JPS6177375A - Color sensor - Google Patents

Color sensor

Info

Publication number
JPS6177375A
JPS6177375A JP59199006A JP19900684A JPS6177375A JP S6177375 A JPS6177375 A JP S6177375A JP 59199006 A JP59199006 A JP 59199006A JP 19900684 A JP19900684 A JP 19900684A JP S6177375 A JPS6177375 A JP S6177375A
Authority
JP
Japan
Prior art keywords
photo
isc2
isc1
wavelength
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59199006A
Other languages
Japanese (ja)
Inventor
Akitoshi Yokota
横田 晃敏
Masaya Hijikigawa
正也 枅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59199006A priority Critical patent/JPS6177375A/en
Priority to DE19853533298 priority patent/DE3533298A1/en
Priority to GB8523284A priority patent/GB2166289A/en
Publication of JPS6177375A publication Critical patent/JPS6177375A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To thin Si layers and unnecessitate the special use of color filters by having the first amorphous photovoltaic element formed on a substrate, a clear insulation layer formed on this element, and the second amorphous photovoltaic element formed on this insulation layer. CONSTITUTION:When a light L comes incident from the side of a clear conductive film 31, a photo diode PD1 closer to the photo receiving plane increases the short wave sensitivity, and a deeper photo diode PD2 increases the long wavelength sensitivity. If the short circuit currents produced by the photo reception of these photo diodes PD1 and PD2 are Isc1 and Isc2, respectively, the wavelength dependence of the current ratio Isc2/Isc1 is as shown in the diagram: the ratio Isc2/Isc1 of short circuit current has the relation of 1 to 1 with respect to wavelength. Then, the current ratio Isc2/Isc1 is obtained by measuring the short circuit currents of the photo diodes PD1 and PD2 when receiving a color light; thereby, the wavelength of received light can be determined on the basis of the characteristic shown in the diagram.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は光起電力素子である非晶質太陽電池の光電効果
を利用して構成されたカラーセンサに関するものである
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a color sensor configured using the photoelectric effect of an amorphous solar cell, which is a photovoltaic element.

〈発明の技術的背景とその問題点〉 従来より、単結晶Siチップの中に受光素子を二重に作
り込んで、Siの厚さをフィルタとじて用いるようにし
た半導体カラーセンサやフィルタを用いたカラーセンサ
が提案され、実用化されている。
<Technical background of the invention and its problems> Conventionally, semiconductor color sensors and filters have been used in which light-receiving elements are built double in a single-crystal Si chip and the thickness of the Si is used as a filter. A color sensor has been proposed and put into practical use.

第5図は従来の単結晶ミリコンを用いたカラーセンサの
構造を示す概略図、第6図はその等価回路図であり、図
中lはP層、2はN層、3はP層を示し、また4、5.
6はそれぞれ電極を示している。
Fig. 5 is a schematic diagram showing the structure of a conventional color sensor using single-crystal microconductors, and Fig. 6 is its equivalent circuit diagram. In the figure, l indicates the P layer, 2 indicates the N layer, and 3 indicates the P layer. , also 4, 5.
6 each indicates an electrode.

この第5図に示すカラーセンサは単結晶シリコンチップ
中に受光素子を二重に作り込むことによりSiの厚さを
フィルター吉して用いるタイプの半導体カラーセンサで
あり、このカラーセンサでは浅い方のPN接合によるフ
ォトダイオードDIと深い方のPN接合によるフォトダ
イオードD2の分光感度特性の違いを利用するものであ
り、浅い方のPN接合によるフォトダイオードDIは短
波長感度が大であり、深い方のPN接合によるフォトダ
イオードD2は長波長感度が大である。この2つのフォ
トダイオードI)1 、D2の短絡電流比が波長に対し
てl対lに対応することを利用して第5図に示すカラー
センサは色の判別を行なうことができる。
The color sensor shown in Fig. 5 is a semiconductor color sensor of the type in which the light-receiving elements are built double in a single-crystal silicon chip, and the thickness of the Si is filtered. This utilizes the difference in spectral sensitivity characteristics between the photodiode DI with a PN junction and the photodiode D2 with a deeper PN junction.The photodiode DI with a shallower PN junction has greater short wavelength sensitivity; The photodiode D2 made of a PN junction has high long wavelength sensitivity. The color sensor shown in FIG. 5 can discriminate colors by utilizing the fact that the short-circuit current ratio of these two photodiodes I)1 and D2 corresponds to 1 to 1 with respect to wavelength.

