JPS595721A - Electrode structure of thin film of zinc oxide - Google Patents

Electrode structure of thin film of zinc oxide

Info

Publication number
JPS595721A
JPS595721A JP11444682A JP11444682A JPS595721A JP S595721 A JPS595721 A JP S595721A JP 11444682 A JP11444682 A JP 11444682A JP 11444682 A JP11444682 A JP 11444682A JP S595721 A JPS595721 A JP S595721A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide film
electrode structure
thin film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11444682A
Other languages
Japanese (ja)
Other versions
JPH0115206B2 (en
Inventor
Koji Nishiyama
浩司 西山
Takeshi Nakamura
武 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11444682A priority Critical patent/JPS595721A/en
Priority to US06/509,028 priority patent/US4445066A/en
Publication of JPS595721A publication Critical patent/JPS595721A/en
Publication of JPH0115206B2 publication Critical patent/JPH0115206B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain an electrode structure of a thin zinc oxide film with stable electric characteristics, by interposing a V2O3 layer between the thin zinc oxide film and an Al layer and preventing the diffusion of Al into the thin zinc oxide film. CONSTITUTION:The thin zinc oxide film is used as a piezoelectric body for a surface acoustic wave device, various oscillators, etc. A tuning fork type oscillator which uses the invented electrode structure of the thin zinc oxide film as shown in a figure is constituted by providing the electrode structure of the thin zinc oxide film consisting of the zinc oxide film 12, V2O3 layer, and Al electrode 14 to a metallic tuning fork 11 made of ''Elinvar'', etc. This electrode structure is obtained by forming the V2O3 layer 13 on the thin zinc oxide film 12 formed by sputtering on the tuning fork 11 by resistance heat vapor deposition to a 600Angstrom thickness and forming the Al electrode 14 thereupon to a 1mum thickness by an electron beam method. This electrode structure is free of diffusion of Al into the thin zinc oxide film 12, which functions as the piezoelectric body electrically stably.

Description

【発明の詳細な説明】 この発明は安定な特性を示ず酸化亜鉛M膜の電極構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode structure of a zinc oxide M film that does not exhibit stable characteristics.

酸化亜鉛薄膜は弾性表面波装置、音叉振動子、音片振動
子などの圧電体として使用されている。
Zinc oxide thin films are used as piezoelectric materials in surface acoustic wave devices, tuning fork vibrators, vibrator elements, etc.

この酸化亜鉛wJlpJの使用例を音叉振動子にもとづ
いて説明する。
An example of the use of this zinc oxide wJlpJ will be explained based on a tuning fork vibrator.

第1図は音叉振動子の一例を示す側面図である。FIG. 1 is a side view showing an example of a tuning fork vibrator.

図において、1は音叉振動子の本体、2.3はこの本体
1の脚部を示し、脚部2.3の側壁2a、3aには酸化
亜鉛薄膜4.5が形成されている。
In the figure, 1 indicates the main body of a tuning fork vibrator, 2.3 indicates a leg portion of this main body 1, and a zinc oxide thin film 4.5 is formed on the side walls 2a, 3a of the leg portion 2.3.

この酸化亜鉛薄膜4.5は真空蒸着法、スパッタリング
法、イオンブレーティング法などにより形成される。6
.7は酸化亜鉛薄膜4.5の上に形成されたへρ電極を
示ず。
This zinc oxide thin film 4.5 is formed by vacuum evaporation, sputtering, ion blasting, or the like. 6
.. 7 does not show the ρ electrode formed on the zinc oxide thin film 4.5.

このへρ電極6.7は安価でボンディングができること
から選ばれたもので、電子ビーム蒸着法などにより30
00〜100OOAの膜厚の範囲で形成される。
This ρ electrode 6.7 was selected because it was cheap and could be bonded, and was made by electron beam evaporation method.
It is formed with a film thickness in the range of 00 to 100 OOA.

