JPS5958724A - Contact for vacuum bulb and method of producing same - Google Patents

Contact for vacuum bulb and method of producing same

Info

Publication number
JPS5958724A
JPS5958724A JP16888082A JP16888082A JPS5958724A JP S5958724 A JPS5958724 A JP S5958724A JP 16888082 A JP16888082 A JP 16888082A JP 16888082 A JP16888082 A JP 16888082A JP S5958724 A JPS5958724 A JP S5958724A
Authority
JP
Japan
Prior art keywords
contact
vacuum valve
eddy current
container
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16888082A
Other languages
Japanese (ja)
Inventor
功 奥富
幹夫 大川
河島 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16888082A priority Critical patent/JPS5958724A/en
Publication of JPS5958724A publication Critical patent/JPS5958724A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明ヲ、]1、しゃ断アークに対して平行な向きの磁
界を印加する縦磁界発生用コイルを備えた真空バルブに
イ丸1.リ 4ににこれに用いられる接点およびそのl
l、11造力法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention.] 1. A vacuum valve equipped with a vertical magnetic field generating coil that applies a magnetic field in a direction parallel to the cutoff arc. 4. Contacts used for this and their l
l, 11 Concerning the force-building method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、真空バルブは電流をしゃ断する時に、接点間に
発生するアークは、接点面上を動きまわるが、大電流に
なってくると、そのアークに生ずるf’a界と外部回路
の作る磁界によってアークは電41υ(面を移動し、電
極端部或いは周辺部に片寄って固着し、陽楊;点が発生
するために、その部分を局t’ils的に加熱し、多周
の蒸気を放出させて容器内の真り?度の低下を招くので
、しゃ断容量が低下−」る。
Generally, when a vacuum valve interrupts current, the arc generated between the contacts moves around on the contact surface, but when the current becomes large, the f'a field generated in the arc and the magnetic field created by the external circuit cause the arc to move around on the contact surface. The arc moves on the surface of the electrode, sticks to the end of the electrode or the periphery, and generates a positive point, which locally heats the area and releases multiple circles of steam. This causes a decrease in the degree of deadness inside the container, resulting in a decrease in the shutoff capacity.

このようl電イ戦の局部加熱を防止するため、第1図の
ようにttc4iNJに螺旋状スリット2を形成し、こ
のアークを回転駆動させアーク電流を電極全体で均一に
分411させるようにしだものである。しかし実際には
大電流アークになってくると、アーク発生中金属蒸気又
はイオン化された金属蒸気が電4i[:間の外に逃げ、
アーク託持に必要なイオンが不足することから陽極点が
発生するために、それによシアークが一点で固着してし
まうので、電極間のアークが不安定になるものと考えて
必ずしもアーク電流を%: 4t< iln全体で均一
に分担させることができない。
In order to prevent this kind of local heating in the electric arc, a spiral slit 2 is formed in the ttc4iNJ as shown in Figure 1, and this arc is driven to rotate so that the arc current is distributed uniformly over the entire electrode. It is something. However, in reality, when a large current arc occurs, metal vapor or ionized metal vapor escapes to the outside of the arc during arc generation,
Since an anode point is generated due to the lack of ions necessary for arc carrying, the shear arc is stuck at one point, so it is assumed that the arc between the electrodes will become unstable and the arc current cannot be reduced by %. : 4t<iln cannot be distributed evenly across the whole.

前述のよう力現象を防ぐため、他の方法として′IC空
しゃ断器の負荷電流により接点の接触表面と垂直に接点
を貫通する磁界を発生させ、この磁界のアークに及ばず
磁気力によってアーク接点、電極の表面に一様に分散さ
ぜる方法があり、これによシ優れたしゃ断能力が得られ
る。
In order to prevent the force phenomenon mentioned above, another method is to use the load current of the IC air breaker to generate a magnetic field that penetrates the contact perpendicular to the contact surface of the contact, and the arc of this magnetic field does not reach the arc, but the arc contact There is a method of uniformly dispersing it on the surface of the electrode, which provides excellent cutting ability.

しかし印加される電源が交流の場合には、電極部に加え
られる交番磁界のために%、 イilj部に渦電。
However, when the applied power source is alternating current, the alternating magnetic field applied to the electrode section causes eddy currents in the electrode section.

カ1.が発生し、この渦電流は加えた磁界を打消す方向
の磁界を発生するため、期待した磁界をアークに加える
ことが出来なくなるという問題がある。この渦電流を発
生するため、第2図(a)。
F1. occurs, and this eddy current generates a magnetic field in a direction that cancels out the applied magnetic field, so there is a problem that the expected magnetic field cannot be applied to the arc. In order to generate this eddy current, Fig. 2(a).