しかし、上記第5図に示した単結晶カラーセンサは製造
工程が複雑であシ、シリコンの厚さも10μm以上にす
る必要がある等の問題点を有していた。
However, the single-crystal color sensor shown in FIG. 5 has problems such as a complicated manufacturing process and the need for a silicon thickness of 10 μm or more.

第7図は従来の非晶質シリコンを用いたカラーセンサの
構造を示す概略図、第8図はその等価回路図であり、図
中11は非晶質シリコン、12は透明導電膜、I3はガ
ラス基板、14〜16はそれぞれR,G、Hに対応した
色フィルタ、17〜20はそれぞれ電極である。
FIG. 7 is a schematic diagram showing the structure of a conventional color sensor using amorphous silicon, and FIG. 8 is its equivalent circuit diagram. In the figure, 11 is amorphous silicon, 12 is a transparent conductive film, and I3 is a transparent conductive film. A glass substrate, 14 to 16 are color filters corresponding to R, G, and H, respectively, and 17 to 20 are electrodes, respectively.

このような第7図に示した非晶質シリコンを用いたカラ
ーセンサはシリコンの厚さを薄くすることが出来るが、
三種類の色フィルタを用いる必要がある等の問題点を有
している。
Although the color sensor using amorphous silicon shown in FIG. 7 can be made thinner,
This method has problems such as the need to use three types of color filters.

〈発明の目的〉 本発明は上記諸点に鑑みてなされたものであり、シリコ
ン層の厚さを薄くする事が出来ると共に特別に色フィル
タを用いる必要がなく、製造工程の簡単な構造のカラー
センサを提供することを目的とし、この目的を達成する
ため、本発明のカラーセンサは基板と、この基板上に形
成された第1の非晶質光起電力素子と、この第1の非晶
質光起電力素子上に形成された透明絶縁層と、この透明
絶縁層上に形成された第2の非晶質光起電力素子とを備
えるように構成されている。
<Object of the Invention> The present invention has been made in view of the above points, and provides a color sensor that can reduce the thickness of the silicon layer, does not require the use of a special color filter, and has a simple manufacturing process. To achieve this objective, the color sensor of the present invention includes a substrate, a first amorphous photovoltaic element formed on the substrate, and a first amorphous photovoltaic element formed on the substrate. It is configured to include a transparent insulating layer formed on a photovoltaic element and a second amorphous photovoltaic element formed on this transparent insulating layer.

