JPS5941876A - Manufacture of photodiode - Google Patents

Manufacture of photodiode

Info

Publication number
JPS5941876A
JPS5941876A JP57026440A JP2644082A JPS5941876A JP S5941876 A JPS5941876 A JP S5941876A JP 57026440 A JP57026440 A JP 57026440A JP 2644082 A JP2644082 A JP 2644082A JP S5941876 A JPS5941876 A JP S5941876A
Authority
JP
Japan
Prior art keywords
refractive index
reflection preventing
light
film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57026440A
Other languages
Japanese (ja)
Inventor
Tatsuo Tanaka
達雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57026440A priority Critical patent/JPS5941876A/en
Publication of JPS5941876A publication Critical patent/JPS5941876A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve reflection preventing effect and detection efficiency of incident light on a light receiving surface, by forming an upper reflection preventing film, whose refractive index Nb is higher than that of silicon dioxide and thickness is odd number times of lambda/4Nb, on the upper part of a lower reflection preventing film. CONSTITUTION:A lower reflection preventing film 7a', whose refractive index is Na, is formed at the junction part of a P layer part of a substrate 1 by a thermal oxidation method of silicon dioxide, in such a way that the thickness Da' of said reflection preventing film 7a' is integer times of lambda/2Na of the wavelength lambda of light 8'. An upper reflection preventing film 7b has a higher refractive index Nb than that of silicon diode. The film 7b is formed on the lower reflection preventing film 7a', in such a way that the thickness Db of the reflection preventing film 7b is odd number times of lambda/4Nb of the wavelength lambda of the light 8'. The highest reflection preventing effect is obtained in correspondence with the refractive index Nx of a substrate 1 and the refractive index Ny of an atmosphere.

Description

【発明の詳細な説明】 この発明は、フ第1・ダイオードの製造方法において、
入射光の反射防止効果を高めるようにしたフ第1・ダイ
オードの製造方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for manufacturing a first diode, comprising:
It is an object of the present invention to provide a method for manufacturing a first diode that enhances the effect of preventing reflection of incident light.

従来、ビームインデックス型カラー受像管装置は、受像
管のフェースプレート内壁に形成された蛍光面のインデ
ックス蛍光体ストライプ列を、水平走査にもとづく電子
銃の単一電子ビームによりパルス的に照射し、インデッ
クス蛍光体ス!・ライブ列からインデック光信号を発生
させるとともに、発生したインデックス光信号を電気的
なインデックス信号に変換し、当該インデックス信号に
より単一電子ビームを制御して受像管に正しいカラー再
生を行なわせる。
Conventionally, a beam index type color picture tube device pulses a row of index phosphor stripes on a phosphor screen formed on the inner wall of the face plate of the picture tube with a single electron beam from an electron gun based on horizontal scanning. Fluorescent material! - Generate an index optical signal from the live array, convert the generated index optical signal into an electrical index signal, and use the index signal to control a single electron beam to cause the picture tube to perform correct color reproduction.

そこで、インデックス光信号を有効に検出してインデッ
クス信号に変換する必要、すなわち検出効率を高める必
要があり、インデックス蛍光体ストライプ列から発生し
たインデックス光信号を蛍光集光板に入射させ、該蛍光
集光板によりインデックス光信号の波長を波長変換する
とともに、波長変換したインデックス光信号をフォトダ
イオードで検出する方法が提供され、この場合、蛍光集
光板により波長変換されたインデックス光信号の波長が
、フォトダイオードの高感度領域の波長になるように設
定され、フォトダイオードにインデックス光信号が有効
に入射される。
Therefore, it is necessary to effectively detect the index light signal and convert it into an index signal, that is, to increase the detection efficiency. provides a method of wavelength converting the wavelength of an index optical signal and detecting the wavelength-converted index optical signal with a photodiode. The index light signal is set to have a wavelength in a high sensitivity region, and the index light signal is effectively input to the photodiode.