(b)のように縦磁界発生用コイル4を組込んだ電極栴
造の主7rlLl+M 、qに複数本のスリット6を形
成する技術がすでに知られている。すなわち、第2図(
、)及びθ】)は電電イ販の裏f、1!l K設けた縦
磁界発生用コイルによ!J !IQ!1方向磁界を発生
させる方式の電極4δ造の代表例を示す平面図及び縦断
面図である。図中、3は電磁41箕で、’rFAI流し
ゃ断時にこの表面でアークが発生する。4は主磁極背面
に設けたコイル電4瓶で、中央から放射状に延びる腕1
J4aと円周方向に回る外周部4bと電電1.5t+i
 3との接続部4Cとからなる。5は導電棒でこれから
縦磁界発生用コイル4の前記各部を、4a、4b、4c
の順に流れ、その電流経路によシアーク柱に対して軸方
向の磁界(縦磁界)が発生する。縦磁界中でのアークは
接点間に一様に分散し、アーク電圧が低く安定しておシ
、電極の局;T1ζ的な溶融が起こりにくいため、電流
しゃ断性能が向上するという特徴を持っている。
As shown in (b), a technique for forming a plurality of slits 6 in the main electrode 7rlLl+M, q incorporating a longitudinal magnetic field generating coil 4 is already known. In other words, Figure 2 (
, ) and θ]) are the back f, 1 of Denden Ihan! Due to the vertical magnetic field generation coil installed in K! J! IQ! FIG. 3 is a plan view and a vertical cross-sectional view showing a typical example of an electrode 4δ structure that generates a unidirectional magnetic field. In the figure, 3 is an electromagnetic 41 pin, and an arc is generated on this surface when 'rFAI flow is interrupted. 4 is a coil electric cap installed on the back of the main magnetic pole, and arm 1 extends radially from the center.
J4a, the outer peripheral part 4b that rotates in the circumferential direction, and the electric wire 1.5t+i
3 and a connecting portion 4C. 5 is a conductive rod from which each part of the vertical magnetic field generating coil 4 is connected to 4a, 4b, 4c.
The current path generates an axial magnetic field (longitudinal magnetic field) with respect to the shear column. The arc in the vertical magnetic field is uniformly distributed between the contacts, the arc voltage is low and stable, and T1ζ-like melting of the electrodes is less likely to occur, resulting in improved current interrupting performance. There is.

6は渦電流を抑制するために主電極3に複数本等間隙に
入れたスリットである。
Reference numeral 6 denotes a plurality of slits inserted at equal intervals in the main electrode 3 in order to suppress eddy currents.

しかしながら、スリット6によって渦電流の発生を抑制
する技術には、電極の溶融によシ、スリット6がふさが
シ、そのため渦電流が大きくなって期待した磁界が得ら
れない場合がある。
However, in the technique of suppressing the generation of eddy currents by using the slits 6, the slits 6 may become obstructed due to melting of the electrodes, which may increase the eddy currents and make it impossible to obtain the expected magnetic field.

一方溶融した電極材によってスリット6がふさがるのを
防ぐため、スリット60幅を広くすると、電極間に生じ
たアークがそのスリット内を通過して磁界発生用コイル
4に移り、磁界発生効果が下がる場合もある。更に、ス
リット6の幅が広いとしゃ断に有効なt4j 4ij<
表面の面積が減少する為、しゃ断性能の低下を招く。又
スリット6を形成することは、加工工数の増大を招く上
に、機械的強度の低下等の欠点もI沼められる。
On the other hand, if the width of the slit 60 is widened to prevent the slit 6 from being blocked by the melted electrode material, the arc generated between the electrodes will pass through the slit and transfer to the magnetic field generation coil 4, reducing the magnetic field generation effect. There is also. Furthermore, if the width of the slit 6 is wide, t4j 4ij<
The surface area decreases, resulting in a decrease in breaking performance. Further, forming the slit 6 not only increases the number of processing steps, but also has disadvantages such as a decrease in mechanical strength.

〔発明の目的〕[Purpose of the invention]

本発明は、上記のよう々事情にQA’aみてなされたも
ので、その目的とするところは渦電流による障害を軽減
化でき、安定した高いしゃ断性能を有する真空バルブ用
接点およびその製造方法を提供するにある。
The present invention was made in view of the above-mentioned circumstances, and its purpose is to provide a contact for a vacuum valve that can reduce disturbances caused by eddy currents and has stable and high breaking performance, and a method for manufacturing the same. It is on offer.

