JPH0699768B2 - Ni-base alloy and manufacturing method thereof, and Ni-base alloy rotating electric machine damper and retaining ring - Google Patents

Ni-base alloy and manufacturing method thereof, and Ni-base alloy rotating electric machine damper and retaining ring

Info

Publication number
JPH0699768B2
JPH0699768B2 JP22552586A JP22552586A JPH0699768B2 JP H0699768 B2 JPH0699768 B2 JP H0699768B2 JP 22552586 A JP22552586 A JP 22552586A JP 22552586 A JP22552586 A JP 22552586A JP H0699768 B2 JPH0699768 B2 JP H0699768B2
Authority
JP
Japan
Prior art keywords
based alloy
alloy
damper
base alloy
retaining ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22552586A
Other languages
Japanese (ja)
Other versions
JPS6379933A (en
Inventor
誉延 森
元司 滝
哲郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22552586A priority Critical patent/JPH0699768B2/en
Publication of JPS6379933A publication Critical patent/JPS6379933A/en
Publication of JPH0699768B2 publication Critical patent/JPH0699768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非磁性,低電気抵抗で高強度,高靱性のNi基
合金及びその製造法に係り、またこのNi基合金により形
成された回転電機(発電機,モータ等)のダンパー及び
リテイニング・リングに関する。
The present invention relates to a non-magnetic, low electric resistance, high strength, high toughness Ni-base alloy and a method for producing the same, and is formed by this Ni-base alloy. The present invention relates to a damper and a retaining ring of a rotating electric machine (generator, motor, etc.).

〔従来の技術〕[Conventional technology]

従来、発電機及び電動機等の回転電機のダンパー及びリ
テイニング・リングは磁性,電気抵抗,強度,靱性等に
ついてバランスのとれた材料を必要とし、これ迄Ni−Cu
−Al系の合金が使用された。しかし、この合金はCuを含
むNi基合金であるので、これとFe合金製部材との溶接が
困難であり、また製鋼メーカーは炉の汚染の点からCuを
含む合金の溶解を好まない。従つてCuを含まない合金系
から必要な性状を有する合金を探究している現況であ
る。
Conventionally, dampers and retaining rings for rotating electrical machines such as generators and electric motors require materials that have a good balance of magnetism, electric resistance, strength, and toughness.
An Al-based alloy was used. However, since this alloy is a Ni-based alloy containing Cu, it is difficult to weld this to an Fe alloy member, and steelmakers do not like melting the alloy containing Cu from the viewpoint of furnace contamination. Therefore, it is the current situation to search for alloys with the required properties from alloy systems that do not contain Cu.

そこでCuを含まないNi基合金として次の様な特許があ
る。例えば特開昭60−89537号公報、「耐エロージヨン
性に優れた金属部材」には、Ni及び又はCoに、Cr:0.1〜
6%,Al:0.1〜5%,Ti:0.1〜6%,Si:0.5〜6%,Zr:0.1
〜6%,Hf:0.1〜6%(何れも重量%)よりなる群の1
種以上を含有せたNi基合金が開示され、内部酸化処理に
より酸化物を分散析出させて耐エロージヨン性を付与し
たNi基合金である。また特開昭58−96845号の「ニツケ
ル基合金シート及びその製造方法」には、NiにAl:2〜9
%,Ti:0〜6%,Mo:0〜16%,Ta:0〜12%,W:0〜12%,Nb:0
〜4%,Cr:0〜20%,Co:0〜20%,C:0〜0.3%,Y:0〜1%,
B:0〜0.3%,Zr:0〜0.3%,V:0〜2%,Re:0〜5%を含ま
せたNi基合金が開示され、特定条件下で熱間加工後、冷
間で交差圧延を行なうことにより、(110)<112>結晶
の数が多い繊維状組織を有するNi基合金シートである。
しかし、これらの如くCuを含まないNi基合金は存在して
いるが、従来技術は磁性及び電気抵抗に関する配慮が全
くなされていなかつた。また、従来のNi基合金の中でA2
8b,インコネル706等の合金は非磁性で高強度を有するも
のであるが、電気抵抗が高過ぎるという問題があつた。
Therefore, there are the following patents for Ni-based alloys that do not contain Cu. For example, in JP-A-60-89537, "Metal member having excellent erosion resistance", Ni and or Co, Cr: 0.1 ~
6%, Al: 0.1-5%, Ti: 0.1-6%, Si: 0.5-6%, Zr: 0.1
~ 6%, Hf: 0.1 ~ 6% (both by weight) 1 of the group
A Ni-based alloy containing at least one species is disclosed, which is an Ni-based alloy in which an oxide is dispersed and precipitated by an internal oxidation treatment to impart erosion resistance. Further, in JP-A-58-96845, "Nickel-based alloy sheet and method for producing the same", Ni: Al: 2-9
%, Ti: 0 to 6%, Mo: 0 to 16%, Ta: 0 to 12%, W: 0 to 12%, Nb: 0
~ 4%, Cr: 0 ~ 20%, Co: 0 ~ 20%, C: 0 ~ 0.3%, Y: 0 ~ 1%,
A Ni-based alloy containing B: 0 to 0.3%, Zr: 0 to 0.3%, V: 0 to 2%, and Re: 0 to 5% is disclosed. After hot working under specific conditions, cold working is performed. It is a Ni-based alloy sheet having a fibrous structure with a large number of (110) <112> crystals by performing cross rolling.
However, although there are Ni-based alloys that do not contain Cu as described above, no consideration was given to magnetism and electric resistance in the prior art. Among conventional Ni-based alloys, A2
Although alloys such as 8b and Inconel 706 are non-magnetic and have high strength, they have a problem that their electric resistance is too high.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来技術では、Cuを含まないNi基合金の各成分が磁性,
電気抵抗に及ぼす影響について考慮されておらない。従
つて回転電機(発電機,モータ等)のダンパー及びリテ
イニング・リングのように非磁性,低電気抵抗,高強
度,高靱性の各特性についてバランスのとれた材料を必
要とする部材には適用できないという問題があつた。
In the conventional technology, each component of the Ni-based alloy containing no Cu is magnetic,
No consideration is given to the effect on electric resistance. Therefore, it cannot be applied to the members such as dampers and retaining rings of rotating electric machines (generators, motors, etc.) that require materials with well-balanced properties of non-magnetic, low electrical resistance, high strength and high toughness. There was a problem.

