JPS58205206A - Digital servocontrol compensation system - Google Patents

Digital servocontrol compensation system

Info

Publication number
JPS58205206A
JPS58205206A JP8790182A JP8790182A JPS58205206A JP S58205206 A JPS58205206 A JP S58205206A JP 8790182 A JP8790182 A JP 8790182A JP 8790182 A JP8790182 A JP 8790182A JP S58205206 A JPS58205206 A JP S58205206A
Authority
JP
Japan
Prior art keywords
speed command
constant
speed
actual operation
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8790182A
Other languages
Japanese (ja)
Inventor
Shigeru Ninomiya
二宮 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8790182A priority Critical patent/JPS58205206A/en
Publication of JPS58205206A publication Critical patent/JPS58205206A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To set easily and securely a compensation constant by performing preliminarily operation under a speed command prior to actual operation, and using the compensation constant set on the basis of the result of the preliminary operation for real-time servocontrol in the actual operation. CONSTITUTION:A switch 11 is placed at the side of a simulator 9 for setting the compensation constant in advance. Once the speed command value C is generated by a speed commanding device 10, a DC servomotor 3 is driven through a pulse converter 7 and a motor driving circuit 2. A speed feedback signal B is obtained from a digital position sensor 4 and a speed detecting circuit 5 during the rotation driving and the simulator 9 analyzes transient characteristics and stationary characteristics in an actual load state by using the feedback signal and speed command value C to set the compensaton constant for loop gain, phase leading and lagging, etc. This compensation constant is stored in a prescribed memory and when the actual operation is performed by placing the switch 11 at the side of a comparator 6, the constant is used for the servocontrol.

Description

【発明の詳細な説明】 本発明は、実動作前に行なわれる予備動作結果より各種
補償定数を求めておき、実動作時にはその補償定数を用
いリアルタイムにディジタルサーボ制御を行なうように
したディジタルサーボ制御補償方式に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention provides digital servo control in which various compensation constants are obtained from the results of preliminary operations performed before actual operation, and the compensation constants are used during actual operation to perform digital servo control in real time. It concerns the compensation method.

第1図は計算機を利用したディジタルサーボ制御ループ
系の一般的構成を示したものであるが、この種サーボル
ープ系においては制御を良好に行ない得ないという欠点
がある。
FIG. 1 shows a general configuration of a digital servo control loop system using a computer, but this type of servo loop system has the disadvantage that control cannot be performed satisfactorily.

即ち、制御用計算機1は外部からの速度指令値Aと速度
帰還信号Bとの差を比較回路6で求め、差分に応じてパ
ルス変換回路7で所定のパルスを作成したうえパル及制
御方式のモータ駆動回路2を介し直流サーボモータ3を
駆動するようになっている。直流サーボモータ3の速度
は回転パルス発生器などのディジタル位置センサ4によ
って検出されたうえ速度検出回路5よシ速度帰還信号B
として得られる砂、制御用計算機1は速度指令値Aと速
度帰還信号Bとの差が零となるべく直流サーボモータ3
を制御しているわけである。
That is, the control computer 1 calculates the difference between the external speed command value A and the speed feedback signal B using the comparator circuit 6, generates a predetermined pulse using the pulse conversion circuit 7 according to the difference, and then converts it into the pulse control method. A DC servo motor 3 is driven via a motor drive circuit 2. The speed of the DC servo motor 3 is detected by a digital position sensor 4 such as a rotation pulse generator, and a speed feedback signal B is sent to the speed detection circuit 5.
The control computer 1 controls the DC servo motor 3 so that the difference between the speed command value A and the speed feedback signal B becomes zero.
In other words, it is controlled.

