JPS5944995A - Controlling method for motor - Google Patents

Controlling method for motor

Info

Publication number
JPS5944995A
JPS5944995A JP57152620A JP15262082A JPS5944995A JP S5944995 A JPS5944995 A JP S5944995A JP 57152620 A JP57152620 A JP 57152620A JP 15262082 A JP15262082 A JP 15262082A JP S5944995 A JPS5944995 A JP S5944995A
Authority
JP
Japan
Prior art keywords
value
current
difference
calculated
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57152620A
Other languages
Japanese (ja)
Other versions
JPH0156639B2 (en
Inventor
Masahiro Tobiyo
正博 飛世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57152620A priority Critical patent/JPS5944995A/en
Publication of JPS5944995A publication Critical patent/JPS5944995A/en
Publication of JPH0156639B2 publication Critical patent/JPH0156639B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/292Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC
    • H02P7/295Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC of the kind having one thyristor or the like in series with the power supply and the motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To reduce the overshoot amount of a current control system by decreasing the gain of the system when the difference between the current command value and the current feedback value is the prescribed value or lower and the rate of change of the current feedback value is the prescribed value or larger. CONSTITUTION:A current feedback value 8 is loaded in step 20, a current command value 10 is loaded in step 21, and the variation of the value 8 is calculated in the next step 26. Then, the difference between the value 10 and the value 8 is calculated, the flow is fed to step 29 when the difference is the prescribed value or lower and the variation in the value 8 is the prescribed value or higher, and fed to step 23 except this case. In step 23, the calculated result of the step 22 is multiplied by the normal gain of the current control system, and in step 29, the calculated result of the step 22 is multiplied by the gain lower than the normal gain of the current control system. In step 24, the phase angle of the gate pulse is calculated from the calculated results of the step 23 or 29.

Description

【発明の詳細な説明】 本発明はブイリスク変換器により直流電流を供給する直
流電動機の゛電流制御方法に係り、特にデジタル処理を
採用した電動機の電流制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current control method for a DC motor that supplies DC current using a buoy risk converter, and more particularly to a current control method for a motor that employs digital processing.

第1図は従来この種のサイリスタ変換器を用いた(α流
電動機の電b1を制御装置の一例を示しだ4.’+’?
成図である。電源トランス1にまりが[尾の′市川にさ
れた交流がサイリスタ変換器(’Ijj、’力開閉素子
)2に入力され、ここで曲流電流に変換きれて電III
II機3の電機子4に供給される。尚符乞5は′1t:
動磯3の界磁巻線である。′4(、源トランス1と一す
−イリスタ交換器2とを接続−j゛る電力線には変6f
L器6が取伺けられており、この変流器6の2次巻1課
は電流検出器7に入力されている。この電流検出器7の
出力である′電流帰還値8は電流割面1器9に入力され
る。この電流側17111 慢9には′電流指令値10
が人力され、その出力はゲートパルス発生器11に入力
される。このゲートパルス発生器11の出力であるゲー
トパルス12はツ“イリスタ変換器2のゲート回路に入
力される。
Figure 1 shows an example of a control device for controlling the electric current b1 of an α-flow motor using a conventional thyristor converter of this type.4.'+'?
It is a complete drawing. The alternating current generated in the power transformer 1 is input to the thyristor converter ('Ijj,' force switching element) 2, where it is converted into a curved current and the electric current is
It is supplied to the armature 4 of the II machine 3. Please beg 5 is '1t:
This is the field winding of the moving rock 3. '4 (, the power line connecting the source transformer 1 and the Iristor exchanger 2 is connected to the power line 6F.
An L transformer 6 is taken, and the first section of the secondary winding of this current transformer 6 is inputted to a current detector 7. A current feedback value 8 which is the output of this current detector 7 is inputted to a current dividing plane 1 unit 9. On this current side 17111, the current command value is 10.
is input manually, and its output is input to the gate pulse generator 11. A gate pulse 12, which is the output of the gate pulse generator 11, is input to the gate circuit of the twinning converter 2.

