JPS595722A - Electrode structure of thin film of zinc oxide - Google Patents

Electrode structure of thin film of zinc oxide

Info

Publication number
JPS595722A
JPS595722A JP11444782A JP11444782A JPS595722A JP S595722 A JPS595722 A JP S595722A JP 11444782 A JP11444782 A JP 11444782A JP 11444782 A JP11444782 A JP 11444782A JP S595722 A JPS595722 A JP S595722A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide film
electrode structure
thin film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11444782A
Other languages
Japanese (ja)
Other versions
JPH0115207B2 (en
Inventor
Koji Nishiyama
浩司 西山
Takeshi Nakamura
武 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11444782A priority Critical patent/JPS595722A/en
Priority to US06/509,028 priority patent/US4445066A/en
Publication of JPS595722A publication Critical patent/JPS595722A/en
Publication of JPH0115207B2 publication Critical patent/JPH0115207B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain an electrode structure of a thin zinc oxide film with stable electric characteristics by interposing a Ta layer between the thin zinc oxide film and an Al layer and preventing the diffusion of Al into the thin zinc oxide film. CONSTITUTION:The thin zinc oxide film is used as a piezoelectric body for a surface acoustic wave device, various oscillators, etc. A tuning fork type oscillator which uses the invented electrode structure of the thin zinc oxide film as shown in a figure is constituted by providing the electrode structure of the thin zinc oxide film consisting of the zinc oxide film 12, Ta layer 13, and Al electrode 14 to a metallic tuning fork 11 made of ''Elinvar'', etc. This electrode structure is obtained by forming the Ta layer 13 on the thin zinc oxide film 12 formed by sputtering on the tuning fork 11 by an electron beam method to a 150Angstrom thickness and forming the Al electrode 14 thereupon to a 1mum thickness by the electron beam method. This electrode structure is free of diffusion of Al into the thin zinc oxide film 12, which functions as the piezoelectric body electrically stably.

Description

【発明の詳細な説明】 この発明は安定な特性を示す酸化亜鉛薄膜の電極構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode structure of a zinc oxide thin film exhibiting stable characteristics.

酸化亜鉛薄膜は弾性表面波装置、音叉振動子、音片振動
子などの圧電体として使用されている。
Zinc oxide thin films are used as piezoelectric materials in surface acoustic wave devices, tuning fork vibrators, vibrator elements, etc.

この酸化亜鉛薄膜の使用例を音叉振動子にもとづいて説
明する。
An example of the use of this zinc oxide thin film will be explained based on a tuning fork vibrator.

第1図は音叉振動子の一例を示す側面図である8図にお
いて、1は音叉振動子の本体、2.3はこの本体1の脚
部を示し、脚部2.3の側壁2a 。
FIG. 1 is a side view showing an example of a tuning fork vibrator. In FIG. 8, 1 is a main body of a tuning fork vibrator, 2.3 is a leg portion of this main body 1, and a side wall 2a of the leg portion 2.3.

3aには酸化亜鉛源II 4.5が形成されている。Zinc oxide source II 4.5 is formed in 3a.

この酸化亜鉛薄膜4.5は真空蒸着法、スパッタリング
法、イオンブレーティング法などにより形成される。6
.7は酸化亜鉛薄膜4.5の上に形成されたへρ電極を
示す。
This zinc oxide thin film 4.5 is formed by vacuum evaporation, sputtering, ion blasting, or the like. 6
.. 7 shows a ρ electrode formed on the zinc oxide thin film 4.5.

このAj2電極6.7は安価でボンディングができるこ
とから選ばれたもので、電子ビーム蒸着法などにより3
000〜10000Aの膜厚の範囲で形成される。
This Aj2 electrode 6.7 was chosen because it is cheap and can be bonded, and it is made by electron beam evaporation method etc.
It is formed with a film thickness in the range of 000 to 10000A.