従つて、本発明の目的は、回転電機(発電機,電動機
等)のダンパー及びリテイニング・リングの材料として
適する非磁性,低電気抵抗,高強度,高靱性のバランス
のとれたNi基合金を提供することにある。
Therefore, an object of the present invention is to provide a Ni-based alloy having a well-balanced non-magnetic property, low electric resistance, high strength, and high toughness, which is suitable as a material for a damper and a retaining ring of a rotating electric machine (generator, electric motor, etc.). To do.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するためには、先ず各特性と合金成分
との関係を明らかにすることが必要であり、次ぎに各特
性の目標を満足するように合金成分の量を最適化するこ
とが必要である。最適化がなされないと、合金のある特
性、例えば比抵抗が十分に低い値に得られても、別の特
性,例えばキユリー点が高くなり過ぎたりする。回転電
機(発電機,モーター等)のダンパー及びリテイニング
・リングに用いる材料の場合、合金成分を最適化するこ
とは、磁性,電気抵抗,強度,靱性の各特性の全てにつ
いてバランスのとれている合金成分を選択することを意
味し、以下の様なNi基合金が適するものである。即ち、
本発明のNi基合金は、重量%でCr:1〜5%,Al:3〜7%,
Ti:0.2〜1.0%,C:0.05〜0.3%,Si,Mnの単独又は複合:0.
01〜1.0%,及びMg,Zr,Bの1種以上:0.005〜0.05%を含
み、残部がNiからなる合金であり、γ−プライム相を有
し、キユリー点が0℃以下,比抵抗が70μΩcm以下、0.
2%耐力が60kgf/mm2以上、及び吸収エネルギーが5kgf・
m以上の合金である。
In order to achieve the above object, it is necessary to first clarify the relationship between each characteristic and the alloy component, and then it is necessary to optimize the amount of the alloy component so as to satisfy the target of each characteristic. is necessary. Without optimization, one property of the alloy, for example a specific resistance, can be obtained at a sufficiently low value, while another property, for example, the Curie point, becomes too high. In the case of materials used for dampers and retaining rings of rotating electrical machines (generators, motors, etc.), optimizing the alloying components is an alloy that has well-balanced properties of magnetism, electrical resistance, strength, and toughness. This means selecting the components, and the following Ni-based alloys are suitable. That is,
The Ni-based alloy of the present invention contains Cr: 1 to 5%, Al: 3 to 7% by weight,
Ti: 0.2 to 1.0%, C: 0.05 to 0.3%, Si or Mn alone or in combination: 0.
01-1.0% and at least one of Mg, Zr, and B: 0.005-0.05%, the balance is Ni, is an alloy with γ-prime phase, the Curie point is 0 ° C or less, and the specific resistance is 70 μΩcm or less, 0.
2% proof stress is 60kgf / mm 2 or more, and absorbed energy is 5kgf ・
It is an alloy of m or more.

また、前記のNi基合金の製造法は、前記の成分の合金を
溶解製造(溶製)後、鍛造成形し、その後で温度800℃
以上で溶体化処理し、次いで温度450〜650℃の範囲で時
効処理してγ−プライム相を析出する製造法である。
In addition, the manufacturing method of the above Ni-based alloy is such that the alloy of the above components is melted and manufactured (melted), then forged, and then the temperature is set to 800 ° C.
This is a manufacturing method in which the solution treatment is performed, and then the aging treatment is performed at a temperature in the range of 450 to 650 ° C. to precipitate the γ-prime phase.

また、前記Ni基合金は回転電機(発電機,電動機等)の
ダンパー及び、リテイニング・リング等の部材に用い
る。
Further, the Ni-based alloy is used for a damper of a rotating electric machine (generator, electric motor, etc.) and a member such as a retaining ring.

以下、更にNi基合金について詳述する。各成分の量を決
めるために実験的手法と数学的手法とを組合せた合金設
計の手法を用いる。即ち、Cr,Al,Ti,C,Si,及びMn等の含
有量を系統的に変化させてNi基合金を実験的に溶製し、
30種類の4kg真空溶解鋳塊を得て、所定の加工・熱処理
をする。すなわち1100〜800℃で鍛造後、950℃,1hrで水
冷の溶体化処理をし、次いで2段の時効処理、550℃,30
hrと500℃,30hrを行つて各Ni基合金を得る。
Hereinafter, the Ni-based alloy will be further described in detail. A method of alloy design combining experimental and mathematical methods is used to determine the amount of each component. That is, the contents of Cr, Al, Ti, C, Si, and Mn are systematically changed to experimentally produce a Ni-based alloy,
Obtain 30 kinds of 4kg vacuum melting ingots and perform predetermined processing and heat treatment. That is, after forging at 1100 to 800 ° C, water-cooled solution treatment at 950 ° C for 1 hr, followed by two-step aging treatment, 550 ° C, 30
Each Ni-based alloy is obtained by carrying out hr and 500 ° C for 30 hr.