第2図は」皿回電流制御器9の処にIljフローを示し
たチャート図で、所定の周期で起動されるものである。
FIG. 2 is a chart showing the Ilj flow in the counter current controller 9, which is activated at a predetermined period.

先ず、ステップ20で電流帰還fitζ8を取込み、ス
テップ21で電流指令値10を取込む。次にステソゲ2
2で電流指令値10と’FW流帰還値8との差を演算す
る。次に、ステップ23はステップ22の演算結果に電
流制御系(電流検出器7の増幅率等)のゲインを乗算す
る。ステップ24はステップ23の演算結果よりゲート
パルスの位相角を演算する。ステップ25はステツ/2
4で演算された位相角をカウンタにセットすイ′)。
First, in step 20, the current feedback fitζ8 is fetched, and in step 21, the current command value 10 is fetched. Next, Stesogame 2
2, the difference between the current command value 10 and the FW flow feedback value 8 is calculated. Next, step 23 multiplies the calculation result of step 22 by the gain of the current control system (such as the amplification factor of the current detector 7). Step 24 calculates the phase angle of the gate pulse from the calculation result of step 23. Step 25 is STETSU/2
Set the phase angle calculated in step 4 in the counter.

上流制御器9のステップ25でカウンタにセントされた
位相角より、ゲートパルス発生器11はゲートパルス1
2を作シ、ツーイリスタ変換器2のゲート回路に印加す
る。このサイリスタ変換器2に印加されたゲートパルス
12により、主回路電流13の大きさが決まシ、この電
流が変流器6゜電流検出器7を通って電流帰還値8とな
る。これ等の動作の繰返しにより、′屯l1III機3
に供給される主回路電流13は電流指令値lOに見合う
値に制御される。
Based on the phase angle entered in the counter in step 25 of the upstream controller 9, the gate pulse generator 11 generates a gate pulse 1.
2 is applied to the gate circuit of the twin-ristor converter 2. The gate pulse 12 applied to the thyristor converter 2 determines the magnitude of the main circuit current 13, and this current passes through the current transformer 6° current detector 7 and becomes a current feedback value 8. By repeating these operations,
The main circuit current 13 supplied to the main circuit is controlled to a value commensurate with the current command value lO.

第3図は上記の電流指令値10S電流帰還値8及びゲー
トパルス12との関係を示した!(山作タイムヂャート
である。′、u流指令値1oが変化した時、電流帰還値
8&−j:これに追従する様に!1111 (。ゲート
パルス12の8点では電流指令(1010と電流41”
(i j1割値8との差が犬さく、この差で次回の点弧
信相すが演算される。次にゲートパルス12のL)点で
も、市、流指令値1()ど11チ流帰還帥8との差V」
大きく、この差で次回の点弧位相Cかfit、 Jj?
: ’Jれる。回4)zに0点でも電流指令j1fI、
 1.0と亜流帰還(1(i、 8との差が大きく、こ
の差で次回の点弧位、(’1.11 (+が通常;1l
jjり演算される。ところが、d点では巾;θii’、
4量還(11!18が(・〕、ぼ目標値に達している/
こめ、ここで発生しん、ゲートパルスにより′「に流部
速値8は大きくオーバシュートシてしまう。この為ゲー
トパルス12の0点の点弧位相が遅れ、電流Q)速値8
は振動波形となってしまい、円滑に目1票値にQIJ達
することが出来ない。即ち、これは主回路1d流13が
倣動することを意味している。この傾向は、市、流の変
化率設定が大きい程大きく、又N +ff1f流?t3
、動機3に代表される主回路時定数をそれ以下の時定数
で制御しようとした場合に大きく現われる。この市流帰
jY’1.仙8のオーバシュート量は、主回路1[I7
流13のη’SJ ’jtt’流に対応する為、通常、
主回路に設置される渦電流検出器(とこでは図示されず
)を−I!IJh作させてしまう欠点も生じる。
FIG. 3 shows the relationship between the above current command value 10S current feedback value 8 and gate pulse 12! (This is a Yamasaku time chart.', When the u flow command value 1o changes, the current feedback value 8&-j: Follow this! 1111 (.At the 8 points of the gate pulse 12, the current command (1010 and the current 41 ”
(The difference from the i j 10% value 8 is calculated, and the next ignition signal is calculated from this difference.Next, at the L) point of gate pulse 12, the current, flow command value 1 (), and 11 points are calculated. Difference with Flow Return Marshal 8 V”
This difference is large, and the next firing phase C or fit, Jj?
:'J reru. 4) Current command j1fI even if z is 0 point,
There is a large difference between 1.0 and subcurrent return (1 (i, 8), and this difference determines the next firing position, ('1.11 (+ is usually; 1l
jj is calculated. However, at point d, the width; θii',
4 amount return (11! 18 (・), almost reached the target value /
However, due to the gate pulse, the flow section speed value 8 greatly overshoots.As a result, the firing phase of the 0 point of the gate pulse 12 is delayed, and the current Q) speed value 8 is delayed.
becomes an oscillating waveform, and QIJ cannot reach the first vote value smoothly. That is, this means that the main circuit 1d flow 13 follows. This tendency increases as the rate of change setting for city and style increases, and also for N + ff1f style? t3
, which appears significantly when trying to control the main circuit time constant, as represented by Motive 3, with a time constant smaller than that. This market returns jY'1. The overshoot amount of Sen8 is the main circuit 1 [I7
In order to correspond to the η'SJ 'jtt' flow of flow 13, normally,
An eddy current detector (not shown here) installed in the main circuit -I! There is also the disadvantage of causing IJh production.