しかしながら、上記したような酸化亜鉛薄膜の電極構造
では次のような欠点が見られる。つまり、へρ電極その
ものが高い親和性を示すため、酸化亜鉛薄膜中にAβが
拡散し、電気的特性が劣化するという欠点がある。すな
わち、2価の半導体である酸化亜鉛に3価であるAβが
拡散することによって酸化亜鉛1膜の電気的特性、たと
えば振動周波数を大きく変化させるという現象が認めら
れた。また高温負荷寿命試験を行うと、さらに上記した
現象が促進され、電気的特性の劣化が一層大きなものと
なった。
However, the electrode structure of the zinc oxide thin film as described above has the following drawbacks. That is, since the ρ electrode itself exhibits a high affinity, there is a drawback that Aβ diffuses into the zinc oxide thin film and the electrical characteristics deteriorate. That is, a phenomenon was observed in which the electrical properties of the zinc oxide film, such as the vibration frequency, were significantly changed due to the diffusion of trivalent Aβ into zinc oxide, which is a divalent semiconductor. Furthermore, when a high-temperature load life test was conducted, the above-mentioned phenomenon was further accelerated, and the deterioration of the electrical characteristics became even more significant.

したがって、酸化亜鉛薄膜を形成するに当っては、電極
を含めた構成全体について考慮する必要があり、従来の
電極構成にさらに改良を施さなければならなかった。
Therefore, when forming a zinc oxide thin film, it is necessary to consider the entire structure including the electrode, and it is necessary to further improve the conventional electrode structure.

こ゛の発明はかかる背景からなされたものであり、安定
な特性を示す酸化亜鉛薄膜の電極構造を提供することを
目的どする。
The present invention was made against this background, and an object thereof is to provide an electrode structure of a zinc oxide thin film exhibiting stable characteristics.

以下この発明を実施例にもとづいて詳細に説明する。The present invention will be described in detail below based on examples.

第2図はこの発明にかかる酸化亜鉛薄膜の電極構造を音
叉振動子に適用した例を示す側面図である。
FIG. 2 is a side view showing an example in which the zinc oxide thin film electrode structure according to the present invention is applied to a tuning fork vibrator.

11はエリンバなどからなる金属音叉、12は酸化亜鉛
薄膜、13は Ta一層、14は電極である。このうち
 Ta・層13は電子ビーム法、スパッタリング法、イ
オンビーム法、抵抗加熱蒸着法などによって形成される
11 is a metal tuning fork made of Erimba or the like, 12 is a zinc oxide thin film, 13 is a single layer of Ta, and 14 is an electrode. Of these, the Ta layer 13 is formed by an electron beam method, a sputtering method, an ion beam method, a resistance heating vapor deposition method, or the like.

第3図は屈曲振動モードの音片振動子にこの発明にかか
る酸化亜鉛薄膜の電極構造を適用した例を示した斜視図
である。
FIG. 3 is a perspective view showing an example in which the electrode structure of the zinc oxide thin film according to the present invention is applied to a sound element vibrator in a bending vibration mode.

図において、21は振動子本体を示し、振動子22とこ
れを支持部24で支持している枠体23から構成されて
いる。25は酸化亜鉛薄膜で振動子22の表面に形成さ
れている。26は酸化亜鉛薄膜25の上に形成されたT
a層、27はTa層26の上に形成されたへρ電極であ
る。
In the figure, reference numeral 21 indicates a vibrator body, which is composed of a vibrator 22 and a frame 23 that supports the vibrator 22 with a support portion 24. 25 is a zinc oxide thin film formed on the surface of the vibrator 22. 26 is a T formed on the zinc oxide thin film 25.
The a-layer 27 is a ρ electrode formed on the Ta layer 26.

第4図は同じくこの発明を他の屈曲振動モードの振動子
に適用した例の側面図である。
FIG. 4 is a side view of an example in which the present invention is applied to another bending vibration mode vibrator.

図において、31はセラミクス、プラスチック、ゴムな
どの基板、この基板31表面には、Aρ電極第5図は同
じくこの発明を拡がり振動モードの振動子に適用した例
を示す側面図である。
In the figure, reference numeral 31 is a substrate made of ceramics, plastic, rubber, etc., and on the surface of this substrate 31 is an Aρ electrode. FIG.

図において、41は酸化亜鉛薄膜、42は酸化亜鉛薄膜
41の両面に形成されたTa層、43は18層42の上
に形成されたへρ電極である。
In the figure, 41 is a zinc oxide thin film, 42 is a Ta layer formed on both sides of the zinc oxide thin film 41, and 43 is a ρ electrode formed on the 18 layer 42.

