufacture of photovoltaic device

Publications (1)

Publication Number Publication Date
JPS5961078A true JPS5961078A (en) 1984-04-07

Family

ID=15934824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57172062A Pending JPS5961078A (en) 1982-09-29 1982-09-29 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS5961078A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114387A (en) * 1980-02-13 1981-09-08 Sanyo Electric Co Ltd Manufacture of photovoltaic force element
JPS5779674A (en) * 1980-09-09 1982-05-18 Energy Conversion Devices Inc Multiplex battery cell with amorphous photoresponsiveness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114387A (en) * 1980-02-13 1981-09-08 Sanyo Electric Co Ltd Manufacture of photovoltaic force element
JPS5779674A (en) * 1980-09-09 1982-05-18 Energy Conversion Devices Inc Multiplex battery cell with amorphous photoresponsiveness

Similar Documents

Publication Publication Date Title
US20080156372A1 (en) Thin film solar cell module of see-through type and method of fabricating the same
JPS55108780A (en) Thin film solar cell
JPS59205770A (en) Photovoltaic device
KR840004986A (en) Semiconductor photoelectric conversion device and manufacturing method thereof
US5391893A (en) Nonsingle crystal semiconductor and a semiconductor device using such semiconductor
US4706376A (en) Method of making semiconductor photoelectric conversion device
US4559552A (en) PIN semiconductor photoelectric conversion device with two oxide layers
US4704624A (en) Semiconductor photoelectric conversion device with partly crystallized intrinsic layer
JPS6377167A (en) Laminated photovoltaic device
JPS5961078A (en) Manufacture of photovoltaic device
JPS58171869A (en) Photovoltaic device
JPS60210826A (en) Solar battery
JPS5963774A (en) Thin-film silicon solar cell
JPS55157276A (en) Amorphous thin film solar battery
JPS58116779A (en) Photovoltaic device
JPS6074685A (en) Photovoltaic device
JPS59105379A (en) Amorphous silicon solar battery
JP4717122B2 (en) Method for manufacturing thin film solar cell
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JPS61222215A (en) Superlattice device
JPS63120476A (en) Photovolatic device
JPS58168215A (en) Amorphous semiconductor
JPS61139074A (en) Photovoltaic element
JPH0346374A (en) Thin film transistor
JPS5997514A (en) Manufacture of amorphous silicon film