JPS5941810A - Magnetic thin-film and manufacture thereof - Google Patents

Magnetic thin-film and manufacture thereof

Info

Publication number
JPS5941810A
JPS5941810A JP15218282A JP15218282A JPS5941810A JP S5941810 A JPS5941810 A JP S5941810A JP 15218282 A JP15218282 A JP 15218282A JP 15218282 A JP15218282 A JP 15218282A JP S5941810 A JPS5941810 A JP S5941810A
Authority
JP
Japan
Prior art keywords
film
magnetic
thin film
metal
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15218282A
Other languages
Japanese (ja)
Other versions
JPH0228883B2 (en
Inventor
Masatoshi Takao
高尾 正敏
Kiyokazu Touma
清和 東間
Harufumi Sakino
先納 治文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15218282A priority Critical patent/JPH0228883B2/en
Publication of JPS5941810A publication Critical patent/JPS5941810A/en
Publication of JPH0228883B2 publication Critical patent/JPH0228883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation

Abstract

PURPOSE:To prevent a separation and a precipitation to each constituent of a thin-film of a system in which the constituents are not brought to a solid solution mutually and completely, and to obtain a soft magnetic material, coercive force thereof is low and which has high residual magnetic flux density, efficiently by keeping the temperature of a base body forming the thin-film in a decompression atmosphere to a specific value or less. CONSTITUTION:When forming the thin-film of the system, in which elements are not brought to the solid solution mutually and completely, such as Fe and Ag, Fe and Pb, Co-Ag, etc. or a system, in which elements are brought slightly to the solid solution and are not brought to the solid solution substantially, such as Fe and Cu, Co and Au, etc., the temperature of the base body is kept at 100 deg.C or less. An evaporating source 2 for evaporating a nonmagnetic metal such as Ag and an evaporating source 1 for Fe are heated through the same method, and a substrate 3 is heated at 100 deg.C or less by a heater 4. Two film-thickness monitors 5 by quartz vibrators are installed in the device, and a magnetic metal and the nonmagnetic metal can be monitored separately. Two- source evaporation is needed from a viewpoint of a problem on a control because vapor pressure each differs largely and no melted liquid also mixes in elements constituting the thin-film.

Description

【発明の詳細な説明】 産業上の利用分野 イ(( 本発明は、磁性薄膜主に升抗磁力を有する軟質砥 従来よ#)括抗磁力の軟磁性金属材料としては、Ni 
−Fe  系合金、Ni−Fe−Mo系合金のような結
晶質材料と、Co−Fe−8i−B系のような金属−メ
タロイド系非晶質材料、Co−Zr系のような金属−金
属系非晶質材料が知られている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application (The present invention is directed to a magnetic thin film, mainly a soft abrasive material having a square coercive force.) As a soft magnetic metal material with a square coercive force, Ni
-Crystalline materials such as Fe-based alloys and Ni-Fe-Mo-based alloys, metal-metalloid amorphous materials such as Co-Fe-8i-B, and metal-metal such as Co-Zr-based alloys. Amorphous materials are known.

軟質磁性材料は変圧器のコア材や磁気ヘッドのコア材、
磁気シールド材などに使用されている。
Soft magnetic materials are used as transformer core materials, magnetic head core materials,
Used in magnetic shielding materials, etc.

一方、軟磁性材料の薄膜も、薄膜メモリー、薄膜磁気ヘ
ッド、磁気パルプ素子の転送パターン構成要素などに用
いられて来ている。
On the other hand, thin films of soft magnetic materials have also been used for thin film memories, thin film magnetic heads, transfer pattern components of magnetic pulp devices, and the like.

軟質磁性材料に対して要求される特性は用途によって多
少の違いがあるものの、基本的には抵抗磁力、高残留磁
束密度、高透磁率といった特性が必要とされる。
Although the properties required for soft magnetic materials vary somewhat depending on the application, they basically require properties such as resistive magnetic force, high residual magnetic flux density, and high magnetic permeability.

現在のところ、薄膜軟質磁性拐料としては、Fe−Ni
合金(パーマロイ材料)と金属−金属系のアモルファス
材料が主として用いられている。
At present, Fe-Ni is the thin film soft magnetic material.
Alloys (permalloy materials) and metal-metal amorphous materials are mainly used.