各Ni基合金の磁性,電気抵抗,強度,靱性の各特性を測
定して基礎データを作成する。その基礎データから各特
性と合金成分との関係を回帰分析の統計方法により演算
し、磁性,電気抵抗,強度,靱性について実験式を得
る。本発明者等は実験の結果の次の4個の式I−IVを得
た。
The basic data is created by measuring the magnetic properties, electrical resistance, strength, and toughness of each Ni-based alloy. From the basic data, the relationship between each property and alloy composition is calculated by the statistical method of regression analysis, and empirical formulas for magnetism, electric resistance, strength and toughness are obtained. The present inventors obtained the following four formulas I-IV as the result of the experiment.

キユリー点(℃)=353−46(Cr)−57(Al)+5(T
i)+80(C)−77(Si)−13(Mn) ……(I) 比抵抗(μΩcm)=6.8+6.2(Cr)+6.3(Al)+4(T
i)+15(C)+8(Si)+2(Mn) ……(II) 0.2%耐力(kgf/mm2)=22−2(Cr)+6(Al)+30
(Ti)+100(C)+1(Si)+1(Mn) ……(III) 吸収エネルギ(kgf・m)=90−1.5(Cr)−6(Al)−
20(Ti)−200(C)−5(Si)−5(Mn) ……(IV) 但し、(Cr),(Al),(Ti),(C),(Si),(M
n)等は各元素の重量%である。
Curie point (℃) = 353-46 (Cr) -57 (Al) + 5 (T
i) +80 (C) -77 (Si) -13 (Mn) ...... (I) Specific resistance (μΩcm) = 6.8 + 6.2 (Cr) +6.3 (Al) +4 (T
i) +15 (C) +8 (Si) +2 (Mn) ...... (II) 0.2% proof stress (kgf / mm 2 ) = 22-2 (Cr) +6 (Al) +30
(Ti) +100 (C) +1 (Si) +1 (Mn) (III) Absorbed energy (kgf ・ m) = 90-1.5 (Cr) -6 (Al)-
20 (Ti) -200 (C) -5 (Si) -5 (Mn) ... (IV) However, (Cr), (Al), (Ti), (C), (Si), (M
n) and the like are weight% of each element.

次に各I〜IVに目標値、すなわちキユリー点が0℃以
下、比抵抗が70μΩcm以下、0.2%耐力が60kgf/mm2
上、吸収エネルギが5kgf・m以上の値を設定して4元連
立方程式とし、その解を求めた。そしてその解を満足す
る合金成分を幾つか選定し、実験的にその合金(すなわ
ち後で実施例のところで示す合金)を作製して目標特性
を得られることを確認してから、最終的に最適化された
合金成分範囲として次の範囲を得たものである。
Next, set a target value for each of I to IV, that is, the Curie point is 0 ° C or less, the specific resistance is 70 μΩcm or less, the 0.2% proof stress is 60 kgf / mm 2 or more, and the absorbed energy is 5 kgf · m or more. The equation was used and the solution was obtained. Then, after selecting some alloy components that satisfy the solution and experimentally producing the alloy (that is, the alloy described later in the example) and confirming that the target characteristics can be obtained, finally the optimum The following range was obtained as the range of alloyed alloy components.

(Cr):1〜5重量% (Al):3〜7重量% (Ti):0.2〜1.0重量% (C):0.05〜0.3重量% (Si+Mn):0.01〜1.0重量% 次に合金成分と各特性値との関係を述べる。第1図にSi
=0.2%,Mn=0.2%,C=0.15%,Ti=0.4%(何れも重量
%)の場合に各特性を満足するCrとAlの成分量(重量
%)範囲を斜線で示す。直線1はキユリー点0℃を示
し、この直線より上がキユリー点0℃以下であり、直線
2は比抵抗70μΩcmを示し、この直線より下が比抵抗70
μΩcm以下であり、直線3は0.2%耐力60kgf/mm2を示
し、この直線より上が0.2%耐力60kgf/mm2以上であり、
直線4は吸収エネルギー5kgf・mを示し、この直線より
下が吸収エネルギー5kgf・m以上である。従つて各直線
1,2,3,4に囲まれた斜線範囲の成分組成が各特性を満足
する。また、○内の数字は後述する第1表の試番を表わ
す。同様に、第2図はSi=0.2%,Mn=0.2%,C=0.05%,
Ti=1.0%(何れも重量%)の場合に各特性を満足するC
rとAlの成分量(重量%)範囲を斜線で示す。直線1,2,
3,4、及び○内の数字は第1図と同様である。これらの
図から分るように、比抵抗とキユリー点の特性によつて
CrとAlの適正の成分範囲は大きく制約される。
(Cr): 1 to 5% by weight (Al): 3 to 7% by weight (Ti): 0.2 to 1.0% by weight (C): 0.05 to 0.3% by weight (Si + Mn): 0.01 to 1.0% by weight The relation with each characteristic value is described. Figure 1 shows Si
= 0.2%, Mn = 0.2%, C = 0.15%, Ti = 0.4% (all are wt%), the range of Cr and Al component amounts (wt%) satisfying the respective characteristics is shown by diagonal lines. The straight line 1 indicates the Curie point 0 ° C., the upper part of this line is the Curie point 0 ° C. or lower, the straight line 2 indicates the specific resistance of 70 μΩcm, and the lower part of the straight line indicates the specific resistance of 70 ° C.
μΩcm or less, the straight line 3 shows 0.2% proof stress 60 kgf / mm 2 , and the line above this line is 0.2% proof stress 60 kgf / mm 2 or more,
The straight line 4 shows the absorbed energy of 5 kgf · m, and below the straight line is the absorbed energy of 5 kgf · m or more. Therefore each straight line
The composition of components in the shaded area surrounded by 1,2,3,4 satisfies each characteristic. The numbers in the circles represent the trial numbers in Table 1 described later. Similarly, FIG. 2 shows that Si = 0.2%, Mn = 0.2%, C = 0.05%,
C that satisfies each characteristic when Ti = 1.0% (all are weight%)
The range of the component amounts (% by weight) of r and Al is indicated by diagonal lines. Straight line 1,2,
The numbers in 3, 4, and ○ are the same as in FIG. As can be seen from these figures, the characteristics of the resistivity and the Curie point
The proper composition range of Cr and Al is largely restricted.