ところでこのようにしてなるサーボループ系においては
過渡応答特性は良好ではない。過渡応答特性を向上させ
るためには制御用計算機1での処理時間を高速化しモー
タ駆動回路2に対するパルス指令周期を可能な限シ短か
くする必要があるからである。また、サーボルーズ系の
安定性を向上させるためには遅れ、進み要素などに対し
て補償をする必要があるが、これをリアルタイムで行な
うことは処理時間との関係で困難であるというものであ
る。このため従来より補償定数を事前に設定しておくこ
とによってサーボ特性を向上せしめることが考えられて
いる。負荷に応じソフトウェア的、ハードウェア的に補
償定数を事前に設定した9、あるいはその定数を事前に
変更しておき、実動作時にはそれら定数を用いサーボ制
御を行なうわけであるが、このような方法も負荷変動が
小さい用途には有効であるにしても負荷変動が大きい用
途には適用し得ないものとなっている。負荷変動が小さ
い場合は補償定数の事前設定は容易であシ、実動作時に
その補償定数を用いサーボ制御を行なって本殆ど問題と
はならないからである。しかしながら、負荷変動が大き
い場合には補償定数の設定は容易ではない。例えば近年
実用化の著しい関節形ロボットにおいては各関節の姿勢
や動作速度などに゛よりて大きな負荷変動が生じるが、
このような用途に適用しようとしても補償定数を複雑な
負荷特性に応じ設定幅大として複雑に設定しなければな
らないからである。負荷特性に応じて設定するにしても
設定に多くの時間を要したり、設定が適当ではなく必ず
しもサーボ制御を良好に行ない得なかったものである。
However, the servo loop system constructed in this manner does not have good transient response characteristics. This is because, in order to improve the transient response characteristics, it is necessary to speed up the processing time in the control computer 1 and shorten the pulse command cycle to the motor drive circuit 2 as much as possible. Additionally, in order to improve the stability of the servo loose system, it is necessary to compensate for delays and advance factors, but it is difficult to do this in real time due to processing time. . For this reason, it has been conventionally considered to improve servo characteristics by setting compensation constants in advance. Compensation constants are set in advance in software or hardware according to the load9, or the constants are changed in advance, and servo control is performed using these constants during actual operation. Although this method is effective for applications where load fluctuations are small, it cannot be applied to applications where load fluctuations are large. This is because if the load fluctuation is small, it is easy to set the compensation constant in advance, and when the compensation constant is used to perform servo control during actual operation, there is hardly any problem. However, when load fluctuations are large, it is not easy to set the compensation constant. For example, in articulated robots that have been put into practical use in recent years, large load fluctuations occur depending on the posture and operating speed of each joint.
This is because even if the present invention were to be applied to such applications, the compensation constant would have to be set in a complicated manner with a wide range depending on the complex load characteristics. Even if the setting is made according to the load characteristics, the setting takes a lot of time, or the setting is not appropriate, and the servo control cannot always be performed satisfactorily.

よって本発明の目的は、補償定数の事前設定が簡単容易
に、しかも確実迅速にして行ない得実動作時には事前設
定された補償定数を用いリアルタイムにディジタルサー
ボ制御を良好に行なうディジタルサーボ制御補償方式を
供するにある。
Therefore, an object of the present invention is to provide a digital servo control compensation method that allows the presetting of compensation constants to be performed simply, easily, reliably and quickly, and that allows good digital servo control in real time using the preset compensation constants during actual operation. It is to serve.

この目的のため本発明は、実動作前に事前に速度指令に
より予備動作を行なわしめ、この予備動作結果にもとづ
いて設定された補償定数を用い実動作時でのサーボ制御
をリアルタイムに補償するようにしたものである。
For this purpose, the present invention performs a preliminary operation using a speed command before the actual operation, and uses a compensation constant set based on the result of this preliminary operation to compensate the servo control during the actual operation in real time. This is what I did.

以下、本発明を第2図にょシ説明する。The present invention will be explained below with reference to FIG.

第2図は本発明に係るディジタルサーボ制御ループ系を
示したものであシ、第1図に示すものと同一の機能を有
するものには同一の符号が付されている。
FIG. 2 shows a digital servo control loop system according to the present invention, and parts having the same functions as those shown in FIG. 1 are given the same reference numerals.