Fe−Ni  合金についてはNiの濃度が高く、その
だめ飽和磁束密(9)が約800Qガウス程度であり鉄
単体の飽和磁束密度約22000ガウスに比べて約3分
の1稈度となり、多少の不満が残こる。
Fe-Ni alloy has a high concentration of Ni, so the saturation magnetic flux density (9) is about 800Q Gauss, which is about one-third of the saturation magnetic flux density of iron alone, which is about 22,000 Gauss, and has some I remain dissatisfied.

寸だ、透磁率を増加させるためにはMOなどの添加元素
の働きが必要である。一方、金属−金属系のアモルファ
ス薄膜の場合、主にスパッタリング法で作製されるので
、膜中にアルゴンガスが残存して特性に時効がある。
Indeed, in order to increase magnetic permeability, the action of additive elements such as MO is necessary. On the other hand, in the case of a metal-metal type amorphous thin film, since it is mainly produced by a sputtering method, argon gas remains in the film and its characteristics deteriorate over time.

そこで発明者らは、これまでの金属−金属系アモルファ
ス薄膜よりも単純な組成を有して真空中または減圧雰囲
気中で作製することによりガスを不純物として含まない
薄膜の可能性を検「:1した。
Therefore, the inventors investigated the possibility of creating a thin film that has a simpler composition than conventional metal-metal amorphous thin films and does not contain gas as an impurity by producing it in a vacuum or a reduced pressure atmosphere. did.

る軟磁性月利を得ることを目的とし、かつ前記材料を効
率よくイ1)ようとするだめの方法に関するものである
The present invention relates to a method for efficiently processing the above-mentioned materials (1) with the aim of obtaining a soft magnetic material.

発明の((1♂f成 本発明は、たとえばFeとAg、 Feとpb 、 c
The invention ((1♂f composition) The present invention includes, for example, Fe and Ag, Fe and pb, c
.

−Ag  なとのように相互が完全に固溶しないような
系、またはFeとCu 、 GoとAuのように固溶し
てもごくわずかで本質的に固溶しないと考えられる系よ
りなる薄膜に関するものである。
- Thin films made of systems in which they do not dissolve completely in solid form, such as Ag, or systems in which even if they do dissolve in solid form, it is only a small amount and is essentially not dissolved in solid form, such as Fe and Cu or Go and Au. It is related to.

こういう構成を有する薄膜のうちで各構成元素が薄膜内
で一様かつ無秩序に分布しているものでは結晶に供存す
る異方性が小さくなり、たとえば、磁気特性も面内では
異方性がなくなるので、抵抗磁力のものが得られる。残
留磁束密度は磁性体が本質的に金属であるので、酸化物
磁性体より大きくなるのは自[男のことである。
Among thin films with such a structure, in which each constituent element is uniformly and disorderly distributed within the thin film, the anisotropy existing in the crystal is small, and for example, the magnetic properties have no in-plane anisotropy. Therefore, a resistive magnetic force can be obtained. Since the magnetic material is essentially a metal, the residual magnetic flux density is higher than that of the oxide magnetic material.

またその製法については、基本的には真空中もしくは減
圧雰囲気中で薄膜を形成する方法において基体の湿度を
高くとも100℃以下に保持することである。この湿度
制御により薄膜作製中に」二部のように相互が完全に固
溶しないような系、あるいは固溶してもごくわずかで本
質的に固溶しないと考えられる系が、湿度が上列して薄
膜が各構成要素に分離析出してしまうのを防ぐ。もし温
度が100℃を超えると、分離析出が起こり、目的とす
る特性を有する薄膜が得られない。
Regarding the manufacturing method, the basic method is to form a thin film in a vacuum or a reduced pressure atmosphere, and maintain the humidity of the substrate at 100° C. or less at the most. Through this humidity control, during thin film production, systems such as those in which two parts do not completely dissolve in solid solution, or systems in which there is only a small amount of solid solution and are considered to be essentially non-dissolved, can be produced at higher humidity levels. This prevents the thin film from separating and depositing on each component. If the temperature exceeds 100° C., separation and precipitation will occur, making it impossible to obtain a thin film with desired properties.

枯板錨1度を十分に管理することが本発明の目的とイぐ
ξ する耐抗磁力でかつ高残留磁束密度を有する軟磁性の薄
膜を得る上で重要である。
It is important to sufficiently control the dry plate anchor degree in order to obtain a soft magnetic thin film having coercive force resistance and high residual magnetic flux density, which meets the purpose of the present invention.