〔発明の概要〕[Summary of the invention]

本発明の1+″f徴は、渦電流を細分化しそのほとんど
又は一部分を相殺するよう電極、接点に埋設した渦電流
抑制体を持った真空バルブ用接点及びその製造方法にあ
る。
The 1+''f feature of the present invention resides in a contact for a vacuum valve having an eddy current suppressor embedded in the electrode and contact so as to subdivide eddy current and cancel out most or a portion thereof, and a method for manufacturing the same.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を引用しながら本発明の実施例について詳細
を説明するが、はじめに接点構成について説明するが、
第3,4図において、接点7は埋設した渦電流抑制体8
と、それに囲まれた接点合金9よりなる導電体とで構成
されている。第3図の渦電流抑制体8は板面から見て格
子状になっておシ、第4図の渦電流抑制体8は多数の円
形リングからなっている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but first, the contact configuration will be described.
In Figures 3 and 4, the contact 7 is a buried eddy current suppressor 8.
and a conductor made of contact alloy 9 surrounded by the conductor. The eddy current suppressor 8 shown in FIG. 3 has a lattice shape when viewed from the plate surface, and the eddy current suppressor 8 shown in FIG. 4 consists of a large number of circular rings.

このように4.j77成されているものにおいて接点合
金9をとシ囲む渦電流抑制体8中に誘起される渦電流1
0は1、第3図、第4図いずれも隣接する接点合金9中
に誘起する渦電流の成分は互いに逆向きのため打消し合
う結果、縦磁界の主磁束を減するように働らく渦電流の
合成値は械めて小くなシ、安定した磁界強度を維持する
ことが出来る。その効果を効率的に引き出すためには、
隣接する接点合金9よシなる導電部分は、渦電流抑制体
8によって互いに完全に独立している必要がある。また
該渦電流抑制体8の電気抵抗値は導電部分を構成する接
点合金9よシ高い必要があシ、好ましくは5倍以上が望
ましい。
Like this 4. The eddy current 1 induced in the eddy current suppressor 8 surrounding the contact alloy 9 in the case of j77
0 is 1, and in both Figures 3 and 4, the eddy current components induced in the adjacent contact alloys 9 are in opposite directions and cancel each other out, resulting in eddies that act to reduce the main magnetic flux of the longitudinal magnetic field. The combined value of the current can be reduced and a stable magnetic field strength can be maintained. In order to draw out its effects efficiently,
Adjacent conductive parts such as contact alloys 9 must be completely independent of each other by means of eddy current suppressors 8. The electric resistance value of the eddy current suppressor 8 must be higher than that of the contact alloy 9 constituting the conductive portion, preferably 5 times or more.

更には、該渦電!ノ11)抑制体8と接点合金9とは互
いに溶解度がイifj <小さく、化合物の形成もない
ことが望ましい。また該渦電流抑制体8は接点合金9よ
シ融点が高い必要が有る。更に該渦電流抑制体8は、縦
磁界の磁束を乱すことのないよう動作温度に対して非磁
性であることが必要である。更にまた渦電流抑制体8の
幅が極端に薄いと隣接する接点合金へと渦電流が貫通し
抑制効果が発揮されず実用的制約も加味するとその下限
は約o、 i amであシ、又その幅が極端に厚いと渦
電流抑制体8同志の接解確率の増大による溶着現象の発
生が認められることと、渦電流抑制体8内にも成る程度
の渦電流の誘起も認められ縦磁界を乱すよう働くためそ
の上限は約2mm ′8度が好ましい。
Furthermore, the eddy electric! (11) It is desirable that the suppressor 8 and the contact alloy 9 have a mutual solubility of ifj <small and that no compound is formed. Further, the eddy current suppressor 8 needs to have a higher melting point than the contact alloy 9. Furthermore, the eddy current suppressor 8 needs to be non-magnetic at the operating temperature so as not to disturb the magnetic flux of the longitudinal magnetic field. Furthermore, if the width of the eddy current suppressor 8 is extremely thin, the eddy current will penetrate into the adjacent contact alloy, and the suppressing effect will not be exhibited.If practical constraints are taken into account, the lower limit is about o, i am, and If the width is extremely thick, it is recognized that a welding phenomenon occurs due to an increase in the probability of welding between the eddy current suppressors 8, and that eddy currents are induced to the extent that they even form within the eddy current suppressor 8, causing a longitudinal magnetic field. The upper limit is preferably about 2 mm x 8 degrees.