〔作用〕[Action]

本発明者等は先に述べたようにNi−Cr−Al−Ti−C−Si
−Mn合金系において、磁性,電気抵抗,強度,靱性の夫
々の各特性にキユリー点,比抵抗,0.2%耐力,吸収エネ
ルギーに及ぼす構成元素の成分の作用(影響)を検討し
た。各元素が特性に及ぼす影響は式I〜IVから明らかで
ある。
As described above, the present inventors have found that Ni--Cr--Al--Ti--C--Si.
In the -Mn alloy system, the effects (effects) of the constituent elements on the Curie point, the specific resistance, the 0.2% proof stress, and the absorbed energy for each property of magnetism, electric resistance, strength, and toughness were investigated. The effect of each element on the properties is clear from equations I-IV.

Crはキユリー点、0.2%耐力、吸収エネルギーを小さく
して、比抵抗を大きくする。従つてCrは磁性の点のみで
有効な働きをする元素である。またCrが1%(重量%,
以下同様)より少ないとキユリー点が0℃以下に下がつ
て、常温で強磁性を示し、また5%より多いと0.2%耐
力,吸収エネルギーが小になり機械的強度が低下するの
で、1〜5%の範囲が適する。
Cr reduces the Curie point, 0.2% proof stress, absorbed energy, and increases the specific resistance. Therefore, Cr is an element that works effectively only in terms of magnetism. Moreover, Cr is 1% (weight%,
The same applies hereinafter), the Curie point decreases to 0 ° C. or lower and exhibits ferromagnetism at room temperature, and if it exceeds 5%, 0.2% proof stress and absorbed energy decrease and the mechanical strength decreases. A range of 5% is suitable.

Alはキユリー点,吸収エネルギーを小さくして、比抵
抗、0.2%耐力を大きくする。従つてAlは磁性と強度に
有効な働きをする元素である。Alが強度を高めるのは時
効処理により、γ−プライム相(Ni3Al)が形成される
ためである。尚、γ−プライム相は透過電子顕微鏡で観
察し得る約100Å程度の微細粒子からなり、高強度に寄
与する。また、Alが3%より少ないと0.2%耐力を小に
し、キユリー点を低下させず、また7%より多いと吸収
エネルギーを低下させるので、1〜7%の範囲が適す
る。
Al lowers the Curie point and absorbed energy to increase the specific resistance and 0.2% proof stress. Therefore, Al is an element that works effectively for magnetism and strength. Al enhances the strength because the aging treatment forms a γ-prime phase (Ni 3 Al). The γ-prime phase consists of about 100Å fine particles that can be observed with a transmission electron microscope, and contributes to high strength. Further, if Al is less than 3%, 0.2% proof stress is reduced and the Curie point is not lowered, and if it is more than 7%, absorbed energy is lowered, so that the range of 1 to 7% is suitable.

Tiはキユリー点、比抵抗,0.2%耐力を大きくし、吸収エ
ネルギーを低下させる。従つてTiは強度の点のみで有効
な働きをする元素である。また、Tiが0.2%より少ない
と0.2%耐力を小にし、1.0%より多いとキユリー点を低
下させず、吸収エネルギーを低下し、比抵抗を大にする
ので、0.2〜1.0%の範囲が適する。
Ti increases the Curie point, the specific resistance and the 0.2% proof stress, and reduces the absorbed energy. Therefore, Ti is an element that works effectively only in terms of strength. If Ti is less than 0.2%, 0.2% proof stress will be small, and if it is more than 1.0%, the Curie point will not be lowered, absorbed energy will be reduced, and specific resistance will be large, so the range of 0.2 to 1.0% is suitable. .

CはTiと同様にキユリー点,比抵抗,0.2%耐力を高め、
吸収エネルギーを低下させる。従つてCは強度の点のみ
で有効な働きをする元素である。また、Cが0.05%より
少ないと0.2%耐力を小にし、0.3%より多いとキユリー
点を低下させず、吸収エネルギーを低下し、比抵抗を大
にするので、0.05〜0.3%の範囲が適する。
C, like Ti, has higher Kuriy point, specific resistance and 0.2% proof stress.
Reduces absorbed energy. Therefore, C is an element that works effectively only in terms of strength. When C is less than 0.05%, 0.2% proof stress is reduced, and when it is more than 0.3%, the Curie point is not lowered, absorbed energy is lowered, and specific resistance is increased, so that the range of 0.05 to 0.3% is suitable. .

SiとMnはAlと同様にキユリー点,吸収エネルギーを低下
させて、比抵抗、0.2%耐力を高める。従つてSiとMnは
磁性と強度に有効な働きをすると共に、合金の溶解製造
時に脱酸効果に寄与する。SiとMnが単独又は複合で0.01
%より少ないとキユリー点が低下せず、また脱酸効果が
十分でなく、1.0%より多いと比抵抗が高く、吸収エネ
ルギーが低下するので、0.01〜1.0%の範囲が適する。
Similar to Al, Si and Mn lower the Curie point and absorbed energy, and increase the specific resistance and 0.2% proof stress. Therefore, Si and Mn play an effective role in magnetism and strength, and contribute to the deoxidizing effect during the melt production of the alloy. 0.01 with Si and Mn alone or in combination
If it is less than 1.0%, the Curie point will not be lowered, and the deoxidizing effect will not be sufficient, and if it is more than 1.0%, the specific resistance will be high and the absorbed energy will be lowered, so the range of 0.01 to 1.0% is suitable.

