JPS5951712B2 - Lead-acid battery manufacturing method - Google Patents

Lead-acid battery manufacturing method

Info

Publication number
JPS5951712B2
JPS5951712B2 JP53032602A JP3260278A JPS5951712B2 JP S5951712 B2 JPS5951712 B2 JP S5951712B2 JP 53032602 A JP53032602 A JP 53032602A JP 3260278 A JP3260278 A JP 3260278A JP S5951712 B2 JPS5951712 B2 JP S5951712B2
Authority
JP
Japan
Prior art keywords
lead
electrolyte
battery
sulfuric acid
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53032602A
Other languages
Japanese (ja)
Other versions
JPS54125445A (en
Inventor
悦治 牧野
逸郎 竹田
彰 石踊
厚人 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP53032602A priority Critical patent/JPS5951712B2/en
Publication of JPS54125445A publication Critical patent/JPS54125445A/en
Publication of JPS5951712B2 publication Critical patent/JPS5951712B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は小形密閉鉛蓄電池の製造法の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for manufacturing small sealed lead acid batteries.

従来小形密閉鉛蓄電池の電解液には、使用する位置ある
いは方向の制約を受けず、更に電解液の漏液を防止する
ためとして、コロイド状電解液を用いたり、含水率の非
常に大きい不織布等の隔離板に電解液を含浸させ、電解
液が自由に動揺しないようにする等の方法が採用されて
いるが、前者においては、コロイド状電解液には、硫酸
とシリカゾルあるいはアルミナゾルとを混合したものや
硅酸ナトリウムと硫酸とを混合して得られるヒドロゲル
を微粉末化したものに粒子径100ミリ・ミクロン以下
のシリカ微粉末からなるシリカゾルを加え、さらに硫酸
と混合したもの等が用いられている。
Conventionally, small sealed lead-acid batteries use colloidal electrolytes, non-woven fabrics with extremely high water content, etc., to prevent electrolyte leakage, and are not subject to restrictions on the position or direction of use. In the former method, the colloidal electrolyte is a mixture of sulfuric acid and silica sol or alumina sol. Silica sol consisting of fine silica powder with a particle size of 100 mm/micron or less is added to a finely powdered hydrogel obtained by mixing sodium silicate and sulfuric acid, and then mixed with sulfuric acid. There is.

また後者においては、電解液を陰、陽極板および隔離板
に含浸させるため、隔離板の材質の制約を受けるのみな
らず、高価であり、かつ電解液電池であるために密閉化
が困難である。また小形密閉鉛蓄電池において、コロイ
ド状電解液を用いる製造法としては、完全に充電され乾
燥した極板群を電槽に収納し、ゾル状電解液を直接充填
する方法と電槽内の極板群を湿潤状態としてゾル状電解
液を充填する方法がある。
In the latter case, the negative and anode plates and separators are impregnated with electrolyte, which is not only limited by the material of the separators, but is also expensive and difficult to seal as it is an electrolyte battery. . In addition, manufacturing methods using colloidal electrolyte for small sealed lead-acid batteries include placing fully charged and dry electrode plates in a battery case and directly filling them with sol electrolyte; There is a method of keeping the group in a wet state and filling it with a sol electrolyte.