本発明の目的は、上記の欠点全解消11、オーバシュー
トが少なく安定に目標11L流値に到達する’fW!!
!I磯の電流制御方法を提供することにイ)る本発明は
、ツーイリスタ変換器を用いて1〔1流電動機の電流を
制イ即する1(i流制御装置に於いて、電流指令値と電
流帰還値との差が所定領置1・とηす、且つ、電流帰還
値の変化率が所定舶以トの’)、i+4rに、電流制御
系のゲインを通常より−1・げると、とにより、上記目
的を達成する。
The purpose of the present invention is to completely eliminate the above-mentioned drawbacks 11, and to stably reach the target 11L flow value with little overshoot!'fW! !
! The present invention aims to provide a current control method using a twin-ristor converter. If the difference from the current feedback value is 1·η for a predetermined value, and the rate of change of the current feedback value is less than a predetermined value (i+4r), then if the gain of the current control system is increased by −1· from normal, , the above objective is achieved.

以下本発明の一実施例を従来例と同(Xl−分ケ」同符
号を用いて図面に従って説明する。
An embodiment of the present invention will be described below with reference to the drawings using the same reference numerals as those of the conventional example.

第4図は本発明の′市動機の電流:1tllσ11方法
の一実施例を適用した電流制御装置を構成する′「11
流制御器の処理フローを示したチャート図である。本実
施例の処理フローは第2図で示した従来例の処理フロー
にステップ26,27,28.29を付加したイR成を
有しておシ、所定の周期で起動される。
FIG. 4 shows a current control device configuring an embodiment of the ``city motor current: 1tllσ11 method'' of the present invention.
FIG. 3 is a chart diagram showing the processing flow of the flow controller. The process flow of this embodiment has a structure in which steps 26, 27, 28, and 29 are added to the process flow of the conventional example shown in FIG. 2, and is started at a predetermined period.