なお、合金の熱間加工性を良好にする為にMg,Zr,B等の
粒界強化元素を1種以上添加するが、0.005%より少な
いと熱間加工性に寄与せず、また0.05%より多くしても
その効果を余り増大しないので、0.005〜0.05%の範囲
が適する。
In order to improve the hot workability of the alloy, one or more grain boundary strengthening elements such as Mg, Zr, and B are added, but if it is less than 0.005%, it does not contribute to the hot workability and 0.05%. The range of 0.005 to 0.05% is suitable because the effect is not increased so much even if it is increased.

また、これらの元素の添加量が微量のため、磁性,電気
抵抗,強度,靱性の各特性に及ぼす影響は無視される。
Further, since the added amounts of these elements are very small, their influences on the properties of magnetism, electric resistance, strength and toughness are neglected.

上記した如く、本発明のNi基合金は鍛造成形が容易であ
り、非磁性,低電気抵抗,高強度,高靱性なので、回転
電機、特に超電導発電機の回転子のダンパー及び電動機
のリテイニング・リングの部材として適している。
As described above, the Ni-based alloy of the present invention is easy to forge-mold, and has non-magnetism, low electric resistance, high strength, and high toughness. Therefore, the damper of the rotor of the rotating electric machine, particularly the superconducting generator and the retaining ring of the electric motor. It is suitable as a member.

ダンパーの場合は電力系統が事故を起し、電機子巻線に
電流の変動が起つても、本発明のNi基合金製のダンパー
は非磁性,良導電性でかつ高強度であるので、電機子磁
束の変動分の界磁巻線に鎖交するのを防止し、かつ電磁
力による回転子の損傷を防ぐことができる。またリテイ
ニング・リングの場合も同様の効果がある。
In the case of a damper, the Ni-based alloy damper of the present invention is non-magnetic, has good electrical conductivity, and has high strength even if the electric power system causes an accident and the current in the armature winding fluctuates. It is possible to prevent the fluctuation of the child magnetic flux from interlinking with the field winding and prevent the rotor from being damaged by the electromagnetic force. The same effect can be obtained in the case of a retaining ring.

〔実施例〕〔Example〕

実施例1 第1表の試番1〜10に示す如く、NiにCr,Al,Ti,C,Si,M
n,及びMg,B,Zrのそれぞれを含ませた各組成の合金を真
空溶解により4kg溶製した。次に1100〜800℃で鍛造した
後、950℃、1時間で水冷の溶体化処理し、更に550℃,3
0分間、続いて500℃,30時間の2段の時効処理してγ−
プライム相を生成させてNi基合金を得た。
Example 1 As shown in trial numbers 1 to 10 in Table 1, Ni, Cr, Al, Ti, C, Si, M
An alloy of each composition containing n and each of Mg, B, and Zr was melted in a vacuum of 4 kg. Next, after forging at 1100 ~ 800 ℃, 950 ℃, 1 hour water-cooled solution treatment, 550 ℃, 3
Two-step aging treatment at 0 ° C for 30 minutes at 500 ° C followed by γ-
A Ni-based alloy was obtained by generating a prime phase.

得られた各試番のNi基合金についてキユリー点,比抵
抗,0.2%耐力、及び吸収エネルギーを測定し、その各特
性値を第2表に示す。また、比較として従来合金AのA2
86,従来合金Bのインコネル706の各成分組成を第1表
に、各特性値を第2表に示す。第2表より本発明のNi基
合金は従来合金よりも比抵抗が低く、吸収エネルギーが
高い。このことから本発明のNi基合金は良導電性,強靱
性で優れ、また非磁性,強度も十分であることが分る。
The Kuriy point, the specific resistance, the 0.2% proof stress, and the absorbed energy of each of the obtained Ni-based alloys of the sample numbers were measured, and the respective characteristic values are shown in Table 2. Also, as a comparison, A2 of conventional alloy A
86, each component composition of Inconel 706 of Conventional Alloy B is shown in Table 1, and each characteristic value is shown in Table 2. From Table 2, the Ni-based alloy of the present invention has lower specific resistance and higher absorbed energy than the conventional alloy. From this, it can be seen that the Ni-based alloy of the present invention is excellent in good conductivity and toughness, and also has sufficient non-magnetism and strength.

また、第1表及び第2表の試番の数字は第1図及び第2
図の曲線1,2,3,4に囲まれる斜線の中の○印の数字に相
当する。第1図及び第2図より本発明のNi基合金は各特
性値を全て満足していることが分る。
Also, the numbers of the trial numbers in Tables 1 and 2 are the same as those in Figures 1 and 2
Corresponds to the circled numbers in the diagonal lines surrounded by curves 1, 2, 3, and 4 in the figure. From FIGS. 1 and 2, it can be seen that the Ni-based alloy of the present invention satisfies all the characteristic values.