そして、前述のインデックス光信号を検出したリする従
来のフ第1・ダイオードは、第1図に示すように、n型
シリコン基板illのn層部(2)の上部にp層部(3
)が適当な深さに形成され、n層部(2)と1層部(3
)とにより光電変換部を形成するl)n接合部が形成さ
れる。
As shown in FIG. 1, the conventional first diode that detects the index optical signal described above has a p-layer part (3) on top of an n-layer part (2) of an n-type silicon substrate ill.
) is formed to an appropriate depth, and the n-layer part (2) and the first-layer part (3
) to form a l)n junction which forms a photoelectric conversion section.

捷だ、n層部(2)の下部に光電流取り出し用の一方の
電極(4)が設けられ、るとともに、p層部(3)の上
部の一部に光電流取り出し用の他方の電極(5)および
二酸化ケイ素(Si02)からなる保護膜(6)が形成
されている。
One electrode (4) for extracting photocurrent is provided at the bottom of the n-layer part (2), and the other electrode for extracting photocurrent is provided at a part of the upper part of the p-layer part (3). (5) and a protective film (6) made of silicon dioxide (Si02).

さらに、1層部(31の受光面+31’の」一部に、二
酸化ケイ素からなる反射防止膜(7a)が熱酸化法によ
り形成され、前述のインデックス光信号などの入射光(
8)の反射を防止し、入射する光(8)の吸収率の向」
二が計られる。
Further, an antireflection film (7a) made of silicon dioxide is formed on a part of the first layer part (light receiving surface of 31 + 31') by a thermal oxidation method, and the incident light such as the above-mentioned index optical signal is
8) to prevent the reflection of light (8) and improve the absorption rate of incident light (8).
Two is measured.

ところで、第2図に示すように、基板(1)2反射防止
膜(7a)の屈折率をNx、Naそれぞれで表わすとと
もに、基板(1)の外部すなわち雰囲気の屈折率をNy
で表わした場合、受光面(3Yに垂直に入射した光(8
Yの反射率孔ば、つぎの(1)式で示される。なお、i
l1式において1′)aは反射防止膜(7a)の厚みで
あり、λは光(8γの波長である。
By the way, as shown in FIG. 2, the refractive index of the substrate (1) 2 and the antireflection film (7a) is expressed by Nx and Na, respectively, and the refractive index of the outside of the substrate (1), that is, the atmosphere is expressed by Ny.
When expressed as , the light incident perpendicularly to the light receiving surface (3Y
The reflectance of Y is expressed by the following equation (1). In addition, i
In equation 1, 1')a is the thickness of the antireflection film (7a), and λ is the wavelength of light (8γ).

(Nx2+Na2)(Na2+Ny2)+4NxNa2
Ny +そして反射率■が最小に女るときの反射防止膜
(7a)の厚みDaかつぎの(2)式で示され、このと
きの反射率Rが(3)式で示される。なお、(2)式に
おいてmは整数を示す。
(Nx2+Na2) (Na2+Ny2)+4NxNa2
The thickness Da of the anti-reflection film (7a) when Ny + and the reflectance (2) is at its minimum is expressed by the following equation (2), and the reflectance R at this time is expressed by the equation (3). Note that in formula (2), m represents an integer.

Da =λ(2m +i)/4Na  、、、 (21
式一方、反射防止膜(7a)の厚み1)aがつぎの(4
)式を満足するときには、反射率几カ(5)式で示され
るように、反射防止膜(7a)がないときと等価になる
Da = λ (2m + i)/4Na ,, (21
On the other hand, the thickness 1) a of the antireflection film (7a) is the following (4
), the reflectance becomes equivalent to the case without the antireflection film (7a), as shown in equation (5).

Da =λm / ’l Na    −= [4)式
そして雰囲気が空気の場合、すなわちNy==l、Qの
場合に、λ−500nmの光(8Yに対して基板fi1
の屈折率NX = 4.25か−)反射防止膜(7a)
の屈折率Na = 1.46であれば、(3)式の反射
率Rが11%になり、(5)式の反射率孔が38%にな
る。すなわち反射防止膜(7a )Kよる反射防止効果
が生じる。
Da = λm / 'l Na - = [4] And when the atmosphere is air, that is, when Ny = = l, Q, λ - 500 nm light (substrate fi1 for 8Y
Refractive index of NX = 4.25 -) Anti-reflection film (7a)
If the refractive index Na = 1.46, the reflectance R in equation (3) becomes 11%, and the reflectance hole in equation (5) becomes 38%. That is, the antireflection effect of the antireflection film (7a)K is produced.