ステップ20で電流帰還値8を取込み、スーアソグ21
で電流指令値10全取込む。次のスウーノプ26で電流
帰還値8の変化量を演算する。ステップ22で電流指令
値10と1(1,流jj1) jη“(値8との差を演
算する。ステップ27でステソゲ22により演算した差
が所定値以下であるかどうかを1(]断し7、以下であ
った場合t」、ステツノ28に、超過した場合はステッ
プ2:目こ行く。ステソゲ28−Ct:1.ステップ2
6で演やし/こ電流帰う■植8の変化BHが所シ、(埴
以上かどうか全’I′ll断し、所定イ的未満であれt
まステップ23に行へ、)九定値以上であれ(r」:ス
テツノ29に行く。ス′rッグ23ではステップ22の
演算結果に電流制御系の通常のゲインを乗り−する。
In step 20, the current feedback value 8 is taken in, and the current feedback value 21 is taken in.
Take in all 10 current command values. The next step 26 calculates the amount of change in the current feedback value 8. In step 22, the difference between the current command value 10 and 1 (1, flow jj1) 7. If it is less than t, go to step 28, if it exceeds step 2: go to step 28. Step 28-Ct: 1. Step 2
Play with 6 / Return to the current ■ Change BH of plant 8 is the place, (I'll cut it all off if it's more than Hani, and if it's less than the prescribed A)
Go to step 23.) If it is greater than the nine constant (r), go to step 29. In step 23, the calculation result of step 22 is multiplied by the normal gain of the current control system.

又、ステソゲ2 gではステップ22の演3つ、結果に
電流1b]制御系の通常のゲインより低いゲインを乗算
する。ステップ24ではステップ23又はステップ29
の演算結果よりゲートパルスの位411角を演算し、こ
の演算結果である位相角をステップ25でカウンタにセ
ットする。その後の動作C」、σに来例と同様である為
説明は省略する。」、た、本1’n’3す」を適用した
電動機jli制御装置の全体構成例ケよ、第1図に示し
た4、゛q成図と同一であり、上述した通り電流制御器
の処理フローが異なるだけであるため図示は省略する。
In addition, in step 2g, the result of the three operations in step 22 is multiplied by a gain lower than the normal gain of the current 1b control system. In step 24, step 23 or step 29
The digit 411 angle of the gate pulse is calculated from the calculation result, and the phase angle, which is the calculation result, is set in a counter in step 25. The subsequent operations C'' and σ are the same as those in the previous example, so the explanation will be omitted. An example of the overall configuration of a motor control device to which ``, 1'n'3'' is applied is the same as the 4, q configuration shown in Figure 1, and as described above, the current controller Since the only difference is the processing flow, illustration is omitted.

第5図は本実施例の電流指令値10と、電流帰還値8と
ゲートパルス12との動作関係を示した線図である。電
流指令値10が変化した時、電流帰還値8はこれに追従
する様に動く。ゲートパルス12の3点では、電流指令
値10とr[流部速値8との差が大きく、この差で次回
の点φ](位相すが演算される。次にゲートパルス12
の5点でも、電流指令値10と電流帰還値8との差は大
きく、この差で次回の点弧位相Cが演算される。次に、
ゲートパルス12の0点では、目標値(′F比泥流指令
値10と゛′酸原流帰還値8の差が所定値以内に入シ、
伺且つ電流帰還値の変化率が所定値以上となっている為
、電流指令値10と電流帰還値8との差に乗算される飄
流?1jlJ御系のゲインは通常のものよシ低ゲインの
ものが採用され、次回の点弧位相角dが少し遅れた角度
となる。このことにより、′電流帰還値8の目標値に対
するオーバシュート1.J。
FIG. 5 is a diagram showing the operational relationship between the current command value 10, the current feedback value 8, and the gate pulse 12 in this embodiment. When the current command value 10 changes, the current feedback value 8 moves to follow it. At the three points of the gate pulse 12, there is a large difference between the current command value 10 and r[flow section velocity value 8, and this difference is used to calculate the next point φ] (phase.Next, the gate pulse 12
Even at the five points, the difference between the current command value 10 and the current feedback value 8 is large, and the next firing phase C is calculated based on this difference. next,
At the 0 point of the gate pulse 12, the difference between the target value ('F ratio mud flow command value 10 and '' acid source flow feedback value 8) is within a predetermined value,
Since the rate of change of the current feedback value is equal to or higher than the predetermined value, the current feedback value is multiplied by the difference between the current command value 10 and the current feedback value 8. The gain of the 1jlJ system is lower than the normal one, and the next ignition phase angle d is a little delayed. This results in an overshoot of the current feedback value 8 with respect to the target value. J.

