JPS595726A - Electrode structure of thin film of zinc oxide - Google Patents

Electrode structure of thin film of zinc oxide

Info

Publication number
JPS595726A
JPS595726A JP11445182A JP11445182A JPS595726A JP S595726 A JPS595726 A JP S595726A JP 11445182 A JP11445182 A JP 11445182A JP 11445182 A JP11445182 A JP 11445182A JP S595726 A JPS595726 A JP S595726A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide film
electrode structure
thin film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11445182A
Other languages
Japanese (ja)
Other versions
JPH0115211B2 (en
Inventor
Koji Nishiyama
浩司 西山
Takeshi Nakamura
武 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11445182A priority Critical patent/JPS595726A/en
Priority to US06/509,028 priority patent/US4445066A/en
Publication of JPS595726A publication Critical patent/JPS595726A/en
Publication of JPH0115211B2 publication Critical patent/JPH0115211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain an electrode structure of a thin zinc oxide film with stable electric characteristics, by interposing a Ti layer between the thin zinc oxide film and an Al layer and preventing the diffusion of Al into the thin zinc oxide film. CONSTITUTION:The thin zinc oxide film is used as a piezoelectric body for a surface acoustic wave device, various oscillators, etc. A tuning fork type oscillator which uses the invented electrode structure of the thin zinc oxide film as shown in a figure is constituted by providing the electrode structure of the thin zinc oxide film consisting of the zinc oxide film 12, Ti layer 13, and Al electrode 14 to a metallic tuning fork 11 made of ''Elinvar'', etc. This electrode structure is obtained by forming the Ti layer 13 on the thin zinc oxide film 12 formed by sputtering on the tuning fork 11 by an electron beam method to a 300Angstrom thickness and forming the Al electrode 14 thereupon to a 1mum thickness by the electron beam method. This electrode structure is free of diffusion of Al into the thin zinc oxide film 12, which functions as the piezoelectric body electrically stably.

Description

【発明の詳細な説明】 この発明は安定な特性を示す酸化亜鉛薄膜の電極構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode structure of a zinc oxide thin film exhibiting stable characteristics.

酸化亜鉛薄膜は弾性表面波装置、音叉振動子、音片振動
子などの圧電体として使用されている。
Zinc oxide thin films are used as piezoelectric materials in surface acoustic wave devices, tuning fork vibrators, vibrator elements, etc.

この酸化亜鉛薄膜の使用例を音叉振動子にもとづいて説
明する。
An example of the use of this zinc oxide thin film will be explained based on a tuning fork vibrator.

第1図は音叉振動子の一例を示す側面図である。FIG. 1 is a side view showing an example of a tuning fork vibrator.

図において、1は音叉振動子の本体、2.3はこの本体
1の脚部を示し、脚部2.3の側壁2a、3aには酸化
亜鉛簿膜4.5が形成されている。
In the figure, reference numeral 1 indicates the main body of the tuning fork vibrator, and reference numeral 2.3 indicates the leg portions of the main body 1. Zinc oxide films 4.5 are formed on the side walls 2a and 3a of the leg portions 2.3.

この酸化亜鉛WIII14.5は真空蒸着法、スパッタ
リング法、イオンブレーティング法などにより形成され
る。6.7は酸化亜鉛1膜4.5の上に形成されたへβ
電極を示す。
This zinc oxide WIII14.5 is formed by a vacuum evaporation method, a sputtering method, an ion blasting method, or the like. 6.7 is β formed on zinc oxide 1 film 4.5
Shows electrodes.

このへ!電極6.7は安価で承ンディングができること
から選ばれたもので、電子ビーム蒸着法などにより30
00〜100OOAの膜厚の範囲で形成される。
To this! Electrode 6.7 was chosen because it was inexpensive and could be bonded, and was made by electron beam evaporation.
It is formed with a film thickness in the range of 00 to 100 OOA.