〈発明の実施例〉 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
<Embodiment of the Invention> Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の構造を示す図である0 第1図において、21は導電性基板あるいは導電性薄膜
を形成した絶縁性基板、22は非晶質シリコンP(ある
いはN)層、23は非晶質79371層、24は非晶質
シリコンN(あるいはP)層、25は透明導電膜、26
fd透明絶縁膜、27は透明導電膜、28は非晶質シリ
コンP(あるいはN)層、29は非晶質79371層、
30は非晶質シリコンN(あるいはP)層、31は透明
導電膜、82.8B、84.85はそれぞれ電極であり
、基板21上にボロン(あるいはリン)をドープした厚
さao、05μm以下の非晶質シリコンP(あるいはN
)層22、ノンドープ乃至ボロンを微量ドープした厚さ
劾0.5μm前後の非晶質シリコ71層23、リン(あ
るいはボロン)をドープした厚さ10.05μm以下の
非晶質シリコンN(あるいはP)層24、透明導電膜2
5、透明絶縁膜26、透明はN)層28、ノンドープ乃
至ボロンを微量ドープした厚さ約0.5μm前後の非晶
質79371層29、リン(あるいはボロン)をドープ
した厚さ句o、o5μm以下の非晶質シリコンN(ある
いはP)層30及び透明導電膜31がこの順に積層形成
きれており、上記基板(導電性)21に電極32が形成
され、透明導電膜25に電極33が形成され、透明導電
膜27に電極34が形成され、透明導電膜31に電極3
5が形成されている。
FIG. 1 is a diagram showing the structure of an embodiment of the present invention. In FIG. 1, 21 is a conductive substrate or an insulating substrate on which a conductive thin film is formed, and 22 is amorphous silicon P (or N). 23 is an amorphous 79371 layer, 24 is an amorphous silicon N (or P) layer, 25 is a transparent conductive film, 26
fd transparent insulating film, 27 a transparent conductive film, 28 an amorphous silicon P (or N) layer, 29 an amorphous 79371 layer,
30 is an amorphous silicon N (or P) layer, 31 is a transparent conductive film, 82.8B and 84.85 are electrodes, and the substrate 21 is doped with boron (or phosphorus) and has a thickness ao of 05 μm or less. of amorphous silicon P (or N
) layer 22, undoped or slightly boron-doped amorphous silicon 71 layer 23, amorphous silicon N (or P) doped with phosphorus (or boron) and a thickness of 10.05 μm or less ) layer 24, transparent conductive film 2
5. Transparent insulating film 26, transparent (N) layer 28, non-doped or amorphous 79371 layer 29 doped with a small amount of boron and approximately 0.5 μm in thickness, doped with phosphorus (or boron) and having a thickness of o, o5 μm The following amorphous silicon N (or P) layer 30 and transparent conductive film 31 are laminated in this order, an electrode 32 is formed on the substrate (conductive) 21, and an electrode 33 is formed on the transparent conductive film 25. An electrode 34 is formed on the transparent conductive film 27, and an electrode 3 is formed on the transparent conductive film 31.
5 is formed.

上記構成において、P(あるいはN)層22゜1層23
及びN(あるいはP)層24によってPIN構造の非晶
質太陽電池からなる第1の非晶質光起電力素子(ホトダ
イオード)PD2が構成され、P(あるいはN)層28
.■層29及びN(あるいはP)層30によってPIN
構造の非晶質太陽電池からなる第2の非晶質光起電力素
子(ホトダイオード)PDIが構成されておシ、上記第
1図に示した非晶質カラーセンサは独立した二個の非晶
質光起電力素子PDI及びPD2とが1チツプとなって
おり、その等価回路を第2図に示す。
In the above structure, the P (or N) layer 22゜1 layer 23
A first amorphous photovoltaic element (photodiode) PD2 consisting of an amorphous solar cell with a PIN structure is constituted by the N (or P) layer 24, and the P (or N) layer 28
.. ■ PIN by layer 29 and N (or P) layer 30
The second amorphous photovoltaic element (photodiode) PDI is composed of an amorphous solar cell with a structure, and the amorphous color sensor shown in FIG. The photovoltaic elements PDI and PD2 are integrated into one chip, and the equivalent circuit thereof is shown in FIG.