前者においては、ゾル中の硫酸濃度が高いことにより、
ゾルの粘度が大きくなり、ゾル状電解液の極板群への充
填性が悪く、更にゾルを充填時に極板群から発生するガ
スによりゲル化した場合、コロイド状電解液に亀裂が多
数発生し、空洞となり易く、陰、陽痺板および隔離板と
コロイド状電解液との密着性が劣化する。またコロイド
状電解液がゲル化後初充電による陰、陽極板から発生す
る水素、酸素ガスにより、コロイド状電解液の亀裂が促
進され、コロイド状J電解液の乾燥を加速し、陰、陽極
板とコロイド状電解液との密着性を劣化せしめ、性能劣
化をきたし、後者においては、極板群を一旦希硫酸等で
湿潤状態にする際、電池内の極板群を完全に希硫酸等の
中へ浸漬するため、一定時間後に希硫酸等を排液する工
数が必要となり、更に、電槽や蓋体等に排液時における
希硫酸が付着し、付着物を水洗除去する工数が必要とな
り、製造法が複雑となる欠点を有していた。
In the former case, due to the high concentration of sulfuric acid in the sol,
The viscosity of the sol increases, the filling of the sol electrolyte into the electrode plates is poor, and if the sol gels due to the gas generated from the electrode plates during filling, many cracks will occur in the colloidal electrolyte. , cavities are likely to form, and the adhesion of the colloidal electrolyte to the negative and positive plates and the separator plate deteriorates. In addition, after the colloidal electrolyte gels, hydrogen and oxygen gases generated from the negative and anode plates due to the initial charging promote cracking of the colloidal electrolyte, accelerating the drying of the colloidal J electrolyte, and This deteriorates the adhesion between the battery and the colloidal electrolyte, leading to performance deterioration. Since the product is immersed in the liquid, it is necessary to drain the dilute sulfuric acid after a certain period of time, and furthermore, the dilute sulfuric acid adheres to the container and lid during draining, and it is necessary to remove the deposit by washing with water. However, it had the disadvantage that the manufacturing method was complicated.

本発明は上記の如き欠点を除去するもので、小形密閉鉛
蓄電池の製造法において、製造法を簡略化し、しかも電
池性能を向上せしめたものである。
The present invention eliminates the above-mentioned drawbacks, and simplifies the manufacturing method of a small sealed lead-acid battery and improves the battery performance.

本発明は、小形密閉鉛蓄電池の製造法において、鉛粉に
粒子径100ミリミクロン以下のコロイド状態となり得
るシリカ微粉末を混合したものと、希硫酸とを練合わせ
たペーストを充填して作つた陽極板を備え且つ完全に充
電し乾燥した極板群を電槽内に収納後、該電槽内にゾル
状電解液を充填する鉛蓄電池の製造法である。
The present invention is a method for manufacturing a small sealed lead-acid battery, in which a paste is prepared by mixing lead powder with fine silica powder having a particle size of 100 millimicrons or less, which can be in a colloidal state, and dilute sulfuric acid. This is a method for producing a lead-acid battery, in which a fully charged and dried electrode plate group including an anode plate is stored in a battery case, and then a sol electrolyte is filled into the battery case.

本発明においては、小形密閉鉛蓄電池において、鉛粉に
粒子径100ミリミクロン以下のコロイド状態となり得
るシリカ微粉末を混合したものと希硫酸とを練合したペ
ーストを陽極板に用いることにより、陽極板の硫酸保有
量を増大させることが可能となる。
In the present invention, in a small sealed lead-acid battery, a paste obtained by kneading dilute sulfuric acid with a mixture of lead powder and fine silica powder with a particle size of 100 millimicrons or less, which can be in a colloidal state, is used for the anode plate. It becomes possible to increase the amount of sulfuric acid held in the plate.