ところで、フォトクイオードにより前述の蛍光集光板か
らのインデックス光信号を検出したりする場合、フォト
ダイオードが蛍光集光板と同一相折率の物質により蛍光
集光板に結合され、蛍光集光板の屈折率を1.5とした
場合、(3)式および(51式の屈折率NY=1.5に
なり、(3)式の反射率Rが25%になり、(5)式の
反射率孔が23%になり、反射防止膜(7a)による反
射防止効果が全く生しない。
By the way, when detecting the index light signal from the above-mentioned fluorescence condensing plate using a photodiode, the photodiode is coupled to the fluorescence condensing plate by a substance having the same phase refractive index as the fluorescence condensing plate, and the refractive index of the fluorescence condensing plate is When is set to 1.5, the refractive index NY of equations (3) and (51) becomes 1.5, the reflectance R of equation (3) becomes 25%, and the reflectance hole of equation (5) becomes 23%, and the antireflection effect of the antireflection film (7a) is not produced at all.

一方、(3)式における反射率孔を最小にする反射防止
膜(7a)の屈折率NaO値かつぎの(6)式で示され
る。
On the other hand, the refractive index NaO value of the antireflection film (7a) that minimizes the reflectance hole in equation (3) is expressed by the following equation (6).

Na f−Jpx五 ・(6)式 そして、Nx = 4・、25かつNy= 1.5 (
!: した場合、Naキ2.5  になり、(3)式に
おいて、反射防出膜(7a)の屈折率Naを265程度
にした場合に、反射防止膜(7a)による反射防止効果
が最大になり、いわゆる反射損失が最小になる。
Na f-Jpx5 ・Equation (6) and Nx = 4・, 25 and Ny = 1.5 (
! : In the case where Na is 2.5, in equation (3), when the refractive index Na of the anti-reflection film (7a) is set to about 265, the anti-reflection effect of the anti-reflection film (7a) is maximized. Therefore, the so-called reflection loss is minimized.

しかし、二酸化ケイ素の熱酸化法により形成された反射
防止膜(7a)の屈折率Na=2.5にすることは困難
であり、たとえば雰囲気の屈折率Ny=1.5  など
の場合、反射防止膜(7a)による反射防止効果を高め
ることは困難である。
However, it is difficult to make the refractive index Na=2.5 of the antireflection film (7a) formed by the thermal oxidation method of silicon dioxide. For example, when the refractive index Ny of the atmosphere is 1.5, It is difficult to enhance the antireflection effect of the film (7a).

この発明は、前記の点に留意してなされたものであり、
つぎにこの発明を、その1実施例を示しだ第8図ととも
に詳細に説明する。
This invention was made with the above points in mind,
Next, the present invention will be explained in detail with reference to FIG. 8 showing one embodiment thereof.

第3図において、第1図および第2図と同一記号は同一
のものを示し、基板+11の受光面(3Yの上部に第1
図の反射防止膜(7a)と同様に、熱酸化法により二酸
化ケイ素の下部反射防出膜(7a)’を形成した後に、
下部反射防止膜(7a )’の上部に、二酸化ケイ素よ
り高い屈折率Nbを有する−に二部反射防止膜(7b)
ヲCADやスパッタリングがどの光学薄膜形成方法によ
り形成し、このとき、」二部反射防止膜(7a)’ の
厚みI)a/を、(4)式にもとづき、I)a/−λm
/2Naに形成し、」一部反対防止膜(’7 a )’
がないときと等価にするとともに、下部反射防止膜(7
b)を、(6)式にもとづき、N 11= VK杯G−
の屈折率Nhを有する物質、たとえばNb’=2.35
  の二酸化チタン(Ti02)の膜により、−L一部
反射防止膜(71,+ )の厚み川)が、(2)式にも
とづき、■)h=λ(2+11+1 )/4Nbになる
ヨウに形成する。
In FIG. 3, the same symbols as in FIGS. 1 and 2 indicate the same things, and
Similar to the anti-reflection film (7a) in the figure, after forming the lower anti-reflection film (7a)' of silicon dioxide by thermal oxidation method,
On top of the lower anti-reflective coating (7a)' is a two-part anti-reflective coating (7b) having a higher refractive index Nb than silicon dioxide.
Which optical thin film forming method is used, such as OCAD or sputtering, and at this time, the thickness I)a/ of the "two-part anti-reflection film (7a)' is determined by I)a/-λm based on equation (4).
/2Na, ``partial anti-opposition film ('7a)''
In addition to making it equivalent to when there is no lower anti-reflection film (7
b), based on formula (6), N 11 = VK Cup G-
A material having a refractive index Nh, for example Nb'=2.35
The thickness of the -L partial antireflection film (71,+) is formed by the titanium dioxide (Ti02) film so that, based on equation (2), h=λ(2+11+1)/4Nb. do.