しかしながら、上記したような酸化亜鉛薄膜の電極構造
では次のような欠点が見られる。つまり、へ!電極その
ものが高い親和性を示すため、酸化亜鉛薄膜中にANが
拡散し、電気的特性が劣化するという欠点がある。すな
わち、2価の半導体である酸化亜鉛に3価である/lが
拡散することによって酸化亜鉛i1膜の電気的特性、た
とえば振動周波数を大きく変化させるという現象が認め
られた。また高温負荷寿命試験を行うと、さらに上記し
た現象が促進され、電気的特性の劣化が一層大きなもの
となった。
However, the electrode structure of the zinc oxide thin film as described above has the following drawbacks. In other words, to! Since the electrode itself exhibits high affinity, there is a drawback that AN diffuses into the zinc oxide thin film, deteriorating the electrical characteristics. That is, a phenomenon was observed in which the electrical properties of the zinc oxide i1 film, such as the vibration frequency, were significantly changed due to the diffusion of trivalent /l into zinc oxide, which is a divalent semiconductor. Furthermore, when a high-temperature load life test was conducted, the above-mentioned phenomenon was further accelerated, and the deterioration of the electrical characteristics became even more significant.

したがって、酸化亜鉛薄膜を形成するに当っては、電極
を含めた構成全体について考慮する必要があり、従来の
電極構成にさらに改良を施さなければならなかった。
Therefore, when forming a zinc oxide thin film, it is necessary to consider the entire structure including the electrode, and it is necessary to further improve the conventional electrode structure.

この発明はかかる背景からなされたものであり、安定な
特性を示す酸化亜鉛薄膜の電極構造を提供することを目
的とする。
The present invention was made against this background, and an object of the present invention is to provide an electrode structure of a zinc oxide thin film exhibiting stable characteristics.

以下この発明を実施例にもとづいて詳細に説明する。The present invention will be described in detail below based on examples.

第2図はこの発明にかかる酸化亜鉛薄膜の電極構造を音
叉撮動子に適用した例を示す側面図である。
FIG. 2 is a side view showing an example in which the zinc oxide thin film electrode structure according to the present invention is applied to a tuning fork sensor.

11はエリンバなどからなる金属音叉、12は酸化亜鉛
薄膜、13はTi層、14はへβ電極である。このうち
11層13は電子ビーム法、スパッタリング法、イオン
ビーム法、抵抗加熱蒸着法などによって形成される。
11 is a metal tuning fork made of Erimba or the like, 12 is a zinc oxide thin film, 13 is a Ti layer, and 14 is a beta electrode. Of these, 11 layers 13 are formed by an electron beam method, a sputtering method, an ion beam method, a resistance heating vapor deposition method, or the like.

第3図は屈曲振動モードの音片振動子にこの発明にかか
る酸化亜鉛薄膜の電極構造を適用した例を示した斜視図
である。
FIG. 3 is a perspective view showing an example in which the electrode structure of the zinc oxide thin film according to the present invention is applied to a sound element vibrator in a bending vibration mode.

図において、21は振動子本体を示し、振動子22とこ
れを支持部24で支持している枠体23から構成されて
いる。25は酸化亜鉛薄膜で振動子22の表面に形成さ
れている。26は酸化亜鉛薄lI!25の上に形成され
たTi層、27はT i層26の上に形成されたへ!電
極である。
In the figure, reference numeral 21 indicates a vibrator body, which is composed of a vibrator 22 and a frame 23 that supports the vibrator 22 with a support portion 24. 25 is a zinc oxide thin film formed on the surface of the vibrator 22. 26 is zinc oxide thin lI! A Ti layer is formed on the Ti layer 25, and a Ti layer 27 is formed on the Ti layer 26! It is an electrode.

第4図は同じくこの発明を他の屈曲振動モードの振動子
に適用した例の側面図である。
FIG. 4 is a side view of an example in which the present invention is applied to another bending vibration mode vibrator.