即ち、陽極板の有する多孔度40乃至65%に対して粒
子径100ミリミタロン以下のシリカ微粉末の表面積は
粒子径にもよるが、100乃至300m・ノgと非常に
大きく、シリカ微粉末を鉛粉100に対して5以内の割
合で混合することにより、陽極板の硫酸保有量を飛躍的
に増大することが可能となる。従つて、コロイド状電解
液中のシリカ濃度を大幅に下げることができ、ゾルの粘
度も小さくすることができるため、ゾル状電解液の電池
内への充填性を飛躍的に向上することができた。すなわ
ち完全に充電され乾燥した上記陽極板を備えた極板群を
収納した電槽内にゾル状電解液を直接充填しても、ゾル
の粘度が小さいためゲル化までに要する時間も長くなり
、充填時に陰、陽極板から発生するガスがゲル中に残存
することなく、コロイド状電解液中に空洞が生じ難くな
り、陰、陽極板および隔離板とコロイド状電解液との密
着性も改善された。またシリカ微粉末が陽極板中に浸入
していることにより、陽極板の硫酸保有量が飛躍的に増
加し、且つ、鉛粉に予めシリカ微粉末を混合することか
ら、シリカ微粉末が均一に分散し易く、従つて均一に硫
酸が保持され、陽極活物質の利用率向上をも図ることが
できた。更にコロイド状電解液を用いた小形密閉鉛蓄電
池は、電解液の拡散が悪く、従つて電解液電池よりも多
量の希硫酸を必要としていたが、陽極板のシリカ微粉末
により硫酸保有量が増加することから、コロイド状電解
液量を減少することができ、エネルギー密度の向上が可
能となり、例えば、サイクルサービス用における使用で
は、図面に示す如く、寿命が長くなつた。またコロイド
状電解液の粘度が高いことから前述した従来採用されて
いる製造法即ち、陰、陽極板とコロイド状電解液との密
着性を向上させるため完全に充電され乾燥した極板を一
旦希硫酸等で湿潤状態にする際、希硫酸等を排液する工
数が必要となる等の製造法が複雑であることの欠点をも
除去することが可能となつた。
In other words, the surface area of fine silica powder with a particle size of 100 millimeters or less for an anode plate with a porosity of 40 to 65% is extremely large, ranging from 100 to 300 m/nog, depending on the particle size. By mixing the powder at a ratio of 5 or less to 100 parts of the powder, it is possible to dramatically increase the amount of sulfuric acid held in the anode plate. Therefore, the silica concentration in the colloidal electrolyte can be significantly lowered, and the viscosity of the sol can also be reduced, making it possible to dramatically improve the filling performance of the sol electrolyte into the battery. Ta. In other words, even if a sol-like electrolyte is directly filled into a battery container containing a fully charged and dried electrode plate group including the above-mentioned anode plate, the time required for gelation will be longer because the viscosity of the sol is small. The gas generated from the negative and anode plates during filling does not remain in the gel, making it difficult for cavities to form in the colloidal electrolyte, and improving the adhesion between the negative and anode plates and separator and the colloidal electrolyte. Ta. In addition, as the fine silica powder has penetrated into the anode plate, the amount of sulfuric acid retained in the anode plate increases dramatically, and since the fine silica powder is mixed with the lead powder in advance, the fine silica powder is uniformly distributed. It was easy to disperse, so sulfuric acid was held uniformly, and it was also possible to improve the utilization rate of the anode active material. Furthermore, small sealed lead-acid batteries using a colloidal electrolyte have poor electrolyte diffusion and therefore require a larger amount of dilute sulfuric acid than electrolyte batteries, but the fine silica powder in the anode plate increases the amount of sulfuric acid retained. As a result, the amount of colloidal electrolyte can be reduced and the energy density can be improved. For example, when used for cycle service, the lifespan is extended as shown in the drawing. In addition, since the viscosity of the colloidal electrolyte is high, the previously adopted manufacturing method described above, i.e., to improve the adhesion between the anode and cathode plates and the colloidal electrolyte, the fully charged and dry electrode plates are first diluted. It has also become possible to eliminate the drawbacks of complicated manufacturing methods, such as the need for man-hours to drain dilute sulfuric acid or the like when moistening with sulfuric acid or the like.

本発明において、鉛粉とシリカ微粉末とがペーストにな
り得ることおよび電池性能を考慮した場合、鉛粉100
に対してシリカ微粉末を0.5以内の割合で混入するの
が好適である。
In the present invention, considering that lead powder and fine silica powder can form a paste and considering battery performance, lead powder 100
It is preferable to mix fine silica powder at a ratio of 0.5 or less.

なお図面において、Aは本発明により得られた鉛蓄電池
を示し、Bは従来の鉛蓄電池を示す。
In the drawings, A indicates a lead-acid battery obtained by the present invention, and B indicates a conventional lead-acid battery.