しかしながら、上記したような酸化亜鉛薄膜の電極構造
では次のような欠点が見られる。つまり、AIl電極そ
のものが高い親和性を示すため、酸化亜鉛薄膜中に八ρ
が拡散し、電気的特性が劣化するという欠点がある。す
なわち、2価の半導体である酸化亜鉛に3価であるAβ
が拡散することによって酸化亜鉛silの電気的特性、
たとえば振動周波数を大きく変化させるという現象が認
められた。また高温負荷寿命試験を行うと、さらに上記
した現象が促進され、電気的特性の劣化が一層大きなも
のとなった。
However, the electrode structure of the zinc oxide thin film as described above has the following drawbacks. In other words, since the Al electrode itself shows high affinity, eight ρ in the zinc oxide thin film.
It has the disadvantage that it diffuses and the electrical characteristics deteriorate. In other words, zinc oxide, which is a divalent semiconductor, has Aβ, which is trivalent.
The electrical properties of zinc oxide sil due to the diffusion of
For example, a phenomenon was observed in which the vibration frequency changed significantly. Furthermore, when a high-temperature load life test was conducted, the above-mentioned phenomenon was further accelerated, and the deterioration of the electrical characteristics became even more significant.

したがって、酸化亜鉛薄膜を形成するに当っては、電極
を含めた構成全体について考慮する必要があり、従来の
電極構成にさらに改良を施さなければならなかった。
Therefore, when forming a zinc oxide thin film, it is necessary to consider the entire structure including the electrode, and it is necessary to further improve the conventional electrode structure.

この発明はかかる背景からなされたものであり、安定な
特性を示す酸化亜鉛薄膜の電極構造を提供することを目
的とづる。
The present invention was made against this background, and an object of the present invention is to provide an electrode structure of a zinc oxide thin film exhibiting stable characteristics.

以下この発明を実施例にもとづいて詳細に説明する。The present invention will be described in detail below based on examples.

第2図はこの発明にかかる酸化亜鉛薄膜の電極構造を音
叉振動子に適用した例を示す側面図である。
FIG. 2 is a side view showing an example in which the zinc oxide thin film electrode structure according to the present invention is applied to a tuning fork vibrator.

11はエリンバなどからなる金属音叉、12は酸化亜鉛
薄膜、13はV2O3層、14は電極である。このうち
 7203層13は電子ビーム法、スパッタリング法、
イオンビーム法、抵抗加熱蒸着法などによって形成され
る。
11 is a metal tuning fork made of Erimba or the like, 12 is a zinc oxide thin film, 13 is a V2O3 layer, and 14 is an electrode. Of these, 7203 layer 13 was formed by electron beam method, sputtering method,
It is formed by ion beam method, resistance heating evaporation method, etc.

第3図は屈曲振動モードの音片振動子にこの発明にかか
る酸化亜鉛薄膜の電極構造を適用した例を示した斜視図
である。
FIG. 3 is a perspective view showing an example in which the electrode structure of the zinc oxide thin film according to the present invention is applied to a sound element vibrator in a bending vibration mode.

図において、21は振動子本体を示し、振動子22とこ
れを支持部24で支持している枠体23から構成されて
いる。25は酸化亜鉛薄膜で振動子22の表面に形成さ
れている。26は酸化亜鉛薄膜25の上に形成されたV
2O3層、27はV2O3層26の上に形成された/l
電極である。
In the figure, reference numeral 21 indicates a vibrator body, which is composed of a vibrator 22 and a frame 23 that supports the vibrator 22 with a support portion 24. 25 is a zinc oxide thin film formed on the surface of the vibrator 22. 26 is a V formed on the zinc oxide thin film 25
2O3 layer 27 is formed on V2O3 layer 26/l
It is an electrode.

第4図は同じくこの発明を他の屈曲振動モードの振動子
に適用した例の側面図である。
FIG. 4 is a side view of an example in which the present invention is applied to another bending vibration mode vibrator.

図において、31はセラミクス、プラスチック、ゴムな
どの基板、この基板31表面には、Aρ電極32、V2
03層33、酸化亜鉛薄膜34.7203層35、およ
11極36が順次形成されている。
In the figure, 31 is a substrate made of ceramics, plastic, rubber, etc. On the surface of this substrate 31, an Aρ electrode 32, a V2
03 layer 33, zinc oxide thin film 34, 7203 layer 35, and 11 poles 36 are formed in this order.