次に以上述べた接点7の製造方法について第5図を参照
して説明する。所定の内径と肉厚を持った例えばステン
レスパイプよりなる渦電流抑制体8と接点合金9とを溶
解用坩堝11中に収納する。渦電流抑制体8は接点合金
9が溶融しているところへ挿入してもよく、又、接点合
金9が固体状態であってもよい。又は、渦電流抑制体8
のみを11堝11中に配置した状態のところへ他の袋層
、で溶融した接点合金9を注入してもよい。いずれかの
方法によって溶融中の接点合金9を加熱体12又は坩堝
11を移動することによって、一端から他端に向って接
点合金を一方向凝固させ接点合金9中の不純物(ガス等
)を除去すると共に、渦電流抑制体8と他の渦電流抑制
体8間の隙間にも充分接点合金9で満されるようにする
。得られた接点累月を所定厚さに輪切シにし、切断面を
接解面とすることにより接点7ができる。
Next, a method of manufacturing the contact 7 described above will be explained with reference to FIG. An eddy current suppressor 8 made of, for example, a stainless steel pipe having a predetermined inner diameter and wall thickness and a contact alloy 9 are housed in a melting crucible 11. The eddy current suppressor 8 may be inserted where the contact alloy 9 is molten, or the contact alloy 9 may be in a solid state. Or eddy current suppressor 8
It is also possible to inject the molten contact alloy 9 in another bag layer into the state in which the contact alloy 9 is placed in the pot 11. By moving the contact alloy 9 being melted by either method through the heating body 12 or the crucible 11, the contact alloy is unidirectionally solidified from one end to the other end, and impurities (gas, etc.) in the contact alloy 9 are removed. At the same time, the gap between the eddy current suppressor 8 and the other eddy current suppressor 8 is also sufficiently filled with the contact alloy 9. The contact point 7 is made by cutting the obtained contact point into rings to a predetermined thickness and making the cut surface a contact surface.

次に製造方法の具体的実施例およびこれと比較する比殻
例について説明する。
Next, a specific example of the manufacturing method and a comparative example for comparison will be described.

以上述べたように容器例えば坩堝11内に接点合金材料
(第1の材料)を収納し、これを溶解した状態で、渦電
流抑制体材料(第2の制別)を坩堝11内に徐々に浸漬
して両月料を一体硬化させる方法によれば、できた接点
素材の健全性が高く例えば穴、ガス等の存在がなくなる
As described above, the contact alloy material (first material) is stored in a container such as the crucible 11, and in a melted state, the eddy current suppressor material (second material) is gradually introduced into the crucible 11. According to the method of integrally curing both materials by immersion, the resulting contact material has high soundness and, for example, there are no holes, gas, etc.

この反面設備費としては高くなる。On the other hand, equipment costs will be high.

また、容器例えば坩堝11内に、予じめ渦電流抑制体材
料(第2の材料)を例えばやぐらのごとき組立てた状態
で、坩堝11内に接点合金材料(第1の材料)を例えば
粒状にして入れて、これ側らかの手段により溶解させる
かあるいは溶解した状態の接点合金材料を入れる方法に
よれば、設備費が安くなるという利点を有する。
In addition, in a container such as the crucible 11, an eddy current suppressor material (second material) is assembled in advance into a structure such as a tower, and a contact alloy material (first material) is formed into particles in the crucible 11, for example. The method of melting the contact alloy material by some other means or adding the contact alloy material in a molten state has the advantage that the equipment cost is low.

実施例−1、比較例−1 外径7問肉厚0.3晒のステンレス製・ぐイブを18c
rnに切断したもの37本をNiの、1、llI腺で束
ねた後、I X 10  Torrの真空中で、135
0℃で脱ガスを兼ねて一体化処理を行った。このステン
レスパイプの束を、内径501:fn1長さ150鰭の
カーぎン1[1堝中で1200℃で溶融中の0、5重量
9!IBl −Cu合金中へ、・ぐイブ束の下端から1
0fl/分の速度で挿入した。」■場内で両者が一体化
後、加熱用コイルを月1堝の下部から上方へ向って、2
η+m1分の速度で引抜きながら接点合金を凝固させて
接点素材を得た。このようにしてイ4′lられた接点素
材を厚さ4醋に切断しステンレスで完全に細分化された
直径50能の旧−Cu接点片を作った。
Example-1, Comparative Example-1 18cm stainless steel gib with 7 outer diameters and 0.3mm wall thickness
After bundling the 37 pieces cut into rn with Ni 1,llI glands, they were heated to 135 mm in a vacuum of I x 10 Torr.
Integration treatment was performed at 0°C, also serving as degassing. This bundle of stainless steel pipes was put into a cargin 1 [1 0.5 weight 9! melted at 1200°C in a pot with an inner diameter of 501: fn1 and a length of 150 fins. Into the IBl-Cu alloy, from the bottom end of the guibe bundle 1
It was inserted at a rate of 0 fl/min. ” ■ After the two are integrated in the factory, move the heating coil upward from the bottom of the first pot, and then
A contact material was obtained by solidifying the contact alloy while drawing it out at a speed of η+m1 minutes. The thus prepared contact material was cut into 4 mm thick pieces to make old-Cu contact pieces with a diameter of 50 cm and made of stainless steel.