これによると本発明に係る制御用計算機8には新た、に
シミーレータ9、速度指令器1oおよび切替器11が設
けられるようになっている。実動作に先立つて先ず補償
定数が事前に設゛定されるわけでちるが、補償定数の事
前設定の際切替器11ケシミユレータ9@に切替接続さ
れる。この状態で速度指令器10よ多速度指令値Cを発
することによってパルス変換器7、モータ駆動回路2を
介し直流サーボモータ3を駆動するものである。この直
流サーボモータ5の回転駆動に対しては速度検出回路5
よ多速度帰還信号Bが得られるが、これと速度指令値C
とからシミユレータ9が実負荷状態での過渡特性、定常
特性などを解析することによってサーボループ系の伝達
特性を知シ、ループゲイン、位相進み、位相遅れなどに
対して補償定数が設定されるものである。補償定数は一
所定メモリエリアとしてのテーブル上に退避記憶される
ところとなるが、実動作時にはこれを用いてサーボ制御
を行なうわけである。即ち、実動作時には切替器11は
比較器6g1llに切替接続され、比較器6によって速
度指令傭人と速度帰還信号Bとの偏差が求められるが、
この偏差を補償定数によってリアルタイムに適宜補正す
るようにすれば、直流サーボモータ5は速度指令値Aに
良好に追従して制御され得るものである。なお、以上の
例では予備動作用の速度指令値は予備動作のために特に
設けられた速度指令器によっており、速度指令器よシ様
々に変化する速度指令値を発することによって補償定数
が事前に設定されるようになっている。しかし、場合に
よっては実動作用の速度指令器Aあるいは予備動作用の
速度指令値を制御用計算機外部よシ与えることによりて
設定することも可能である。外部からの速度指令値をシ
ミーレータ9にも与えるようにするものである。ただ、
速度指令器による場合は、外部速度指令発生源とは無関
係に補償定数を設定し得ることになる。
According to this, the control computer 8 according to the present invention is newly provided with a simulator 9, a speed command device 1o, and a switch 11. Prior to actual operation, the compensation constant is first set in advance, and when the compensation constant is preset, the switch 11 is switched and connected to the kesimulator 9@. In this state, the speed command unit 10 issues a multi-speed command value C to drive the DC servo motor 3 via the pulse converter 7 and motor drive circuit 2. A speed detection circuit 5 is used to drive the rotation of the DC servo motor 5.
A multi-speed feedback signal B is obtained, but this and the speed command value C
The simulator 9 learns the transfer characteristics of the servo loop system by analyzing the transient characteristics and steady-state characteristics under the actual load condition, and sets compensation constants for loop gain, phase lead, phase lag, etc. It is. The compensation constant is stored on a table as a predetermined memory area, and is used for servo control during actual operation. That is, during actual operation, the switch 11 is switched and connected to the comparator 6g1ll, and the comparator 6 determines the deviation between the speed command signal and the speed feedback signal B.
If this deviation is appropriately corrected in real time using a compensation constant, the DC servo motor 5 can be controlled to follow the speed command value A well. Note that in the above example, the speed command value for the preliminary operation is determined by a speed command device specially provided for the preliminary operation, and the compensation constant is set in advance by issuing a speed command value that changes in various ways than the speed command device. It is now set. However, depending on the case, it is also possible to set the speed command A for actual operation or the speed command value for preliminary operation by externally supplying it to the control computer. The speed command value from the outside is also given to the simulator 9. just,
If a speed command is used, the compensation constant can be set independently of the external speed command generation source.

以上説明したように本発明は、適当な速度指令によって
実動作前に制御用計算機の補助の下に予備動作を行なう
ことによって補償定数を設定し、実動作時にはその補償
定数を用いサーボ制御を行なうようにしたものである。
As explained above, the present invention sets a compensation constant by performing a preliminary operation with the assistance of a control computer before actual operation using an appropriate speed command, and performs servo control using the compensation constant during actual operation. This is how it was done.

したがって、本発明による場合は、補償定数の事前設定
が簡単容易に、しかも確実迅速にして行ない得実動作時
には制御用計算機の処理速度を損うことなくその補償定
数によってリアルタイムにサーボ制御を良好に行ない得
るという効果がある。
Therefore, according to the present invention, the compensation constant can be set in advance easily, reliably and quickly, and the compensation constant can be used to perform good servo control in real time during actual operation without impairing the processing speed of the control computer. It has the effect of being effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、計算機を利用したディジタルサーボ制御ルー
プ系の一般的構成を示す図、第2図は、同じく計算機を
利用した本発明に係るディジタルサーボ制御ループ系の
一例での構成を示す図である。 2・・・モータ駆動回路  3・・直流サーボモータ4
・・・ディジタル位置センナ 5・・・速度検出回路、   6・・・比較回路7・・
・パルス変換回路  8・・・制御用計算機9・・・シ
ミエレータ
FIG. 1 is a diagram showing the general configuration of a digital servo control loop system using a computer, and FIG. 2 is a diagram showing the configuration of an example of the digital servo control loop system according to the present invention, which also uses a computer. be. 2...Motor drive circuit 3...DC servo motor 4
...Digital position sensor 5...Speed detection circuit, 6...Comparison circuit 7...
・Pulse conversion circuit 8...Control computer 9...Simierator