上述せる如く、本発明は、鉛蓄電池の製造法を簡略化し
、而も電池性能を向上せしめることが可能となる等工業
的価値甚だ大なるものである。
As described above, the present invention has great industrial value, as it simplifies the manufacturing method of lead-acid batteries and also makes it possible to improve battery performance.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明により得られた鉛蓄電池と従来の鉛蓄電池
とのサイクル寿命特性を示す曲線図である。
The drawing is a curve diagram showing the cycle life characteristics of a lead-acid battery obtained according to the present invention and a conventional lead-acid battery.

Claims (1)

【特許請求の範囲】[Claims] 1 鉛粉に粒子径100ミリミクロン以下のコロイド状
態となり得るシリカ微粉末を混合したものと希硫酸とを
練合して作つたペーストを充填してなる陽極板を備え且
つ完全に充電し乾燥した極板群を電槽内に収納後、該電
槽内にゾル状電解液を充填せしめることを特徴とする鉛
蓄電池の製造法。
1 Equipped with an anode plate filled with a paste made by mixing lead powder with silica fine powder with a particle size of 100 millimicrons or less that can be in a colloidal state and dilute sulfuric acid, and fully charged and dried. 1. A method for producing a lead-acid battery, which comprises storing a group of electrode plates in a battery case, and then filling the battery case with a sol electrolyte.
JP53032602A 1978-03-22 1978-03-22 Lead-acid battery manufacturing method Expired JPS5951712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53032602A JPS5951712B2 (en) 1978-03-22 1978-03-22 Lead-acid battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53032602A JPS5951712B2 (en) 1978-03-22 1978-03-22 Lead-acid battery manufacturing method

Publications (2)

Publication Number Publication Date
JPS54125445A JPS54125445A (en) 1979-09-28
JPS5951712B2 true JPS5951712B2 (en) 1984-12-15

Family

ID=12363400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53032602A Expired JPS5951712B2 (en) 1978-03-22 1978-03-22 Lead-acid battery manufacturing method

Country Status (1)

Country Link
JP (1) JPS5951712B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177863A (en) * 1983-03-29 1984-10-08 Japan Storage Battery Co Ltd Gel type lead-acid battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486730A (en) * 1971-06-03 1973-01-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486730A (en) * 1971-06-03 1973-01-27

Also Published As

Publication number Publication date
JPS54125445A (en) 1979-09-28

Similar Documents

Publication Publication Date Title
US3457112A (en) Lead-acid storage battery
US4871428A (en) Method for in situ forming lead-acid batteries having absorbent separators
US3402077A (en) Storage batteries and method of manufacturing the same
CN106684343A (en) Lithium titanate/carbon composite material and preparation method therefor, and lithium ion battery
JP2782749B2 (en) Sealed clad type lead battery
JPS5835877A (en) Closed type lead battery and its production method
US20040170889A1 (en) Liquid low-sodium siliscate forming-solution used for a storage battery, and a container formation method
JPS5951712B2 (en) Lead-acid battery manufacturing method
JPH0231462B2 (en)
JPS6030063A (en) Sealed type lead-acid battery
JPS63152868A (en) Lead-acid battery
JPS63221565A (en) Sealed lead-acid battery
JP2002110125A (en) Lead-acid battery and its manufacturing method
JP2003178794A (en) Production process of sealed lead acid storage battery
JPS6040672B2 (en) Manufacturing method of sealed lead-acid battery
JPS61198573A (en) Enclosed lead storage battery
CN2045148U (en) Colloidal electrolyte storage battery with two layers of colloidal electrolyte
JP3099527B2 (en) Manufacturing method of sealed lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JP2573094B2 (en) Manufacturing method of sealed lead-acid battery
JPS63126161A (en) Enclosed type lead storage battery
JPS607069A (en) Manufacture of sealed lead-acid battery
JPH053709B2 (en)
JPS5920970A (en) Method for manufacturing lead storage battery
CN116111053A (en) Self-stirring water circulation rich liquid lead-carbon battery