実施例2 本発明のNi基合金を用いて超電導発電機の回転子のダン
パーを得た例を示す。第3図は超電導発電機の回転子の
構成を示す断面図である。これは回転界磁型超電導発電
機におけるものである。回転子は多重同心中空円筒構造
を有し、外側より、ダンパー11、熱輻射シールド9(液
体ヘリウムの液化温度より約50℃高くなつている。)超
電導コイルカバー8、超電導コイルバインド7、超電導
コイル2、超電導コイル2を収納するトルクチユーブ
6、冷却用ヘリウム流路5、シヤフト10、電流リード線
1、液体ヘリウム4、液体ヘリウム導入管3によつて構
成されている。液体ヘリウムは回転の遠心力によつてト
ルクチユーブ6の壁に押しつけられ、図のように円筒状
になる。熱輻射シールド9およびダンパー11内はいずれ
も真空になつている。
Example 2 An example of obtaining a damper for a rotor of a superconducting generator using the Ni-based alloy of the present invention will be shown. FIG. 3 is a sectional view showing the structure of the rotor of the superconducting generator. This is in a rotating field type superconducting generator. The rotor has a multi-concentric hollow cylindrical structure, and a damper 11, a heat radiation shield 9 (about 50 ° C. higher than the liquefaction temperature of liquid helium) from the outside, a superconducting coil cover 8, a superconducting coil bind 7, a superconducting coil. 2. A torque tube 6 for accommodating the superconducting coil 2, a cooling helium flow path 5, a shaft 10, a current lead wire 1, a liquid helium 4, and a liquid helium introducing pipe 3. The liquid helium is pressed against the wall of the torque tube 6 by the centrifugal force of rotation and becomes a cylindrical shape as shown in the figure. Both the heat radiation shield 9 and the damper 11 are evacuated.

大容量発電機においては電力系統事故時に電機子巻線の
電流が変動する。このときもしダンパー11がないと、電
機子巻線の発生する磁束と界磁電流との相互作用により
制動力が働らく為、回転子が減衰し、同期をはずれる。
同期をはずれると電機子電流が尚一層著しく変動し、か
つ回転子に過大なる推力と制動力が交互に発生するため
電力系統にとつても発電機にとつても致命的な損傷とな
る。
In a large-capacity generator, the current in the armature winding fluctuates during a power system failure. If the damper 11 is not provided at this time, the braking force is exerted by the interaction between the magnetic flux generated by the armature winding and the field current, so that the rotor is attenuated and out of synchronization.
Out of synchronization, the armature current fluctuates more significantly, and excessive thrust and braking force are alternately generated in the rotor, resulting in fatal damage to the power system and the generator.

このようにダンパー11を回転子が同期からはずれるのを
防止するために設けるものである。換言すれば、ダンパ
ー11は、電機子磁束の変動分が界磁巻線に鎖交するのを
防止するためのものであり、導体内にうず電流を流して
磁束密度を減衰させるものである。電機子磁束には120H
z成分と、回転子の動揺に伴なう0.5〜2Hzの低周波成分
があり、前者はダンパーにより、後者は熱輻射シールド
により、それぞれ遮蔽される。この時、電機子磁束とダ
ンパーのうず電流との相互作用により、ダンパー11には
回転動揺制動力と強大な電磁力が発生する。
Thus, the damper 11 is provided to prevent the rotor from being out of synchronization. In other words, the damper 11 is for preventing the fluctuation of the armature magnetic flux from interlinking with the field winding, and is for passing an eddy current in the conductor to attenuate the magnetic flux density. 120H for armature flux
There is a z component and a low frequency component of 0.5 to 2 Hz that accompanies the vibration of the rotor. The former is shielded by a damper and the latter is shielded by a heat radiation shield. At this time, due to the interaction between the armature magnetic flux and the eddy current of the damper, a rotational vibration braking force and a strong electromagnetic force are generated in the damper 11.

したがつて、ダンパーに用いる材料は導電性が良好でか
つ強度の高いことが必要である。また、次の理由から非
磁性であることが要求される。すなわち、超電導コイル
の磁束密度は極めて高いが、電機子巻線との間に強磁性
体が存在すると、磁性体の磁気飽和現象によつて、有効
利用できる磁束が減少してしまうためである。
Therefore, the material used for the damper must have good conductivity and high strength. Further, it is required to be non-magnetic for the following reasons. That is, the magnetic flux density of the superconducting coil is extremely high, but if a ferromagnetic substance is present between the superconducting coil and the armature winding, the magnetic saturation phenomenon of the magnetic substance reduces the effectively usable magnetic flux.

上記のようにダンパーには回転動揺制動力と強大な電磁
力が発生するが、キユリー点0℃以下の非磁性,比抵抗
70μΩcm以下の良導電性、0.2%耐力60kgf/mm2以上の高
強度、吸収エネルギー5kgf・m以上の高靱性のNi基合金
でダンパーを造るので、外から超電導コイルへ入る電磁
波を完全にシールドし、また強度的にも充分耐えて回転
子の安全性を高め得る。其の上、このNi基合金は鍛造成
形が容易で、長尺中空円筒が鍛造により成形できる。
As mentioned above, the damper generates rotational vibration braking force and strong electromagnetic force, but it is non-magnetic and has a specific resistance below the Curie point 0 ° C.
Since the damper is made of a Ni-based alloy with good conductivity of 70 μΩcm or less, high strength of 0.2% proof stress of 60 kgf / mm 2 or more, and high toughness of absorbed energy of 5 kgf · m or more, electromagnetic waves entering the superconducting coil from the outside are completely shielded. Also, it can endure the strength enough to enhance the safety of the rotor. Moreover, this Ni-based alloy is easy to forge, and a long hollow cylinder can be formed by forging.