Claims (1)

【特許請求の範囲】[Claims] 制御用計算機内部において外部からの速度指令値と直流
サーボモータからの速度帰還信号との偏差を求め、該偏
差にも2とづき駆動回路よシ上記直流サーボモータに与
えられるパルス変換出力を制御するディジタルサーボ制
御ループ系において、適当に発生された速度指令値にも
とづき実動作前に実負荷状態で予備動作を行なうことに
よって制御用計算機内部で各種特性を測定したうえ該測
定結果よシ各種補償定数を設定し、実動作時には該定数
によシ駆動回路に与えられる偏差を補正することによっ
て、直流サーボモータを制御することをvwLとするデ
ィジタルサーボ制御補償方式。
Inside the control computer, the deviation between the external speed command value and the speed feedback signal from the DC servo motor is determined, and based on the deviation, the drive circuit controls the pulse conversion output given to the DC servo motor. In a digital servo control loop system, various characteristics are measured inside the control computer by performing a preliminary operation under the actual load condition before actual operation based on an appropriately generated speed command value, and then various compensation constants are calculated based on the measurement results. A digital servo control compensation method that uses vwL to control a DC servo motor by setting the constant and correcting the deviation given to the drive circuit by the constant during actual operation.
JP8790182A 1982-05-26 1982-05-26 Digital servocontrol compensation system Pending JPS58205206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8790182A JPS58205206A (en) 1982-05-26 1982-05-26 Digital servocontrol compensation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8790182A JPS58205206A (en) 1982-05-26 1982-05-26 Digital servocontrol compensation system

Publications (1)

Publication Number Publication Date
JPS58205206A true JPS58205206A (en) 1983-11-30

Family

ID=13927793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8790182A Pending JPS58205206A (en) 1982-05-26 1982-05-26 Digital servocontrol compensation system

Country Status (1)

Country Link
JP (1) JPS58205206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243702A (en) * 1984-02-10 1985-12-03 デイ−ア・アンド・カンパニ− Self-adjusting type adjustor apparatus control
JPH04340105A (en) * 1990-11-28 1992-11-26 Okuma Mach Works Ltd Numerical controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243702A (en) * 1984-02-10 1985-12-03 デイ−ア・アンド・カンパニ− Self-adjusting type adjustor apparatus control
JPH04340105A (en) * 1990-11-28 1992-11-26 Okuma Mach Works Ltd Numerical controller

Similar Documents

Publication Publication Date Title
US5220264A (en) Control system for an AC servomotor having a permanent magnet type
JPS6146186A (en) Speed controlling method
US4580085A (en) Feed control system with a safety device
JPS61214002A (en) Control system for follow-up error
JPH01103184A (en) Control system for servo motor
JPS58205206A (en) Digital servocontrol compensation system
JPH02131382A (en) Servomotor controller
JPS59107882A (en) Controller for robot
JPH01120607A (en) Motor controller
US6025684A (en) Servo-motor driving method
KR920019493A (en) Position control device of robot system and its control method
JP2581192B2 (en) Master / slave / manipulator controller
JP3435828B2 (en) Automatic lead angle determination method for phase controlled servo system
JPH06276774A (en) Positioning control method for motor
SU1180844A2 (en) Self-adjusting velocity control system
JPH04362702A (en) Velocity control system in repetitive control
JP2724054B2 (en) Positioning control device
JPH10285989A (en) Current detector and current controller
JPH08149882A (en) Motor controller
JPS6330198Y2 (en)
JPH03269703A (en) Command correction system
KR970063889A (en) Output controller of position controller
JPS62171004A (en) Nc positioning device
JPS63283490A (en) Speed controller for servomotor
JPS58141692A (en) Synchronous operation control system