次に上記第1図に示した本発明の一実施例のカラーセン
サの動作を説明する0 第1図忙おいて透明導電膜3I側から光(L)が入射す
ると、受光面に近いホトダイオードPDIは短波感度が
大となり、深い方のホトダイオードPD2は長波長感度
が大となり、これらの分光感度特性を第3図に示してい
る0 とのホトダイオードPDI、PD2の受光による短絡電
流をそれぞれI SCI 、 I SC2とすると、電
流比lSC2/■sclの波長依存性は第4図に示すよ
うになリ、短絡電流の比lSC2/l5CIは波長に対
して1対1の関係があり、ある色の光を受光したときの
ホトダイオードPDI及びPD2の短絡電流を測定して
電流比I SC2/ I SCIを求めることにより、
第4図に示す特性にもとづいて受光した光の波長を決定
することが出来る。
Next, we will explain the operation of the color sensor according to the embodiment of the present invention shown in FIG. 1. In FIG. has a high short-wave sensitivity, and the deeper photodiode PD2 has a high long-wavelength sensitivity.The spectral sensitivity characteristics of these are shown in Figure 3.The short-circuit current due to light reception by the photodiodes PDI and PD2 with 0 is I SCI, respectively. Assuming ISC2, the wavelength dependence of the current ratio lSC2/■scl is as shown in Figure 4, and the short-circuit current ratio lSC2/l5CI has a one-to-one relationship with the wavelength. By measuring the short circuit current of photodiodes PDI and PD2 when receiving light and finding the current ratio I SC2 / I SCI,
The wavelength of the received light can be determined based on the characteristics shown in FIG.

〈発明の効果〉 以上の説明から明らかなように、本発明によれば非晶質
光起電力素子を用いてカラーセンサを構成することが出
来、半導体素子層の厚さを従来の半導体カラーセンサに
比して薄くすることが出来ると共に、特別に色フィルタ
を用いることなくカラーセンサを構成することが出来、
従来に比して製造工程を簡略化することが出来、容易に
そして安価に作製することが可能となる。
<Effects of the Invention> As is clear from the above description, according to the present invention, a color sensor can be constructed using an amorphous photovoltaic element, and the thickness of the semiconductor element layer can be made smaller than that of a conventional semiconductor color sensor. It is possible to make the color sensor thinner than the conventional color filter, and it is also possible to configure a color sensor without using a special color filter.
The manufacturing process can be simplified compared to the conventional method, and it can be manufactured easily and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のカラーセンサの一実施例の構成を示す
概略図、第2図はその等価回路を示す図、第3図は本発
明のカラーセンサの分光感度特性を示す図、第4図は短
絡電流比の波長依存性を示す図、第5図は従来のカラー
センサの構造を示す概略図、第6図はその等価回路を示
す図、第7図は従来のカラーセンサの他の例を示す概略
図、第8図はその等価回路を示す図である。 21・・・基板、22.28・・・非晶質79372層
、23.29・・・非晶質79371層、24.80・
・・非晶質シリコンN層、25,27.81・・・透明
導電膜、26・・・透明絶縁膜、32〜35・・・電極
、L・・・光、PDI・・・第2の非晶質光起電力素子
、PD2・・・第1の非晶質光起電力素子。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the color sensor of the present invention, FIG. 2 is a diagram showing its equivalent circuit, FIG. 3 is a diagram showing the spectral sensitivity characteristics of the color sensor of the present invention, and FIG. The figure shows the wavelength dependence of the short-circuit current ratio, Figure 5 is a schematic diagram showing the structure of a conventional color sensor, Figure 6 is a diagram showing its equivalent circuit, and Figure 7 is a diagram of other conventional color sensors. A schematic diagram showing an example, and FIG. 8 is a diagram showing its equivalent circuit. 21... Substrate, 22.28... 79372 amorphous layers, 23.29... 79371 amorphous layers, 24.80.
...Amorphous silicon N layer, 25,27.81...Transparent conductive film, 26...Transparent insulating film, 32-35...Electrode, L...Light, PDI...Second Amorphous photovoltaic element, PD2...first amorphous photovoltaic element.