は極端に少なくなり、安定した;!ill ii!l応
谷に実」J(、することが出来る。ここで、上記fij
 ’t)L 4+σ、)1旧1(1の変化率の所定値は
、制御系の応答で決′まる最大変化率の70〜80%が
最適である。又、′電流指令f1白10と電流帰還佃8
との差の所定値は、(−L−、iit’3変化率の所定
値)×(−丈ングリングビツヂ時出口×110〜120
%どするのが最適である。同、上記電流帰還値の変化率
の利足を省1(I5すると、疋常状態で常時低ゲインが
乗算されることになる為、効果が半減する。又、854
図に7」<シだ処理フローのステップの順序を入れ替え
ても同一の効果が4(Iられることはいう址でもない。
has become extremely low and stable;! ill ii! It is possible to do this. Here, the above fij
't) L 4 + σ, ) 1 old 1 (1) The optimum predetermined value for the rate of change is 70 to 80% of the maximum rate of change determined by the response of the control system. Current feedback Tsukuda 8
The predetermined value of the difference between
It is best to use %. Similarly, if the rate of change of the current feedback value is omitted by 1 (I5), the effect will be halved because the low gain will always be multiplied in the normal state.
It is not true that the same effect can be obtained even if the order of the steps in the process flow is changed.

本実施例によれば、′1)L流?151J御器に力4い
て1(1:γJiilij令値10と電流値10(f速
値8どの差がノシ「定餡以ドで、且つ、’lkl帰流値
8の変化量が所定1111以上である場合、電流指令値
10と電流加速111′i8とのZ:に電流制御系の通
常ゲインよシ低ゲインを乗算することによシ、電流帰還
値8、即ち主回路F(を流のオーバシュート量を大幅に
低減し得る効果があシ、主回路電流を円滑に目標′電流
値に到達して安定した電動機電流の制御応答を実現し得
る効果がある。
According to this embodiment, '1) L flow? 151J control force 4 and 1 (1: γJiillij value 10 and current value 10 (f speed value 8) Which difference is less than the constant value, and the amount of change in 'lkl return value 8 is more than the predetermined 1111 In this case, the current feedback value 8, that is, the main circuit F (of the current This has the effect of greatly reducing the amount of overshoot, and also allows the main circuit current to smoothly reach the target current value, thereby realizing a stable motor current control response.

特に、従来では高応答時に約30%以上のオーバ/ニー
ト量があったが、本実施例ではぞのオーバシュートはを
約5%以下に低減さぜることか可能となった。なお、上
記電流7171j御器し、1、マイクロコンビ3−夕等
で構成される。
In particular, in the past, there was an over/neat amount of about 30% or more during high response, but in this embodiment, it is possible to reduce the overshoot to about 5% or less. In addition, the above-mentioned current 7171j is controlled and is composed of 1, a micro combination 3, and the like.

以上記述した如く本発明の電動機の市10M、’di1
.制御方法によれば、オーバシュートが少なく安>’j
JlにL1標電流値に到達させることが出来る。
As described above, the electric motor city 10M, 'di1 of the present invention
.. According to the control method, the overshoot is small and the safety>'j
Jl can be made to reach the L1 standard current value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のブイリスク変換器を月1いた直流′電動
機の電流/1lilJ御装置の一例を示した))’II
Jν、図、第2図はC(11図で示した′〔dしtj 
tlill (i141器の処理ノローチャート図、第
3図は第1図で示した制n111装置の電流指令値と電
流帰還値とゲートパルスとの動作関係を示したタイムチ
ャート図、44図は本発明の電動機の電流11jlJ御
方法の一実施例を適用した電流制御装置の要部である電
流制御器の処理フローチャー1・図、第5図は本実施例
の電流指令(+にと、電流帰還値とゲートパルスとの動
作関係を示したタイムチャート図である。 2・・・ブイリスク変換器、3・・・電動機、9・・・
電流制御器、11・・・ゲーレ(ルス発生器。 第21図 弔3図 (LbCd  ef(i 第4図 弔5図 (LbCdef’j
Figure 1 shows an example of a device that controls the current/1lilJ of a DC motor using a conventional builisk converter once a month))'II
Jν, Figure 2 shows C ('[d and tj shown in Figure 11)
tlill (I141 device processing flow chart, Figure 3 is a time chart showing the operational relationship between the current command value, current feedback value, and gate pulse of the control n111 device shown in Figure 1, and Figure 44 is the main Processing flowchart 1 of the current controller, which is the main part of the current control device to which an embodiment of the method for controlling the current 11jlJ of a motor according to the invention is applied, and FIG. It is a time chart diagram showing the operational relationship between the feedback value and the gate pulse. 2... Builisk converter, 3... Electric motor, 9...
Current controller, 11...Gere (Russ generator.