第5図は同じくこの発明を拡がり振動モードの振動子に
適用した例を示す側面図である。
FIG. 5 is a side view showing an example in which the present invention is applied to a vibrator in a spread vibration mode.

図において、41は酸化亜鉛薄膜、42は酸化亜鉛薄膜
41の両面に形成されたV2O3層、43はV2O3層
42の上に形成されたへρ電極である。
In the figure, 41 is a zinc oxide thin film, 42 is a V2O3 layer formed on both sides of the zinc oxide thin film 41, and 43 is a ρ electrode formed on the V2O3 layer 42.

第6図は同じくこの発明を厚み振動モードの振動子に適
用した例を示す側面図である。
FIG. 6 is a side view showing an example in which the present invention is applied to a thickness vibration mode vibrator.

図において、51は3i1SiO2などからなる基板、
基板51の上にはAρ電極52、V203層53が順次
形成されている。ざらにV20G層53の上には酸化亜
鉛薄膜54が形成されている。この酸化亜鉛薄膜54が
形成されている位置に相当する基板51には空部51a
が形成されている。酸化亜鉛薄膜54の上にはV2O3
層55、およびAρ電極56が順次積層して形成されて
いる。
In the figure, 51 is a substrate made of 3i1SiO2, etc.
On the substrate 51, an Aρ electrode 52 and a V203 layer 53 are sequentially formed. Roughly on the V20G layer 53, a zinc oxide thin film 54 is formed. A vacant space 51a is formed on the substrate 51 corresponding to the position where the zinc oxide thin film 54 is formed.
is formed. On the zinc oxide thin film 54 is V2O3.
A layer 55 and an Aρ electrode 56 are formed by laminating one after another.

次に具体的な実施例として、第2図に示した音叉振動子
についてこの発明にかかる酸化亜鉛薄膜の電極構造を適
用した例を説明する。
Next, as a specific example, an example in which the electrode structure of the zinc oxide thin film according to the present invention is applied to the tuning fork vibrator shown in FIG. 2 will be described.

第2図を参照して説明すれば、振動子11の上にスパッ
タリング法により酸化亜鉛薄膜12を形成し、その上に
V203を層13を抵抗加熱蒸着法により600Aの厚
みに形成し、さらにその上に厚みが1μからなる/l電
極14を電子ビーム法により形成した。このようにして
振動周波数32Kl−(zの撮動子を作成した。
To explain with reference to FIG. 2, a zinc oxide thin film 12 is formed on the vibrator 11 by sputtering, a layer 13 of V203 is formed on it to a thickness of 600A by resistance heating vapor deposition, and then A /l electrode 14 having a thickness of 1 μm was formed thereon by an electron beam method. In this way, an imager with a vibration frequency of 32 Kl-(z was created.

この振動子に直流電圧20Vを印加し、100℃の温度
に 1oooo時間放置した。このときの振動周波数の
経時変化特性を試料数20個について測定したところ第
1図に示すような結果が得られた。図中実線はこの実施
例によるものである。また破線は従来例のAffi電極
のみからなるものについて、同様にして測定した結果を
示したものである。この振動周波数の経時変化特性(Δ
F/Fo)は次式より求めた。
A DC voltage of 20 V was applied to this vibrator, and the vibrator was left at a temperature of 100° C. for 100 hours. When the temporal change characteristics of the vibration frequency at this time were measured for 20 samples, the results shown in FIG. 1 were obtained. The solid line in the figure is based on this embodiment. Moreover, the broken line shows the results of measurements made in the same manner for a conventional example consisting only of Affi electrodes. This vibration frequency change characteristic over time (Δ
F/Fo) was determined from the following formula.

また、直列共振抵抗(Ro )および並列共振抵抗(R
a )についてもそれぞれ同様に測定し、その結果を第
8図、第9図にそれぞれ示した。
Also, series resonant resistance (Ro) and parallel resonant resistance (R
A) was also measured in the same manner, and the results are shown in FIGS. 8 and 9, respectively.