との接点片を約50エルステツドの縦磁界を発生する試
験用−A空バルブに組込んで30 kAを6回しゃ断し
たととる、溶着が力い上に完全なしゃ断が行われた。特
にしゃ断時の接点における電流及びアークの発生現象を
検証してみる− と電流及びアークが接点全面に均一に
分散していた。
The contact piece was assembled into a testing -A empty valve that generates a vertical magnetic field of approximately 50 oersteds, and 30 kA was interrupted six times.The welding was strong and complete interruption was achieved. In particular, when we examined the phenomenon of current and arc generation at the contact during cut-off, we found that the current and arc were uniformly distributed over the entire surface of the contact.

これと比較のために、同じ阻のBiを含有しだBi −
Cu合金よりなる接点片を、上記と同じ50エルステツ
ドの縦磁界を発生する試験用真空バルブに組込んで、3
0kAをしゃ断したところ、3回目でしゃ断不能を呈し
た。Jilt、流を24kAに下げてしゃ1所を行なっ
たが、4回目でやはシしゃ断不能を呈した。しゃ断時の
アーク発生現象を検証すると、アークが接点の局部に集
中しがちであり、これがしゃ断性r+l:の向上を阻害
している要因と考えられた。このバルブを分解したとこ
ろ、スリットが溶融接点でふさがっていたことと、局部
的に溶融による大きな凹みが認められていた上に、接点
表面には脆い接点に特有の亀裂も認められた。これに対
し、前述の実施例1による接点表面は平滑であった。
For comparison, a sample containing the same amount of Bi, Bi −
A contact piece made of a Cu alloy was assembled into a test vacuum valve that generates a vertical magnetic field of 50 oersteds as described above, and 3
When 0 kA was cut off, it became impossible to cut it off for the third time. I lowered the current to 24kA and attempted to shut it off, but on the 4th attempt it became impossible to shut off. When examining the phenomenon of arc generation during breaking, it was found that the arc tends to concentrate locally at the contact point, and this was considered to be a factor inhibiting the improvement of breaking performance r+l:. When this valve was disassembled, it was found that the slit was blocked by a molten contact, and large dents were observed locally due to the melting, as well as cracks on the surface of the contact, which are typical of brittle contacts. In contrast, the contact surface according to Example 1 described above was smooth.

実施例−2、比較例−2 両面に3μのNiメッキを施した厚さ0.25 nmの
Ta (タンタル)薄板を、−辺が6 mmの正方彫を
有する格子状に組立て、これを内径50 mmの坩堝中
に配置した後、この中に2 % Te −1%Pb −
97’% Cu合金を@造し、Ta格子とTe −Pb
 −Cu合金を一体化し、接点合金とした。
Example 2, Comparative Example 2 Ta (tantalum) thin plates with a thickness of 0.25 nm with 3μ Ni plating on both sides were assembled into a lattice shape with a square carving of 6 mm on the - side. After placing in a 50 mm crucible, 2% Te-1%Pb-
Made of 97'% Cu alloy, Ta lattice and Te-Pb
-Cu alloy was integrated to form a contact alloy.

5X10  Torrで1200℃に加熱した前記接点
合金の底部から上部に向って冷却して接点素材とし、所
定の加工を行左っだ後、実施例−1で使用し/メ二試1
1・外用真空バルブに組込んでしゃ[:)7テストに供
し/;−0 実施例−1と同様に比較のためTa (タンタル)格子
の々い2 % Te −1% Pb −97% Cu合
金を得て、同型の試験用真空パルプに紹込んで比較例−
2としてしゃF?テストに供した。Ta製の渦電流抑制
体が存在する場合、30kAを6回冗全にり、中断が完
了しプこが、比較例−2では、30 kAをしゃ断した
ところ2回目で1−や断不能を呈した。24 kA ?
f、で電流を下げだかやはシしゃ断不能な星した。しゃ
141’、中のアーク観測によると、渦電流抑制体の存
在する実M¥i例−2の方が接点面のアークの分散ム′
[合に均一性が認められた。しゃ断a≦バルブを分解し
表面を比較したが、比較例−2の表面には局部的に激し
い溶融痕跡が存在していた。
The contact alloy was heated to 1200° C. at 5×10 Torr and cooled from the bottom to the top to obtain a contact material, and after being subjected to prescribed processing, it was used in Example-1/Medical Trial 1
1.Incorporated into an external vacuum valve and subjected to the test/;-0 As in Example-1, for comparison, a Ta (tantalum) lattice of 2% Te -1% Pb -97% Cu An alloy was obtained and introduced into the same type of vacuum pulp for testing as a comparative example.
ShaF as 2? Tested. When an eddy current suppressor made of Ta is present, 30 kA is applied redundantly six times, and the interruption is completed, but in Comparative Example 2, when 30 kA is interrupted, 1- or failure to disconnect occurs the second time. presented. 24 kA?
When the current was lowered with f, it became an unbreakable star. According to the observation of the arc in the case 141', the dispersion of the arc on the contact surface is better in the actual M\i example-2 where an eddy current suppressor exists.
[Uniformity was observed.] Shutoff a≦The bulb was disassembled and its surface was compared, but it was found that there were locally severe traces of melting on the surface of Comparative Example-2.