すなわち、基板fllの2層部との接合部に、従采のフ
オ]−クイオードの製造方法と同様に、二酸化ケイ素の
熱酸化方法により屈折率Naの下部反射防止膜(71)
’を、当該反射防1ト膜(7a )’の厚み1)a′が
、光(8Yの波長λに対してλ72Na  の整数倍に
なるように形成した後に、下部反射防止膜(7a)’の
−L部に、二酸化ケイ素より高い屈折率Nbを有する」
一部反射防止膜(7b )を、当該反射防山膜(7h)
の厚みI)1〕が、光tsyの波長λに対してλ/4N
+)の奇数倍になるように形成し、基板(1)の屈折率
Nxや雰囲気の屈折率Nyに応じて最も反射防止効果が
高まるように製造する。
That is, a lower anti-reflection film (71) having a refractive index of Na is formed on the junction with the second layer of the substrate fl by the thermal oxidation method of silicon dioxide, similar to the method for manufacturing the secondary photodiode.
After forming the lower anti-reflection film (7a)' so that the thickness 1)a' of the anti-reflection film (7a)' is an integral multiple of λ72Na with respect to the wavelength λ of light (8Y), the lower anti-reflection film (7a)' has a higher refractive index Nb than silicon dioxide in the -L part of
Part of the anti-reflection film (7b) is replaced with the anti-reflection film (7h).
The thickness I)1] is λ/4N with respect to the wavelength λ of the light tsy.
+), and manufactured so that the antireflection effect is maximized depending on the refractive index Nx of the substrate (1) and the refractive index Ny of the atmosphere.

したがって、OA前記実施例によると、熱酸化法により
二酸化ケイ素の下部反射防止膜(7a)’を、光(8Y
に対して下部反射防止膜(7a)’のないときと等価に
なるように形成するとともに、基板t+lの屈折率Nx
および雰囲気の屈折率Nyに応じて、下部反射防止膜(
7a)’の上部に、二酸化ケイ素の屈折率Naより高い
屈折率Nbの上部反射防[に膜(7b)を、光F8rに
対して反射率几が最小になるように形成したことにより
、たとえば上部反射防止膜(7b )を前述の二酸化チ
タンで形成した場合、光[8rに対する全体の反射率が
0.5%に減少し、光(8Yに対して非常に大きな反射
防止効果を得ることができ、たとえば、ビームインデッ
クス型カラー受像管装置の蛍光集光板により波長変換さ
れたインデックス光信号の検出に使用した場合、非常に
効率良くインデックス光信号を検出して電気的なインテ
ックス信号に変換することができ、検出効率を大幅に向
上させることができる。
Therefore, according to the above embodiment of OA, the lower antireflection coating (7a)' of silicon dioxide is coated with light (8Y
The refractive index Nx of the substrate t+l is formed to be equivalent to that without the lower antireflection film (7a)'.
And depending on the refractive index Ny of the atmosphere, the lower antireflection film (
By forming an upper anti-reflection film (7b) on the top of 7a)' with a refractive index Nb higher than the refractive index Na of silicon dioxide so as to minimize the reflectance for light F8r, for example, When the upper antireflection film (7b) is formed of the above-mentioned titanium dioxide, the overall reflectance for light [8r] decreases to 0.5%, and it is difficult to obtain a very large antireflection effect for light (8Y). For example, when used to detect an index optical signal whose wavelength has been converted by a fluorescence condenser in a beam index type color picture tube device, it is possible to detect the index optical signal very efficiently and convert it into an electrical intex signal. can significantly improve detection efficiency.