図において、31はセラミクス、プラスチック、ゴムな
どの基板、この基板31表面には、へβ電極32、Ti
層33、酸化亜鉛薄膜34、Ti層35、およびAρ電
極36が順次形成されている。
In the figure, 31 is a substrate made of ceramics, plastic, rubber, etc. On the surface of this substrate 31, a β electrode 32, a Ti
A layer 33, a zinc oxide thin film 34, a Ti layer 35, and an Aρ electrode 36 are formed in this order.

第5図は同じくこの発明を拡がり振動モードの振動子に
適用した例を示す側面図である8図において、41は酸
化亜鉛薄膜、42は酸化亜鉛w1 m 41(7) 両
面ニ形成すtL タT i II、43ハT i II
 42の上に形成されたへ!電極である。
FIG. 5 is a side view showing an example in which the present invention is applied to a spread vibration mode vibrator. In FIG. T i II, 43ha T i II
Formed on 42! It is an electrode.

第6図は同じくこの発明を厚み振動モードの振動子に適
用した例を示す側面図である。
FIG. 6 is a side view showing an example in which the present invention is applied to a thickness vibration mode vibrator.

図において、51はSi、SiO2などからなる基板、
基板51の上にはAJ2電極52.11層53が順次形
成されている。さらに11層53の上には酸化亜鉛薄w
A54が形成されている。この酸化亜鉛iJ膜54が形
成されている位置に相当する基板51には空部51aが
形成されている。酸化亜鉛薄膜54の上には11層55
、およびAρ電極56が順次積層して形成されている。
In the figure, 51 is a substrate made of Si, SiO2, etc.
On the substrate 51, AJ2 electrodes 52, 11 layers 53 are sequentially formed. Furthermore, there is a thin layer of zinc oxide on top of the 11th layer 53.
A54 is formed. A cavity 51a is formed in the substrate 51 corresponding to the position where the zinc oxide iJ film 54 is formed. Eleven layers 55 are formed on the zinc oxide thin film 54.
, and Aρ electrode 56 are sequentially stacked.

次に具体的な実施例として、第2図に示した音叉振動子
についてこの発明にかかる酸化亜鉛薄膜の電極構造を適
用した例を説明する。
Next, as a specific example, an example in which the electrode structure of the zinc oxide thin film according to the present invention is applied to the tuning fork vibrator shown in FIG. 2 will be described.

第2図を参照して説明すれば、振動子11の上にスパッ
タリング法により酸化亜鉛薄膜12を形成し、その上に
Tiを層13を電子ビーム法により300Aの厚みに形
成し、さらにその上に厚みが1μからなるへρ電極14
を電子ビーム法により形成した。
To explain with reference to FIG. 2, a zinc oxide thin film 12 is formed on the vibrator 11 by sputtering, a Ti layer 13 is formed on it to a thickness of 300A by an electron beam method, and then The ρ electrode 14 has a thickness of 1μ.
was formed by an electron beam method.

このようにして振動周波数32Kl−1zの振動子を作
成した。
In this way, a vibrator with a vibration frequency of 32 Kl-1z was created.

この振動子に直流電圧20Vを印加し、120℃の温度
に10000時間放置した。このときの振動周波数の経
時変化特性を試料数20個について測定したところ第1
図に示すような結果が得られた。図中実線はこの実施例
によるものである。また破線は従来例のAU電極のみか
らなるものについて、同様にして測定した結果を示した
ものである。この振動周波数の経時変化特性(ΔF/F
o )は次式また、直列共振抵抗(Ro )についても
同様に測定し、その結果を第8図にそれぞれ示した。
A DC voltage of 20 V was applied to this vibrator, and the vibrator was left at a temperature of 120° C. for 10,000 hours. At this time, the temporal change characteristics of the vibration frequency were measured for 20 samples.
The results shown in the figure were obtained. The solid line in the figure is based on this embodiment. Furthermore, the broken line shows the results of measurements made in the same manner for a conventional example consisting only of AU electrodes. This vibration frequency change characteristic over time (ΔF/F
The series resonant resistance (Ro) was also measured in the same manner, and the results are shown in FIG. 8.