実施例−3、比較例−3 通電性能を向上させるため、第61シ1(a) p (
b)の如く、接点の上面、又は下面或いは両方に導電性
の高いyI:、γ板層13並びに14を設けるとよい。
Example-3, Comparative Example-3 In order to improve current carrying performance, the 61st C1(a) p (
As in b), it is preferable to provide highly conductive yI: and γ plate layers 13 and 14 on the upper surface, lower surface, or both of the contacts.

この場合、他方の接点と対向する側の面の薄板層13は
、耐溶着性材料でもよいが、他の導電性の高い通電に適
する材料例えば純銅でもよい。
In this case, the thin plate layer 13 on the side facing the other contact may be made of a welding-resistant material, but may also be made of another highly conductive material suitable for current flow, such as pure copper.

Mo製の渦電流抑制体8及びsb −pb (sbが1
:Pbが3の比率)を2係含有しだCu −Ag基合金
(Cuが90 : Agが10の比率)よシなる接点に
、前記純銅製の薄板層14を配し、実施例−1と同じ試
験用真空パルプに組込んでしゃ断テストを行なったが、
良好なしゃ断時性を示した。
Eddy current suppressor 8 made of Mo and sb-pb (sb is 1
The thin plate layer 14 made of pure copper was arranged on the contact point of a Cu-Ag-based alloy (Ratio of Cu: 90:Ag: 10). A cutoff test was conducted by incorporating it into the same test vacuum pulp, but
It showed good shutoff performance.

実施例1〜3では、渦電流抑制体として、ステンレス、
タンタル、モリブデンについてか、接点合金と溶解度が
なく、かつ接点台金よシ融点が高く、電気抵抗が高いイ
A相なら、79F71J]目的を達するのは明白である
In Examples 1 to 3, stainless steel,
Regarding tantalum and molybdenum, it is clear that the A phase, which has no solubility with the contact alloy and has a higher melting point and higher electrical resistance than the contact base metal, will achieve the purpose of 79F71J.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明の渦電流を、1111分化する渦電流
抑制体を有する接点及びその製造方法によれば、従来の
スリットを持った紬1磁界による真空パルプに見られる
ようなスリットのふさがシがなく、安定した、均一な磁
界強度及び分布を得ることが出来、従って安定したしゃ
断性能の真空バルブを提供することが可能となる。
According to the above-described contact having an eddy current suppressor that divides eddy current into 1111 parts of the present invention and its manufacturing method, the slits are not obstructed as seen in the conventional vacuum pulp using a pongee 1 magnetic field having slits. Therefore, it is possible to obtain a stable and uniform magnetic field strength and distribution, and therefore it is possible to provide a vacuum valve with stable shutoff performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来用いられるスミ9イラル溝を持った真空
バルブ用接点の平面トJ、1、第2図(a) t (b
)は、従来用いられる縦磁界発生コイルと主電極コイル
を持った真空バルブの@ 4に構造を示す平面図及び断
面図、第3図(a) ? (b)及び4図(a) F 
(b)は、それぞれ本発明による真空パルプ用接点の異
なる例を示す平面図、断面−’?!−面図、断面図、及
び第5図は、本発明による真空バルブ用接点の製造方法
を1況明する坩堝4’+’/成を示す断面図、第6図(
a) t (b)はそれぞれ本発明の方法によってでき
だ接点の異なる例を示す断面図である。 1・・・電極、2・・・嵯旋状スリット、3・・・主電
極、4・・・縦磁界発生用コイル、4a・・・腕部、4
b・・・外周部、4C・・・接続部、5・・・導電棒、
6・・・スリット、7・・・接点、8・・・渦電流抑制
体、9・・・接点合金、11・・・坩堝、12・・・加
熱体、13・・・凹板層O 出願入代BIB人  弁理士 鈴 江 51(彦(b) 第2図 (a)
Figure 1 shows a flat surface of a vacuum valve contact with a conventionally used round groove.
) is a plan view and cross-sectional view showing the structure of a conventionally used vacuum valve with a vertical magnetic field generating coil and a main electrode coil, Figure 3(a) ? (b) and Figure 4 (a) F
(b) is a plan view and a cross section showing different examples of the vacuum pulp contact according to the present invention, respectively. ! - side view, sectional view, and FIG.
a) t(b) are cross-sectional views showing different examples of contacts made by the method of the invention, respectively; DESCRIPTION OF SYMBOLS 1... Electrode, 2... Spiral slit, 3... Main electrode, 4... Coil for longitudinal magnetic field generation, 4a... Arm part, 4
b...outer circumferential part, 4C...connection part, 5...conductive rod,
6... Slit, 7... Contact, 8... Eddy current suppressor, 9... Contact alloy, 11... Crucible, 12... Heating body, 13... Concave plate layer O Application Incoming BIB patent attorney Suzue 51 (Hiko (b) Figure 2 (a)