Claims (1)

【特許請求の範囲】[Claims] 1、基板と、該基板上に形成された第1の非晶質光起電
力素子と、該第1の非晶質光起電力素子上に形成された
透明絶縁層と、該透明絶縁層上に形成された第2の非晶
質光起電力素子とを備えて成ることを特徴とするカラー
センサ。
1. A substrate, a first amorphous photovoltaic element formed on the substrate, a transparent insulating layer formed on the first amorphous photovoltaic element, and on the transparent insulating layer and a second amorphous photovoltaic element formed in the color sensor.
JP59199006A 1984-09-21 1984-09-21 Color sensor Pending JPS6177375A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59199006A JPS6177375A (en) 1984-09-21 1984-09-21 Color sensor
DE19853533298 DE3533298A1 (en) 1984-09-21 1985-09-18 COLOR SENSOR
GB8523284A GB2166289A (en) 1984-09-21 1985-09-20 Colour sensitive photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59199006A JPS6177375A (en) 1984-09-21 1984-09-21 Color sensor

Publications (1)

Publication Number Publication Date
JPS6177375A true JPS6177375A (en) 1986-04-19

Family

ID=16400535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59199006A Pending JPS6177375A (en) 1984-09-21 1984-09-21 Color sensor

Country Status (3)

Country Link
JP (1) JPS6177375A (en)
DE (1) DE3533298A1 (en)
GB (1) GB2166289A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934246A1 (en) * 1989-10-13 1991-04-25 Messerschmitt Boelkow Blohm Photosensitive PIN diode stack - has sensor formed with extra auxiliary diodes in individual main diode layers
US6300612B1 (en) 1998-02-02 2001-10-09 Uniax Corporation Image sensors made from organic semiconductors
US6940061B2 (en) * 2002-02-27 2005-09-06 Agilent Technologies, Inc. Two-color photo-detector and methods for demosaicing a two-color photo-detector array
DE102008016100A1 (en) * 2008-03-28 2009-10-01 Osram Opto Semiconductors Gmbh Optoelectronic radiation detector and method for producing a plurality of detector elements

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516479A (en) * 1978-07-21 1980-02-05 Sumitomo Electric Ind Ltd Heterojunction light receiving diode
IT1194594B (en) * 1979-04-19 1988-09-22 Rca Corp SOLAR CELLS OF AMORPHOUS SILICON WITH TANDEM JUNCTIONS
IE52209B1 (en) * 1980-09-09 1987-08-05 Energy Conversion Devices Inc Multiple cell photoresponsive amorphous alloys and devices

Also Published As

Publication number Publication date
DE3533298A1 (en) 1986-03-27
GB2166289A (en) 1986-04-30
GB8523284D0 (en) 1985-10-23

Similar Documents

Publication Publication Date Title
US4318115A (en) Dual junction photoelectric semiconductor device
US6281561B1 (en) Multicolor-color sensor
CA1269164A (en) Photosensitive diode with hydrogenated amorphous silicon layer
US5130775A (en) Amorphous photo-detecting element with spatial filter
CN111129053B (en) Pixel unit structure of CMOS image sensor and forming method
US5015838A (en) Color sensor having laminated semiconductor layers
JPS6132481A (en) Amorphous semiconductor element
US20130264949A1 (en) Sensor comprising at least a vertical double junction photodiode, being integrated on a semiconductor substrate and corresponding integration process
JPS6177375A (en) Color sensor
JPS6116580A (en) Optical detection semiconductor device
WO1989003593A1 (en) Low noise photodetection and photodetector therefor
JPH0818091A (en) Semiconductor photoelectric transducer with plurality of photodiodes
JPH03202732A (en) Color sensor
CN104457993A (en) Spectrum sensor and integrated manufacturing method thereof
JPS59178769A (en) Solid-state image pickup device
JPS63161680A (en) Semiconductor photodetector
JPS6314482A (en) Thin-film semiconductor device
JPH01216581A (en) Semiconductor device
JP2017228750A (en) Photodiode and method of manufacturing the same
JPH0394478A (en) Semiconductor device
JPS63102380A (en) Photosensor
JPH02241066A (en) Semiconductor photodetector
Kato et al. Integrated transducer for color distinction
JPH01205462A (en) Semiconductor element
JPH02177379A (en) Infrared photodetector