第7図〜第8図から明らかなように、この発明にかかる
ものは、従来例にくらべて、振動周波数の経時変化が小
さく、またRoの経時変化が小さくかつその値も小さい
などの効果が得られている。
As is clear from FIGS. 7 and 8, the device according to the present invention has effects such as a smaller change in vibration frequency over time and a smaller change in Ro over time than the conventional example. It has been obtained.

ここで、Roを測定したのは次のような理由による。The reason why Ro was measured here is as follows.

まず、酸化亜鉛薄膜についてその等両回路を示せば第9
図のようになる。図中、Cdは並列容量を示し、酸化亜
鉛薄膜をコンデンサとして考えた場合の静電容量に近い
値である。Roは直列共振抵抗、Coは等価容量、Lo
は等価インダクタンスである。
First, if we show both circuits for zinc oxide thin film,
It will look like the figure. In the figure, Cd indicates parallel capacitance, which is a value close to the capacitance when the zinc oxide thin film is considered as a capacitor. Ro is series resonant resistance, Co is equivalent capacitance, Lo
is the equivalent inductance.

Roは第10図に示したインピーダンスと周波数の関係
から、直列共振周波数(fo)に対応し、このRoが大
きくなれば発振に大きな増幅度が必要となり、発振条件
の低下をもたらすことになることが伺える。
From the relationship between impedance and frequency shown in Figure 10, Ro corresponds to the series resonant frequency (fo), and if this Ro becomes large, a large degree of amplification will be required for oscillation, resulting in a decrease in the oscillation conditions. I can see it.

第8図から明らかなように:この発明の実施例によれば
、従来例のへβ電極のものにくらべROの経時変化が小
さく、このことからこの発明にかかる酸化亜鉛薄膜の電
極構造は安定な電気的特性を有づるとともに、高温負荷
寿命試験に対しても安定した特性を示すものであると理
解することができ、安定した発振を期待することができ
るか否かの目安となる。
As is clear from FIG. 8: According to the embodiment of the present invention, the change in RO over time is smaller than that of the conventional β-electrode, and from this, the electrode structure of the zinc oxide thin film according to the present invention is stable. It can be understood that this material has excellent electrical characteristics and also shows stable characteristics even in high temperature load life tests, which can be used as an indicator of whether stable oscillation can be expected.

以上この発明によれば、酸化亜鉛薄膜とへρ電極との間
にAρの拡散防止層としてTi層を介在させたものであ
り、従来のものにくらべて実用上十分な特性を示す酸化
亜鉛薄膜を提供することができる。特にこの発明によれ
ば、高温負荷寿命試験に対してRoの変化が小さく、周
波数変化が少ないなど信頼性の高い酸化亜鉛薄膜が得ら
れる。
As described above, according to the present invention, a Ti layer is interposed between the zinc oxide thin film and the hep electrode as a diffusion prevention layer of Aρ, and the zinc oxide thin film exhibits practically sufficient characteristics compared to conventional ones. can be provided. In particular, according to the present invention, a highly reliable zinc oxide thin film with small changes in Ro and small changes in frequency can be obtained in a high-temperature load life test.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は音叉振動子の一例を示す側面図、第2図は音叉
振動子にこの発明にががる酸化亜鉛11111の電極構
造を適用した例を示す側面図、第3図は音片振動子にこ
の発明にかかる酸化亜鉛薄膜の電極構造を適用した例の
斜視図、第4図〜第6図は同じくこの発明にかかる酸化
亜鉛薄膜の電極構造を各振動子に適用した例の側面図、
第7図はこの発明の具体的実施例にもとづく振動周波数
の経時変化特性図、第8図は同じ<Roの経時変化特性
図、第9図は酸化亜鉛薄膜の等何回略図、第10図はイ
ンピーダンスと周波数の関係特性図である。 11・・・・・・基板、12・・・・・・酸化亜鉛薄膜
、13・・・・・・Ti層、14・・・・・・Aρ両電
極 特  許  出  願  人 株式会社村田製作所 第 5図 ”rlNE (HOt/F) 第3 図 T1M& (/1θvB、)
Figure 1 is a side view showing an example of a tuning fork vibrator, Figure 2 is a side view showing an example in which the electrode structure of zinc oxide 11111 according to the present invention is applied to a tuning fork vibrator, and Figure 3 is a tuning fork vibrator. FIGS. 4 to 6 are side views of examples in which the zinc oxide thin film electrode structure according to the present invention is applied to each vibrator. ,
FIG. 7 is a characteristic diagram of vibration frequency change over time based on a specific embodiment of the present invention, FIG. 8 is a characteristic diagram of change over time of the same <Ro, FIG. 9 is a schematic diagram of a zinc oxide thin film, and FIG. is a characteristic diagram showing the relationship between impedance and frequency. 11...Substrate, 12...Zinc oxide thin film, 13...Ti layer, 14...Aρ double electrode patent applicant Murata Manufacturing Co., Ltd. Figure 5 "rlNE (HOt/F) Figure 3 T1M& (/1θvB,)