Claims (1)

【特許請求の範囲】[Claims] 1、交流を電力開閉累子によって直流に交換(7て直流
’?!動機に供給するもので、この1a汐11、(II
、r((f1機に供給される電流を電流制御系を通して
検出プることによって電流帰還値を得、この′t1ε流
Ji1t 、lY+f他が設定電流指令値になるように
制御する′lli動磯の動機方法において、電流指令値
と電流錦還値との差が所定値以下であるかどうかを判定
するJ一段と、電流帰還値の変化率が所定値以上である
かどうかを判定する手段とを設け、前記2つの判>1手
段によシ両条件が同時に満足された時、前記電流制御系
のゲインを通常のそれよりも低下させることを特徴とす
る電動機の制御方法。
(II
. The motive method includes a step J for determining whether the difference between the current command value and the current feedback value is less than or equal to a predetermined value, and a means for determining whether the rate of change of the current feedback value is greater than or equal to the predetermined value. A method for controlling an electric motor, characterized in that the gain of the current control system is lowered than a normal gain when both conditions are simultaneously satisfied according to the two conditions>1 means.
JP57152620A 1982-09-03 1982-09-03 Controlling method for motor Granted JPS5944995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152620A JPS5944995A (en) 1982-09-03 1982-09-03 Controlling method for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152620A JPS5944995A (en) 1982-09-03 1982-09-03 Controlling method for motor

Publications (2)

Publication Number Publication Date
JPS5944995A true JPS5944995A (en) 1984-03-13
JPH0156639B2 JPH0156639B2 (en) 1989-11-30

Family

ID=15544355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152620A Granted JPS5944995A (en) 1982-09-03 1982-09-03 Controlling method for motor

Country Status (1)

Country Link
JP (1) JPS5944995A (en)

Also Published As

Publication number Publication date
JPH0156639B2 (en) 1989-11-30

Similar Documents

Publication Publication Date Title
US4439718A (en) Motor power control circuit for A.C. induction motors
JPH05207767A (en) Motor drive controller
JP2873689B2 (en) Speed control device
US4249236A (en) Controller for power converter
JPH01103184A (en) Control system for servo motor
JPS54121921A (en) Induction motor controller
JPS5944995A (en) Controlling method for motor
JPH065990B2 (en) PWM inverter control method
JPS6122557B2 (en)
JPS648539B2 (en)
US3065396A (en) System for controlling the speed of induction motors
JP2547824B2 (en) Induction motor controller
JPS6022216A (en) Constant water level control method
JPS635438Y2 (en)
JPS61283902A (en) Feedback control system
JPS645325B2 (en)
JPS638709B2 (en)
JPS60136815A (en) Current control device of electric power converter
JPH0926801A (en) Overshoot suppression controller
JPS62123977A (en) Current control device of dc motor
JPS6412194B2 (en)
JPS58205206A (en) Digital servocontrol compensation system
JPS6277606A (en) I-pd control system
JPS5910180A (en) Controlling method for motor
JPH10136678A (en) Speed control equipment of dc motor