第6図は同じくこの発明を厚み振動モードの振動子に適
用した例を示す側面図である。
FIG. 6 is a side view showing an example in which the present invention is applied to a thickness vibration mode vibrator.

図において、51は3i、5i02などからなる基板、
基板51の上には/l電極52.18層53が順次形成
されている。さらに18層53の上には酸化亜鉛薄膜5
4が形成されている。この酸化亜鉛薄膜54が形成され
ている位置に相当する基板51には空部51aが形成さ
れている。酸化亜鉛薄膜54の−LにはTa層55、お
よびAり電極56が順次積層して形成されている。
In the figure, 51 is a substrate made of 3i, 5i02, etc.
On the substrate 51, /l electrodes 52, 18 layers 53 are sequentially formed. Further, on the 18 layers 53 is a zinc oxide thin film 5.
4 is formed. A cavity 51a is formed in the substrate 51 corresponding to the position where the zinc oxide thin film 54 is formed. On the -L side of the zinc oxide thin film 54, a Ta layer 55 and an A electrode 56 are sequentially laminated.

次に具体的な実施例として、第2図に示した音叉振動子
についてこの発明にかかる酸化亜鉛薄膜の電極構造を適
用した例を説明する。
Next, as a specific example, an example in which the electrode structure of the zinc oxide thin film according to the present invention is applied to the tuning fork vibrator shown in FIG. 2 will be described.

第2図を参照して説明すれば、振動子11の上にスパッ
タリング法により酸化亜鉛薄rfA12を形成し、その
上にTa層13を電子ビームにより 150Aの厚みに
形成し、さらにその上に厚みが1μからなるAρ電極1
4を電子ビーム法により形成した。このようにして振動
周波数32Kl−1zの振動子を作成した。
To explain with reference to FIG. 2, a thin zinc oxide rfA layer 12 is formed on the vibrator 11 by sputtering, a Ta layer 13 is formed on it to a thickness of 150A by an electron beam, and then a Aρ electrode 1 consisting of 1μ
4 was formed by an electron beam method. In this way, a vibrator with a vibration frequency of 32 Kl-1z was created.

この振動子に直流電圧20Vを印加し、120℃の温度
に 10000時間放置した。このときの振動周波数の
経時変化特性を試料数20個につい−C測定したところ
第7図に示すような結果が得られた。図中実線はこの実
施例によるものである。また破線は従来例のへρ電極の
みからなるものについて、同様にして測定した結果を示
したものである。この振動周波数の経時変化特性(ΔF
/Fo)は次式より求めた。
A DC voltage of 20 V was applied to this vibrator, and it was left at a temperature of 120° C. for 10,000 hours. When the -C measurement of the temporal change characteristics of the vibration frequency at this time was performed on 20 samples, the results shown in FIG. 7 were obtained. The solid line in the figure is based on this embodiment. Furthermore, the broken line shows the results of measurements made in the same manner for a conventional example consisting of only a ρ electrode. This vibration frequency change characteristic over time (ΔF
/Fo) was determined from the following formula.

また、直列共振抵抗(Ro )および並列共振抵抗(R
a )についてもそれぞれ同様に測定し、その結果を第
8図、第9図にそれぞれ示した。
Also, the series resonant resistance (Ro) and the parallel resonant resistance (R
A) was also measured in the same manner, and the results are shown in FIGS. 8 and 9, respectively.

第1図〜第9図から明らかなように、この発明にかかる
ものは、従来例にくらべて、振動周波数の経時変化が小
さく、またRoの経時変化が小さく、さらにRaの経時
変化も小さいなどの効果が得られている。
As is clear from FIGS. 1 to 9, the device according to the present invention has a smaller change in vibration frequency over time, a smaller change in Ro over time, and a smaller change in Ra over time than the conventional example. effects have been obtained.

ここで、Ro 、Raを測定したのは次のような理由に
よる。
Here, the reason why Ro and Ra were measured is as follows.