第1図〜第9図から明らかなように、この発明にかかる
ものは、従来例にくらべて、振動周波数の経時変化が小
さく、またROの経時変化が小さくかつその値も小さく
、ざらにRaの経時変化も小さいなどの効果が得られて
いる。
As is clear from FIGS. 1 to 9, compared to the conventional example, the device according to the present invention has a smaller change in vibration frequency over time, a smaller change in RO over time, and a smaller value thereof, and a rough increase in Ra. Effects such as a small change over time have been obtained.

ここで、Ro 1Raを測定したのは次のような理由に
よる。
Here, the reason why Ro 1Ra was measured is as follows.

まず、酸化亜鉛薄膜についてその等両回路を示せば第1
0図のようになる。図中、cdは並列容量を示し、酸化
亜鉛薄膜をコンデンサとして考えた場合の静電容量に近
い値である。ROは直列共振抵抗、Coは等価容量、[
0は等価インダクタンスである。
First, if we show both circuits for a zinc oxide thin film, the first
It will look like Figure 0. In the figure, cd indicates parallel capacitance, which is a value close to the capacitance when a zinc oxide thin film is considered as a capacitor. RO is series resonant resistance, Co is equivalent capacitance, [
0 is equivalent inductance.

またRaは近似的に次式より求められるものである。Further, Ra is approximately determined by the following equation.

の関係から、直列共振周波数(fO)に対応し、このR
oが大きくなれば発振に大きな増幅度が必要となり、発
振条件の低下をもたらすことになることが伺える。
From the relationship, this R corresponds to the series resonant frequency (fO).
It can be seen that if o becomes large, a large degree of amplification is required for oscillation, which leads to a deterioration of the oscillation conditions.

またRaは同じく第11図に示したインピーダンスと周
波数の関係から、***振周波数(fa)に対応し、この
Raが小さくなれば発振に十分な位相変化がとれず、こ
れもまた発振条件の低下をもたらすことになる。
Also, from the relationship between impedance and frequency shown in Figure 11, Ra corresponds to the anti-resonance frequency (fa), and if Ra becomes small, a sufficient phase change for oscillation cannot be achieved, which also reduces the oscillation conditions. It will bring about.

第8図、第9図から明らかなように、この発明の実施例
によれば、従来例のAρ電極のものにくらべ、Ro 、
Raの経時変化が小さく、このことからこの発明にかか
る酸化亜鉛薄膜の電極構造は安定な電気的特性を有する
とともに、高温負荷寿命試験に対しても安定した特性を
示すものであると理解することができ、安定した発振を
期待することができる。
As is clear from FIGS. 8 and 9, according to the embodiment of the present invention, Ro,
It can be understood that the change in Ra over time is small, and from this it can be understood that the electrode structure of the zinc oxide thin film according to the present invention has stable electrical characteristics and also exhibits stable characteristics even in high temperature load life tests. , and stable oscillation can be expected.

以上この発明によれば、酸化亜鉛薄膜とへ!電極との間
に八ρの拡散防止層としてV203層を介在させたもの
であり、従来のものにくらべて実用上十分な特性を示す
酸化亜鉛薄膜を提供することができる。特にこの発明に
よれば、高温負荷寿命試験に対してRo 、Raの変化
が小さく、周波数変化が少ないなど信頼性の高い酸化亜
鉛薄膜が得られる。
According to this invention, the zinc oxide thin film! A V203 layer is interposed between the electrode and the 8ρ diffusion prevention layer, and it is possible to provide a zinc oxide thin film that exhibits practically sufficient characteristics compared to conventional ones. Particularly, according to the present invention, a highly reliable zinc oxide thin film with small changes in Ro and Ra and little change in frequency can be obtained in a high-temperature load life test.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は音叉振動子の一例を示す側面図、第2図は音叉
振動子にこの発明にかかる酸化亜鉛薄膜の電極m造を適
用した例を示す側面図、第3図は音片振動子にこの発明
にかかる酸化亜鉛N膜の電極構造を適用−した例の斜視
図、第4図〜第6図は同じくこの発明にかかる酸化亜鉛
薄膜の電極構造を各振動子に適用した例の側面図、第7
図はこの発明の具体的実施例にもとづく振動周波数の経
時変化特性図、第8図は同じくRoの経時変化特性図、
第9図は同じくRaの経時変化特性図、第10図は酸化
亜鉛薄膜の等両回略図、第11図はインピーダンスと周
波数の関係特性図Cある。 11・・・・・・基板、12・・・・・・酸化亜鉛薄膜
、13・・・・・・V2O3N、14・・・・・・A 
、0電極。 特  許  出  願  人 株式会社村田製作所 −1( 第4 図 第5図 吊る図 TIME、 t ll01)〜 TIME(〃O〃す
Fig. 1 is a side view showing an example of a tuning fork vibrator, Fig. 2 is a side view showing an example in which the zinc oxide thin film electrode structure according to the present invention is applied to a tuning fork vibrator, and Fig. 3 is a tuning fork vibrator. FIGS. 4 to 6 are side views of examples in which the zinc oxide thin film electrode structure according to the present invention is applied to each vibrator. Figure, 7th
The figure is a temporal change characteristic diagram of vibration frequency based on a specific embodiment of the present invention, and FIG. 8 is a temporal change characteristic diagram of Ro.
FIG. 9 is a characteristic diagram of Ra over time, FIG. 10 is a schematic diagram of the zinc oxide thin film, and FIG. 11 is a characteristic diagram C of the relationship between impedance and frequency. 11...Substrate, 12...Zinc oxide thin film, 13...V2O3N, 14...A
, 0 electrode. Patent applicant Murata Manufacturing Co., Ltd.-1 (Figure 4 Figure 5 Hanging diagram TIME, tll01) ~ TIME (