Claims (1)

【特許請求の範囲】 (1)真空バルブ用接点材料として必要な機能を備えた
第1の材料と、前記第1の拐料中に第1の利料を細分化
し電気的に互いに独立するように配置した渦電流抑制体
にガる第2の材料とからなることを特徴とする真空バル
ブ用接点。 (2)第1の材料は、Cu 、 Ag又は他の金属、若
しくはこれらの金属を含む合金又は複合金属であること
を特徴とする特許請求の範囲第1項記載の真空バルブ用
接点。 (3)第1の材料は、Bi−y Pb I Te HS
bの少なくとも1の元素を含有する導電性材料であるこ
とを特徴とする特許請求の範囲第1項記載の真空バルブ
用接点。 (4)第2の材料は、第1の利料よシ融点が高く、かつ
互いの固溶度が1チ未満であることを特徴とする特許請
求の範囲第1項記載の真空ノ々ルブ用接点。 (5)第2の材料は、第1の材料よシ高い電気抵抗を有
することを特徴とする特許請求の範囲第1項記載の真空
バルブ用接点。 (6)第2の月別は、鉄、クロム、タンタル。 ニオフッタングステン、モリブデン、ステンレス、黒鉛
、又は、これらを含有することを特徴とする特許′「請
求の範囲第1項記載の真空バルブ用接点。 (7)第2の祠料は、円形まメヒは多角形の断面を持つ
管、棒或いは板であることを特徴とする特許請求の範囲
第1項記載の真空バルブ用接点。 (8)第2の材料の上面又は下面の少なくとも一方に第
1の月別からなる薄板層又は下面には導電性月別を設け
たことを特徴とする特許請求の範囲第1項記載の真空バ
ルブ用接点。 (9)  容器内に、真空パルプ用接点祠料としての必
要な機能を(iiftえた第1の材料が溶融した状態に
あるとき、前記容器内に複数個の第2の材料を互に間隔
を存して一唱から徐々に浸漬し、両材料を一体硬化させ
ることによ多接点素材を得、これを切断して真空バルブ
用接点をイ1−)る真錯バルブ用接点の製造方法。 α1 複数個の第2の拐料を互に間1(凸を存して収納
した容器内に、真空バルブ用接点利料としての必要な機
能を備えた第1の月別の溶のを注入し、前記第1および
第2の月別を一体硬化させることにより接点素材を1!
:+ 、これを切断して真空バルブ用接点を得る真空バ
ルブ用接点の製造方法。 (11)容器内に、第1および第20利4:lがともに
収納されかつ第1の材料が溶融した状態にあるとき、前
記第1の材料を容器の一方向から順次凝固させるように
した特許請求の1lili、間第9項又は第10項記載
の真空バルブ用接点の製造方法O θ→ 第2の材料の方向を揃えて配ji、7.する特許
請求の範囲第9項又は第10項記載のJ(空)Zルブ用
接点の製造方法。
[Scope of Claims] (1) A first material having a function necessary as a contact material for a vacuum valve; A contact for a vacuum valve, characterized in that the contact is made of a second material that is connected to an eddy current suppressor disposed in the eddy current suppressor. (2) The contact for a vacuum valve according to claim 1, wherein the first material is Cu, Ag, or another metal, or an alloy or composite metal containing these metals. (3) The first material is Bi-y Pb I Te HS
The contact for a vacuum valve according to claim 1, characterized in that it is a conductive material containing at least one element of b. (4) The vacuum nozzle according to claim 1, wherein the second material has a higher melting point than the first material, and their mutual solid solubility is less than 1%. contacts. (5) A contact for a vacuum valve according to claim 1, wherein the second material has a higher electrical resistance than the first material. (6) The second monthly breakdown is iron, chromium, and tantalum. A contact for a vacuum valve according to claim 1 of the patent, which is characterized by containing niophtungsten, molybdenum, stainless steel, graphite, or any of these. is a tube, rod, or plate having a polygonal cross section. (8) The first material is provided on at least one of the upper surface and the lower surface of the second material. A contact for a vacuum valve according to claim 1, characterized in that a thin plate layer consisting of a monthly layer or a conductive layer is provided on the lower surface. (9) In the container, a contact abrasive for vacuum pulp is provided. When the first material, which has obtained the necessary function (iift), is in a molten state, a plurality of second materials are gradually immersed in the container at intervals from each other, so that both materials are integrated. A method for manufacturing a contact for a true complex valve, in which a multi-contact material is obtained by curing, and the material is cut to make a contact for a vacuum valve. By injecting a first molten metal having the necessary function as a contact material for a vacuum valve into a container housed with a convex shape, and curing the first and second molten metals together. 1 contact material!
:+, A method for manufacturing a vacuum valve contact by cutting this to obtain a vacuum valve contact. (11) When both the first and twentieth materials are housed in the container and the first material is in a molten state, the first material is solidified sequentially from one direction of the container. 7. A method for manufacturing a contact for a vacuum valve according to claim 1lili and claim 9 or 10. A method for manufacturing a contact for a J (empty) Z-lube according to claim 9 or 10.
JP16888082A 1982-09-28 1982-09-28 Contact for vacuum bulb and method of producing same Pending JPS5958724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16888082A JPS5958724A (en) 1982-09-28 1982-09-28 Contact for vacuum bulb and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16888082A JPS5958724A (en) 1982-09-28 1982-09-28 Contact for vacuum bulb and method of producing same