まず、酸化亜鉛薄膜についてその等両回路を示せば第1
0図のようになる。図中、Cdは並列容量を示し、酸化
亜鉛薄膜をコンデンサとして考えた場合の静電容量に近
い値である。Roは直列共振抵抗、Coは等価容量、L
oは等価インダクタンスである。
First, if we show both circuits for a zinc oxide thin film, the first
It will look like Figure 0. In the figure, Cd indicates parallel capacitance, which is a value close to the capacitance when the zinc oxide thin film is considered as a capacitor. Ro is series resonant resistance, Co is equivalent capacitance, L
o is the equivalent inductance.

またR aは近似的に次式より求められるものである。Moreover, R a is approximately determined by the following equation.

の関係から、直列共振周波数(fo)に対応し、このR
oが大ぎくなれば発振に大きな増幅度が必要となり、発
振条件の低下をもたらすことになることが伺える。
From the relationship, this R corresponds to the series resonant frequency (fo).
It can be seen that if o becomes too large, a large degree of amplification is required for oscillation, resulting in a deterioration of the oscillation conditions.

またRaは同じく第11図に示したインピーダンスと周
波数の関係から、***振周波数(fa)に対応し、この
Raが小さくなれば発振に十分な位相変化がとれず、こ
れもまた発振条件の低下をもたらすことになる。
Also, from the relationship between impedance and frequency shown in Figure 11, Ra corresponds to the anti-resonance frequency (fa), and if Ra becomes small, a sufficient phase change for oscillation cannot be achieved, which also reduces the oscillation conditions. It will bring about.

第8図、第9図から明らかなように、この発明の実施例
によれば、従来例のへρ電極のものにくらべ、Ro 、
Raの経時変化が小さく、このことからこの発明にかか
る酸化亜鉛薄膜の電極構造は安定な電気的特性を有する
とともに、高温負荷寿命試験に対しても安定した特性を
示すものであると理解することができ、安定した発振を
期待することができるか否かの目安とする。
As is clear from FIGS. 8 and 9, according to the embodiment of the present invention, Ro,
It can be understood that the change in Ra over time is small, and from this it can be understood that the electrode structure of the zinc oxide thin film according to the present invention has stable electrical characteristics and also exhibits stable characteristics even in high temperature load life tests. This is used as a guideline to determine whether stable oscillation can be expected.

以上この発明によれば、酸化並鉛薄膜とへρ電極との間
にAβの拡散防止層としてTa層を介在させたものであ
り、従来のものにくらべて実用上十分な特性を示ず酸化
亜鉛tsiを提供することができる。特にこの発明によ
れば、高温負荷寿命試験に対してRo 、Raの変化が
小さく、周波数変化が少ないなど信頼性の高い酸化亜鉛
薄膜が得られる。
As described above, according to the present invention, a Ta layer is interposed between the normal lead oxide thin film and the ρ electrode as a diffusion prevention layer for Aβ, and compared to the conventional one, it does not exhibit sufficient characteristics for practical use. Zinc tsi can be provided. Particularly, according to the present invention, a highly reliable zinc oxide thin film with small changes in Ro and Ra and little change in frequency can be obtained in a high-temperature load life test.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は音叉振動子の一例を示(側面図、第2図は音叉
振動子にこの発明にかかる酸化亜鉛薄膜の電極構造を適
用した例を示す側面図、第3図は音片振動子にこの発明
にかかる酸化亜鉛薄膜の電極構造を適用した例の斜視図
、第4図〜第6図は同じくこの発明にかかる酸化亜鉛薄
膜の電極構造を各振動子に適用した例の側面図、第7図
はこの発明の具体的実施例にもとづく振動周波数の経時
変化特性図、第8図は同じ<Roの経時変化特性図、第
9図は同じ<Raの経時変化特性図、第10図は酸化亜
鉛薄膜の等両回略図、第11図はインピーダンスと周波
数の関係特性図ぐある。 11・・・・・・基板、12・・・・・・酸化亜鉛薄膜
、13・・・・・・l”a層、14・・・・・・Aρ電
極。 特  許  出  願  人 株式会社村田製作所 10 第4 図 帖5図 弔乙肥 T/ff5(/fσqリ ア’lN5(f−1を層り
Fig. 1 shows an example of a tuning fork vibrator (side view), Fig. 2 is a side view showing an example in which the zinc oxide thin film electrode structure according to the present invention is applied to a tuning fork vibrator, and Fig. 3 shows a tuning fork vibrator. FIGS. 4 to 6 are side views of examples in which the zinc oxide thin film electrode structure according to the present invention is applied to each vibrator; FIG. 7 is a characteristic diagram of vibration frequency change over time based on a specific embodiment of the present invention, FIG. 8 is a characteristic diagram of change over time of the same <Ro, FIG. 9 is a characteristic diagram of change over time of the same <Ra, and FIG. 11 is a diagram of the relationship between impedance and frequency. 11...Substrate, 12...Zinc oxide thin film, 13...・l"a layer, 14...Aρ electrode. Patent applicant: Murata Manufacturing Co., Ltd. the law of nature