実施例3 本発明のNi基合金で在来型電動機の回転子のリテイニン
グ・リングを得た例を示す。第4図は在来型電動機の概
略構造の平面図を示し、電動機は薄鉄板を積層した固定
子鉄心21と、その内径側に空隙を隔てて回転子22とを設
けて構成する。また第5図は第4図のA部の拡大図で、
回転子22の端部付近の一部断面を示し、第6図は回転子
22の斜視図を示す。回転子22は主として鉄心部22aと界
磁巻線26とにより構成され、そしてこの鉄心部22aには
軸方向に溝が設けられ、界磁巻線26の一部が挿入されて
いる。界磁巻線26の上にはダンパー巻線25が挿入され、
界磁巻線直線部26aすなわち鉄心の溝に収納されている
部分では楔24により固定保持される。また界磁巻線端部
26bすなわち鉄心から頭出した部分はリテイニング・リ
ング23により固定保持されている。このリテイニング・
リングが本発明の非磁性,低比抵抗,高強度,高靱性の
Ni基合金で造られている。従つて実施例2の場合と同様
に回転子の安全性を高めることができる。
Example 3 An example in which a retaining ring for a rotor of a conventional electric motor was obtained from the Ni-based alloy of the present invention will be shown. FIG. 4 is a plan view of a schematic structure of a conventional electric motor. The electric motor comprises a stator core 21 in which thin iron plates are laminated and a rotor 22 provided on the inner diameter side thereof with a gap therebetween. FIG. 5 is an enlarged view of part A of FIG.
Fig. 6 shows a partial cross section near the end of the rotor 22, and Fig. 6 shows the rotor.
22 shows a perspective view of FIG. The rotor 22 is mainly composed of an iron core portion 22a and a field winding 26, and the iron core portion 22a is provided with a groove in the axial direction and a part of the field winding 26 is inserted. The damper winding 25 is inserted on the field winding 26,
The field winding straight portion 26a, that is, the portion housed in the groove of the iron core, is fixed and held by the wedge 24. Also, the end of the field winding
26b, that is, the portion protruding from the iron core is fixedly held by the retaining ring 23. This retaining
The ring has the non-magnetic property, low resistivity, high strength and high toughness of the present invention.
Made of Ni-based alloy. Therefore, the safety of the rotor can be enhanced as in the case of the second embodiment.

〔発明の効果〕〔The invention's effect〕

本発明によつて、Niに前述の如き特定の成分量のCr,Al,
Ti,C,Si,Mn、更に必要に応じてMg,Zr,Bを添加してNi基
合金を製造するので各特性がバランスのとれたNi基合
金、即ちキユリー点が0℃以下の非磁性比抵抗が70μΩ
cm以下の良導電性0.2%耐力が60kgf/mm2以上の高強度,
吸収エネルギーが5kgf・m以上の高靱性の特性を有する
優れたNi基合金が得られる。また本発明Ni基合金で造ら
れた回転電機(発電機,電動機等)のダンパー及びリテ
イニング・リングは苛酷な電気的,機械的条件に耐える
ことができ、回転電機を安全に保ち得る。
According to the present invention, Ni in the specific component amount of Cr, Al, as described above,
Ni-based alloys are manufactured by adding Ti, C, Si, Mn and, if necessary, Mg, Zr, B, so that Ni-based alloys with well-balanced properties, that is, non-magnetic with a Kurye point below 0 ° C Resistivity is 70μΩ
Good conductivity of cm or less 0.2% High strength of 0.2% proof stress of 60 kgf / mm 2 or more,
An excellent Ni-based alloy having high toughness with absorbed energy of 5 kgf · m or more can be obtained. Further, the damper and the retaining ring of the rotary electric machine (generator, electric motor, etc.) made of the Ni-based alloy of the present invention can withstand severe electrical and mechanical conditions, and can keep the rotary electric machine safe.

【図面の簡単な説明】[Brief description of drawings]