なお、反射防止膜(71りの形成後に、エポキシ樹脂な
どによりモールドすると、−斜反射率を減少させること
ができる。
Note that after forming the antireflection film (71), if it is molded with epoxy resin or the like, the -oblique reflectance can be reduced.

寸だ、反射防止膜(7h)を両電極+41 、 (61
の形成前寸だは両電極I4I 、 t61の形成後に形
成しても同様の効果を得ることができる。
The anti-reflection film (7h) is attached to both electrodes +41, (61
The same effect can be obtained even if the electrodes I4I and t61 are formed before and after the electrodes I4I and t61 are formed.

以上のように、この発明のシリコンフォトダイオードの
製造方法によると、二酸化ケイ素からする屈折率Naの
下部反射防止膜を、熱酸化法により光の波長スに対して
λ/gNaの整数倍の厚みに形成し、かつ、下部反射防
止膜の」二部に二酸化ケイ素より高い屈折率Nbの上部
反射防止膜を、λ/4Nhの奇数倍の厚みに形成したこ
とにより、受光面に入射する光の反射防止効果を非常に
向上させ、入射する光の検出効率を大幅に同上させるこ
とができるものである。
As described above, according to the method of manufacturing a silicon photodiode of the present invention, a lower antireflection film made of silicon dioxide and having a refractive index of Na is formed by a thermal oxidation method to a thickness that is an integral multiple of λ/gNa with respect to the wavelength of light. By forming an upper anti-reflection film with a refractive index Nb higher than that of silicon dioxide on the second part of the lower anti-reflection film and having a thickness that is an odd multiple of λ/4Nh, the light incident on the light-receiving surface is reduced. The antireflection effect can be greatly improved, and the detection efficiency of incident light can be greatly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なフォトダイオードの断面図、第2図は
第1図の反射1万圧効果の説明用の断面図、第″3図は
この発明のフォトダイオードの製造方法の1実施例の説
明用の断面図である。 (1)・シリコン基板、(31、I)盾部、+3r・・
・受光面、(7f1)’  l一部反射1i7j +)
膜、(7h)  −下1文射M止111L−3: 手続補正書(自発) 昭和57年3 月29日 2発明の名称 シリコンフォトダイオードの製造方法 3補正をする者 事件との関係     特  許  出  願人圧 所
  大阪府守口市京阪本通2丁目18番地名 称 (1
88)  三洋電機株式会社代表者       井 
植    薫代理人 〒530 住 所 大阪市北区東天満2]薯」9番4号5補正の対
象  明細書の「発明の詳細な説明」の欄6補正の内容 (1)第6頁第18行(7)rcADJ を[CVDJ
 に補正。 356−
Fig. 1 is a cross-sectional view of a general photodiode, Fig. 2 is a cross-sectional view for explaining the reflected 10,000-pressure effect in Fig. 1, and Fig. 3 is an embodiment of the photodiode manufacturing method of the present invention. It is a sectional view for explaining. (1) Silicon substrate, (31, I) shield part, +3r...
・Light receiving surface, (7f1)'l partially reflected 1i7j +)
Membrane, (7h) - Bottom 1st sentence M stop 111L-3: Procedural amendment (voluntary) March 29, 1981 2 Title of invention 3 Process for manufacturing silicon photodiode 3 Relationship to the person making the amendment Patent Number of applicants Address: 2-18 Keihan Hondori, Moriguchi City, Osaka Prefecture Name (1)
88) Sanyo Electric Co., Ltd. Representative Ii
Kaoru Ue Agent Address: 530 Address: 2 Higashitenma, Kita-ku, Osaka City] No. 9, No. 4, No. 5 Subject of amendment Contents of amendment in column 6 of “Detailed Description of the Invention” of the specification (1) Page 6, No. 18 Line (7) rcADJ [CVDJ
Corrected to. 356-