Claims (1)

【特許請求の範囲】[Claims] 酸化亜鉛薄膜表面とへβ電極との間にTa層を介在させ
たことを特徴とする酸化亜鉛薄膜の電極構造。
An electrode structure of a zinc oxide thin film, characterized in that a Ta layer is interposed between the surface of the zinc oxide thin film and a β electrode.
JP11444782A 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide Granted JPS595722A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11444782A JPS595722A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide
US06/509,028 US4445066A (en) 1982-06-30 1983-06-29 Electrode structure for a zinc oxide thin film transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11444782A JPS595722A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide

Publications (2)

Publication Number Publication Date
JPS595722A true JPS595722A (en) 1984-01-12
JPH0115207B2 JPH0115207B2 (en) 1989-03-16

Family

ID=14637956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11444782A Granted JPS595722A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide

Country Status (1)

Country Link
JP (1) JPS595722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0860943A2 (en) * 1997-02-20 1998-08-26 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US7280180B2 (en) 2002-03-19 2007-10-09 Lg.Philips Lcd Co., Ltd. Liquid crystal display panel with first and second dummy UV sealants and method for fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0860943A2 (en) * 1997-02-20 1998-08-26 Murata Manufacturing Co., Ltd. Surface acoustic wave device
EP0860943B1 (en) * 1997-02-20 2003-05-07 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US7280180B2 (en) 2002-03-19 2007-10-09 Lg.Philips Lcd Co., Ltd. Liquid crystal display panel with first and second dummy UV sealants and method for fabricating the same

Also Published As

Publication number Publication date
JPH0115207B2 (en) 1989-03-16

Similar Documents

Publication Publication Date Title
US6420820B1 (en) Acoustic wave resonator and method of operating the same to maintain resonance when subjected to temperature variations
Kuypers et al. Intrinsic temperature compensation of aluminum nitride Lamb wave resonators for multiple-frequency references
US7414349B2 (en) Piezoelectric vibrator, filter using the same and its adjusting method
US6239536B1 (en) Encapsulated thin-film resonator and fabrication method
US4556812A (en) Acoustic resonator with Al electrodes on an AlN layer and using a GaAs substrate
JPS58137317A (en) Thin-film piezoelectric compound oscillator
JPH0532925B2 (en)
US4445066A (en) Electrode structure for a zinc oxide thin film transducer
JPS595720A (en) Electrode structure of thin film of zinc oxide
JPH07105688B2 (en) Piezoelectric vibration parts
US20140292152A1 (en) Temperature compensating electrodes
JPS595722A (en) Electrode structure of thin film of zinc oxide
CN103825574B (en) Acoustic wave device and its manufacture method
JPS595723A (en) Electrode structure of thin film of zinc oxide
JPS595725A (en) Electrode structure of thin film of zinc oxide
JPS595726A (en) Electrode structure of thin film of zinc oxide
JPH0115209B2 (en)
JPS595721A (en) Electrode structure of thin film of zinc oxide
JPS595716A (en) Electrode structure of thin film of zinc oxide
JP4693407B2 (en) Piezoelectric thin film device and manufacturing method thereof
JPS595719A (en) Electrode structure of thin film of zinc oxide
JPS595718A (en) Electrode structure of thin film of zinc oxide
JP2001024468A (en) Electrode film structure of piezoelectric oscillator
JPS595717A (en) Electrode structure of thin film of zinc oxide
US20220246833A1 (en) Piezoelectric film layered structure and method for producing thereof