第1図はSi=0.2%,Mn=0.2%,C=0.15%,Ti=0.4%の
場合にキユリー点、比抵抗、0.2%耐力、吸収エネルギ
の各目標値を満足するCrとAlの成分範囲を示すグラフ。
第2図はSi=0.2%,Mn=0.2%,C=0.05%,Ti=1.0%の
場合にキユリー点、比抵抗、0.2%耐力、吸収エネルギ
の各目標値を満足するCrとAlの成分範囲を示すグラフ。
第3図は超電導発電機の回転子の断面図、第4図は在来
型電動機の概略構造の平面図、第5図は第4図のA部の
拡大図で回転子端部付近の断面図及び第6図は第4図の
回転子の斜視図である。 1…電流リード線、2…超電導コイル、3…液体ヘリウ
ム導入管、4…液体ヘリウム、5…冷却用ヘリウム流
路、6…トルクチユーブ、7…超電導コイルバインド、
8…超電導コイルカバー、9…熱輻射シールド、10…シ
ヤフト、11…ダンパー、21…固定子鉄心、22…回転子、
22a…鉄心部、23…リテイニング・リング、24…楔、25
…ダンパー巻線、26…界磁巻線。
Fig. 1 shows the composition of Cr and Al that satisfy the target values of the Curie point, resistivity, 0.2% proof stress, and absorbed energy when Si = 0.2%, Mn = 0.2%, C = 0.15%, Ti = 0.4%. A graph showing the range.
Fig. 2 shows the composition of Cr and Al that satisfy the target values of the Curie point, resistivity, 0.2% proof stress and absorbed energy when Si = 0.2%, Mn = 0.2%, C = 0.05% and Ti = 1.0%. A graph showing the range.
FIG. 3 is a cross-sectional view of the rotor of the superconducting generator, FIG. 4 is a plan view of the schematic structure of a conventional electric motor, and FIG. 5 is an enlarged view of part A of FIG. 6 and 6 are perspective views of the rotor shown in FIG. DESCRIPTION OF SYMBOLS 1 ... Current lead wire, 2 ... Superconducting coil, 3 ... Liquid helium introducing tube, 4 ... Liquid helium, 5 ... Cooling helium channel, 6 ... Torque tube, 7 ... Superconducting coil bind,
8 ... Superconducting coil cover, 9 ... Heat radiation shield, 10 ... Shaft, 11 ... Damper, 21 ... Stator core, 22 ... Rotor,
22a ... iron core, 23 ... retaining ring, 24 ... wedge, 25
… Damper winding, 26… Field winding.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Ni基合金で、重量%でCr:1〜5%,Al:3〜
7%,Ti:0.2〜1.0%,C:0.05〜0.3%,Si,Mnの単独又は複
合:0.01〜1.0%,及びMg,Zr,Bの1種以上:0.005〜0.05
%を含み、残部がNiからなる合金であり、γ−プライム
相を有し、キユリー点が0℃以下、比抵抗が70μΩcm以
下、0.2%耐力が60kgf/mm2以上、及び吸収エネルギーが
5kgf・m以上であることを特徴とするNi基合金。
1. A Ni-based alloy, Cr: 1-5% by weight, Al: 3-
7%, Ti: 0.2 to 1.0%, C: 0.05 to 0.3%, single or composite of Si and Mn: 0.01 to 1.0%, and one or more of Mg, Zr and B: 0.005 to 0.05
%, With the balance being Ni, having a γ-prime phase, a Curie point of 0 ° C. or less, a specific resistance of 70 μΩcm or less, a 0.2% proof stress of 60 kgf / mm 2 or more, and an absorbed energy of
A Ni-based alloy characterized by having a weight of 5 kgf · m or more.
【請求項2】重量%でCr:1〜5%,Al:3〜7%,Ti:0.2〜
1.0%,C:0.05〜0.3%,Si,Mnの単独又は複合:0.01〜1.0
%,及びMg,Zr,Bの1種以上:0.005〜0.05%を含み、残
部がNiからなる組成の合金を溶製した後、鍛造成形し、
その後で温度800℃以上の溶体化処理し、次いで温度450
〜650℃の範囲で時効処理してγ−プライム相を析出さ
せることを特徴とするNi基合金の製造法。
2. By weight%, Cr: 1-5%, Al: 3-7%, Ti: 0.2-
1.0%, C: 0.05 to 0.3%, Si or Mn single or composite: 0.01 to 1.0
%, And one or more of Mg, Zr, and B: 0.005 to 0.05%, the balance is Ni, the alloy having the composition of Ni is melted, and then forged.
After that, solution heat treatment at a temperature of 800 ℃ or more, then temperature 450
A method for producing a Ni-based alloy, characterized by precipitating a γ-prime phase by aging treatment in the range of up to 650 ° C.
【請求項3】特許請求の範囲第1項記載のNi基合金から
なることを特徴とする回転電機ダンパー。
3. A rotary electric machine damper comprising the Ni-based alloy according to claim 1.
【請求項4】特許請求の範囲第1項記載のNi基合金から
なることを特徴とする回転電機リテイニング・リング。
4. A rotating electrical machine retaining ring comprising the Ni-based alloy according to claim 1.
JP22552586A 1986-09-24 1986-09-24 Ni-base alloy and manufacturing method thereof, and Ni-base alloy rotating electric machine damper and retaining ring Expired - Lifetime JPH0699768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22552586A JPH0699768B2 (en) 1986-09-24 1986-09-24 Ni-base alloy and manufacturing method thereof, and Ni-base alloy rotating electric machine damper and retaining ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22552586A JPH0699768B2 (en) 1986-09-24 1986-09-24 Ni-base alloy and manufacturing method thereof, and Ni-base alloy rotating electric machine damper and retaining ring

Publications (2)

Publication Number Publication Date
JPS6379933A JPS6379933A (en) 1988-04-09
JPH0699768B2 true JPH0699768B2 (en) 1994-12-07

Family

ID=16830670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22552586A Expired - Lifetime JPH0699768B2 (en) 1986-09-24 1986-09-24 Ni-base alloy and manufacturing method thereof, and Ni-base alloy rotating electric machine damper and retaining ring

Country Status (1)

Country Link
JP (1) JPH0699768B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6791313B1 (en) * 2019-07-12 2020-11-25 三菱マテリアル株式会社 Nickel alloy sputtering target

Also Published As

Publication number Publication date
JPS6379933A (en) 1988-04-09

Similar Documents

Publication Publication Date Title
EP0786854B1 (en) Rotor for rotating machine, method of manufacturing same, and magnet unit
US8701270B2 (en) Methods of manufacturing induction rotors with conductor bars having high conductivity
US5841212A (en) Permanent magnet field type rotating machine
EP1540793B1 (en) Method of constructing a unitary amorphous metal component for an electric machine
US6946097B2 (en) High-strength high-temperature creep-resistant iron-cobalt alloys for soft magnetic applications
US6803694B2 (en) Unitary amorphous metal component for an axial flux electric machine
EP0087287B1 (en) Electric rotary machine having superconducting rotor
JPH11505369A (en) High strength iron-cobalt-vanadium alloy articles
JP6497180B2 (en) Induction heating method and induction heating apparatus for rotor of IPM motor
EP0505085B1 (en) Steel for rotor shafts of electric machines
WO1996042132A1 (en) High speed synchronous reluctance motor-generator
EP2081239B1 (en) Superconductive wire and electrical machine using said wire
JPH0699768B2 (en) Ni-base alloy and manufacturing method thereof, and Ni-base alloy rotating electric machine damper and retaining ring
JP5613134B2 (en) Rotor core for permanent magnet motor
JP3245094B2 (en) Method of manufacturing rotor shaft for rotating electric machine
JP2988109B2 (en) Rotor shaft for rotating electric machine and rotating electric machine using the same
JPS6135787B2 (en)
US20080035245A1 (en) Soft magnetic material and systems therewith
JP6725209B2 (en) High strength member for motor and method of manufacturing high strength member for motor
JPH0318427B2 (en)
JPS6311650A (en) Magnetic core material made of fe base alloy for high frequency
GB2189257A (en) High-frequency magnetic core material made of iron-based alloy
JP4188761B2 (en) Rotor shaft material and superconducting rotating electric machine using the same
JPS5958724A (en) Contact for vacuum bulb and method of producing same
JP2023097890A (en) Laminated iron core, and rotary electric machine using the same