Claims (1)

【特許請求の範囲】[Claims] ■ シリコン基板のr1層の上部に受光面を有する1層
を形成するとさもに、前記2層の上部に二酸化ケイ素か
らなる屈折率Naの下部反射防止膜を、熱酸化法により
光の波長大に対してス/ gNaの整数倍の厚みに形成
し、かつ、前記下部反射防止膜の−に部に前記二酸化ケ
イ素より高い屈折率Nhの上部反射防止膜をλ/4N1
1の奇数倍の厚みに形成しんこトラ特徴とするフォトダ
イオードの製造方法。
■ One layer having a light-receiving surface is formed on top of the r1 layer of the silicon substrate, and at the same time, a lower antireflection film made of silicon dioxide and having a refractive index of Na is formed on the top of the two layers, and the wavelength of light is increased by a thermal oxidation method. On the other hand, an upper antireflection film is formed to have a thickness that is an integral multiple of S/gNa, and has a refractive index Nh higher than that of the silicon dioxide on the negative side of the lower antireflection film.
A method for manufacturing a photodiode characterized by forming a thin layer with a thickness of an odd number multiple of 1.
JP57026440A 1982-02-19 1982-02-19 Manufacture of photodiode Pending JPS5941876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57026440A JPS5941876A (en) 1982-02-19 1982-02-19 Manufacture of photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57026440A JPS5941876A (en) 1982-02-19 1982-02-19 Manufacture of photodiode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10316482A Division JPS58142739A (en) 1982-06-15 1982-06-15 Beam-index type color tv receiving set

Publications (1)

Publication Number Publication Date
JPS5941876A true JPS5941876A (en) 1984-03-08

Family

ID=12193562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57026440A Pending JPS5941876A (en) 1982-02-19 1982-02-19 Manufacture of photodiode

Country Status (1)

Country Link
JP (1) JPS5941876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222126B1 (en) 1997-09-08 2001-04-24 Thomas & Betts International, Inc. Woven mesh interconnect

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261983A (en) * 1975-11-18 1977-05-21 Seiko Epson Corp Solar cell
JPS5465491A (en) * 1977-11-04 1979-05-26 Nippon Toki Kk Method of forming reflection preventive membrane of solar battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261983A (en) * 1975-11-18 1977-05-21 Seiko Epson Corp Solar cell
JPS5465491A (en) * 1977-11-04 1979-05-26 Nippon Toki Kk Method of forming reflection preventive membrane of solar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222126B1 (en) 1997-09-08 2001-04-24 Thomas & Betts International, Inc. Woven mesh interconnect

Similar Documents

Publication Publication Date Title
US7723763B2 (en) Color photodetector apparatus with multi-primary pixels
JP2013243364A (en) Semiconductor device and method of manufacturing the same
US20170236857A1 (en) Photoelectric conversion array substrate, its manufacturing method, and photoelectric conversion device
JPS5983327A (en) Photo-electric transducer
JP2000156486A (en) Manufacture of slid state image sensor
JPS5941876A (en) Manufacture of photodiode
JP3620925B2 (en) Photomultiplier tube
US4490605A (en) Photoelectric detection structure
JPS59123259A (en) Solid-state image pickup device
JPH01290384A (en) Image pickup device
JPH07192663A (en) Image pickup device
WO2021246146A1 (en) Semiconductor light detection element
JP3384840B2 (en) Image pickup tube and operation method thereof
GB2279497A (en) Photocathodes
JPS5778185A (en) Semiconductor photoelectric converter
JPS58142739A (en) Beam-index type color tv receiving set
US4698496A (en) Image dissector tube with light filter
JPS63174480A (en) Photoelectric converting device
US4348610A (en) Camera tube with graded tellurium or arsenic target
JPS58194231A (en) Image pickup tube
JPS6177375A (en) Color sensor
JP3017333B2 (en) High sensitivity imaging device
JPS63161680A (en) Semiconductor photodetector
KR910003497B1 (en) Smear noise limiter for image senser
JPS61292973A (en) Semiconductor light-receiving element