Publications (1)

Publication Number Publication Date
JPS5958724A true JPS5958724A (en) 1984-04-04

Family

ID=15876268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16888082A Pending JPS5958724A (en) 1982-09-28 1982-09-28 Contact for vacuum bulb and method of producing same

Country Status (1)

Country Link
JP (1) JPS5958724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161629A (en) * 1985-01-10 1986-07-22 三菱電機株式会社 Contact for vacuum breaker
US5174249A (en) * 1990-07-13 1992-12-29 Toyota Jidosha Kabushiki Kaisha Piston cooling device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161629A (en) * 1985-01-10 1986-07-22 三菱電機株式会社 Contact for vacuum breaker
US5174249A (en) * 1990-07-13 1992-12-29 Toyota Jidosha Kabushiki Kaisha Piston cooling device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH0261764B2 (en)
JPH0318426B2 (en)
US3592987A (en) Gettering arrangements for vacuum-type circuit interrupters comprising fibers of gettering material embedded in a matrix of material of good conductivity
JPS5958724A (en) Contact for vacuum bulb and method of producing same
EP2081239B1 (en) Superconductive wire and electrical machine using said wire
EP0118844A2 (en) Vacuum switch and method of manufacturing the same
US3440585A (en) Superconducting magnets
US5461205A (en) Electrode stem for axial magnetic field vacuum interrupters
JP7428617B2 (en) Connection part of superconducting wire and connection method of superconducting wire
EP0077157A1 (en) Electrical contact structure of a vacuum interrupter
EP0155584B1 (en) Method for processing vacuum switch
US5747181A (en) Superconductive article and method of making
CN111279002B (en) Superconducting stabilizing material, superconducting wire, and superconducting coil
JP2005093235A (en) Nb3Sn SUPERCONDUCTING WIRE MATERIAL, AND MANUFACTURING METHOD OF THE SAME
JP2534997B2 (en) Electrical device incorporating an insulating material suitable for use as a high temperature electrical edge, method of making mica and electromagnetic pump suitable for conveying molten metal
JP2675093B2 (en) Manufacturing method of welded structure
KR880001832B1 (en) Breaker
JPH0699768B2 (en) Ni-base alloy and manufacturing method thereof, and Ni-base alloy rotating electric machine damper and retaining ring
JPH0311488B2 (en)
JPS6077327A (en) Vacuum interrupter
JP2845905B2 (en) Compound conducting wire for alternating current
JPS5914354A (en) Electromagnetic shield
JP2874132B2 (en) Method for manufacturing Nb (3) Sn superconducting wire for AC
JP2742421B2 (en) Superconducting wire and its manufacturing method
JPS6313286B2 (en)