Claims (1)

【特許請求の範囲】[Claims] 酸化亜鉛111f1表面とへ!電極との間にV203層
を介在させたことを特徴とする酸化亜鉛1膜の電極構造
To the surface of zinc oxide 111f1! An electrode structure of a single zinc oxide film, characterized in that a V203 layer is interposed between the electrode and the electrode.
JP11444682A 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide Granted JPS595721A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11444682A JPS595721A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide
US06/509,028 US4445066A (en) 1982-06-30 1983-06-29 Electrode structure for a zinc oxide thin film transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11444682A JPS595721A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide

Publications (2)

Publication Number Publication Date
JPS595721A true JPS595721A (en) 1984-01-12
JPH0115206B2 JPH0115206B2 (en) 1989-03-16

Family

ID=14637932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11444682A Granted JPS595721A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide

Country Status (1)

Country Link
JP (1) JPS595721A (en)

Also Published As

Publication number Publication date
JPH0115206B2 (en) 1989-03-16

Similar Documents

Publication Publication Date Title
KR100503664B1 (en) Piezoelectric Resonator
US6420820B1 (en) Acoustic wave resonator and method of operating the same to maintain resonance when subjected to temperature variations
US3634787A (en) Electromechanical tuning apparatus particularly for microelectronic components
US6239536B1 (en) Encapsulated thin-film resonator and fabrication method
US20050012569A1 (en) Piezoelectric vibrator filter using the same and method for adjusting piezoelectric vibrator
JPH0532925B2 (en)
Sliker et al. A thin‐film CdS‐quartz composite resonator
US4445066A (en) Electrode structure for a zinc oxide thin film transducer
JPH07105688B2 (en) Piezoelectric vibration parts
JPS595720A (en) Electrode structure of thin film of zinc oxide
US4076987A (en) Multiple resonator or filter vibrating in a coupled mode
JPH11112276A (en) Piezoelectric resonator and electronic component using it
JPS595721A (en) Electrode structure of thin film of zinc oxide
JPS595722A (en) Electrode structure of thin film of zinc oxide
JPS595723A (en) Electrode structure of thin film of zinc oxide
US3566166A (en) Mechanical resonator for use in an integrated semiconductor circuit
JPS595725A (en) Electrode structure of thin film of zinc oxide
JP2000341075A (en) Laminated piezoelectric component
JPH0115209B2 (en)
JPS595726A (en) Electrode structure of thin film of zinc oxide
US4697116A (en) Piezoelectric vibrator
JPH104330A (en) Piezoelectric resonator and electronic component using it
JPS595718A (en) Electrode structure of thin film of zinc oxide
JPS595716A (en) Electrode structure of thin film of zinc oxide
JPS595719A (en) Electrode structure of thin film of zinc oxide