Claims (1)

【特許請求の範囲】[Claims] 酸化亜鉛薄躾表面とAQ電極との間に11@を介在させ
たことを特徴とする酸化亜鉛薄膜の電極構造。
An electrode structure of a zinc oxide thin film characterized in that 11@ is interposed between the surface of the zinc oxide thin film and the AQ electrode.
JP11445182A 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide Granted JPS595726A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11445182A JPS595726A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide
US06/509,028 US4445066A (en) 1982-06-30 1983-06-29 Electrode structure for a zinc oxide thin film transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11445182A JPS595726A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide

Publications (2)

Publication Number Publication Date
JPS595726A true JPS595726A (en) 1984-01-12
JPH0115211B2 JPH0115211B2 (en) 1989-03-16

Family

ID=14638054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11445182A Granted JPS595726A (en) 1982-06-30 1982-06-30 Electrode structure of thin film of zinc oxide

Country Status (1)

Country Link
JP (1) JPS595726A (en)

Also Published As

Publication number Publication date
JPH0115211B2 (en) 1989-03-16

Similar Documents

Publication Publication Date Title
US6420820B1 (en) Acoustic wave resonator and method of operating the same to maintain resonance when subjected to temperature variations
US7414349B2 (en) Piezoelectric vibrator, filter using the same and its adjusting method
US6239536B1 (en) Encapsulated thin-film resonator and fabrication method
JP2007535883A (en) FBAR device with frequency stability against temperature drift
US4445066A (en) Electrode structure for a zinc oxide thin film transducer
JPH0532925B2 (en)
US4433264A (en) Electrode structure for a zinc oxide thin film
JPH07105688B2 (en) Piezoelectric vibration parts
US3891872A (en) Thickness-extensional mode piezoelectric resonator with poisson{3 s ratio less than one-third
JPS595726A (en) Electrode structure of thin film of zinc oxide
JPS595722A (en) Electrode structure of thin film of zinc oxide
JPS595725A (en) Electrode structure of thin film of zinc oxide
JPS595723A (en) Electrode structure of thin film of zinc oxide
JPH0115209B2 (en)
US20210313956A1 (en) Piezoelectric resonator unit and method of manufacturing the same
JPH0115206B2 (en)
JPS595716A (en) Electrode structure of thin film of zinc oxide
JPS595719A (en) Electrode structure of thin film of zinc oxide
JPS595718A (en) Electrode structure of thin film of zinc oxide
JPS595717A (en) Electrode structure of thin film of zinc oxide
JP2001024468A (en) Electrode film structure of piezoelectric oscillator
JP4693407B2 (en) Piezoelectric thin film device and manufacturing method thereof
JPH06224677A (en) Frequency adjusting method for piezoelectric resonator
JP2023111668A (en) Detection device
JPH04184130A (en) Pressure gauge