製造装置としては、たとえば、第17図に示すよつな2
椋蒸着装置を用いる。図において、1はFeなどの磁性
金属の蒸発源である。ここでは電子ビーム加熱法を示し
ているが、これに限る必要はなく、ifi常の加熱法を
用いてもよい。2はAgなとの非磁性金属を蒸発させる
ための蒸発源である。
As a manufacturing device, for example, the type 2 shown in Fig. 17 is used.
A Muku vapor deposition device is used. In the figure, 1 is an evaporation source of magnetic metal such as Fe. Although an electron beam heating method is shown here, it is not necessary to be limited to this, and any heating method commonly used in IFI may be used. 2 is an evaporation source for evaporating non-magnetic metal such as Ag.

これについても蒸発源1と同様の加熱方法を用いる。3
′は基板であり、ヒータ4により加熱される。
The same heating method as in the evaporation source 1 is used for this as well. 3
' is a substrate, which is heated by a heater 4.

5は水晶振動子による膜厚モニターで、装置内に2つ設
置されており、磁性金属と非磁性金属を別々にモニター
できるようになっている。6はIJ−! クハルゾ、Tは基板湿度寺監視する湿度計である。
5 is a film thickness monitor using a crystal oscillator, two of which are installed in the device so that magnetic metal and non-magnetic metal can be monitored separately. 6 is IJ-! Kuharzo, T is a hygrometer that monitors the substrate humidity.

8は排気系である。8 is an exhaust system.

第り′候には室温以下の濡変で薄11%を形成する装置
の概略図を示す。図において、第1図に示しだ装置と対
応する部分には同じ符号をイー1している。
In the second example, a schematic diagram of an apparatus for forming a thin film of 11% by wetting at or below room temperature is shown. In the figure, parts corresponding to those of the apparatus shown in FIG. 1 are designated by the same reference numerals.

9fd基扱冷却用の液体窒素やトライアイスとアルコー
ルのような寒剤を入れるクライオスタツト、1Qは寒剤
を蒸発させるだめのヒータである。
The cryostat that handles the 9fd type is a cryostat that contains cryogens such as liquid nitrogen, tri-ice, and alcohol, and the 1Q is a heater that evaporates the cryogen.

本発明による磁性薄膜は第1図および第2図にそれぞれ
示すような蒸着装置で作製する。
The magnetic thin film according to the present invention is produced using a vapor deposition apparatus as shown in FIGS. 1 and 2, respectively.

前述した組成の薄膜を構成する元素はそれぞれ蒸気圧が
大幅に違い、まだ、融液も一切混合しないので、同一の
蒸発源から蒸発させるのは制御上問題があり、そのため
二源蒸発が必要である。
The elements that make up the thin film with the composition described above have significantly different vapor pressures, and the melts are not mixed at all yet, so evaporating them from the same evaporation source is problematic in terms of control, so dual-source evaporation is necessary. be.

スパッタリンクでも薄膜を作製することがpJ能である
。スパッタリンクでは、たとえば第3図(a)に示すよ
うな構成の装置を使用する。図において11は母相のタ
ーゲット、12.13はそれぞれ冷却水の導入[−1と
排水1」、14は基板、15は基板加熱用のヒータ、1
6は寒剤、17は寒剤加熱用のヒータである。第3図(
b)はターゲットの構成を示す図であって、母金属の一
方の累月の円板21上にもう一方の素材20を分割して
配置したものである。組成は累月20.21の開口面債
比によって定められるが、それぞれのスパッター効率を
考慮して最終の面積を決定する。
It is also possible to produce thin films using sputter linking. In the sputter link, for example, an apparatus having a configuration as shown in FIG. 3(a) is used. In the figure, 11 is the parent phase target, 12 and 13 are the introduction of cooling water [-1 and drainage 1'', respectively, 14 is the substrate, 15 is the heater for heating the substrate, 1
6 is a cryogen, and 17 is a heater for heating the cryogen. Figure 3 (
b) is a diagram showing the structure of the target, in which the other material 20 is divided and arranged on one of the base metal disks 21. The composition is determined by the opening surface ratio of 20.21, and the final area is determined by taking into account the sputtering efficiency of each.

第3図では、ターゲットの形状によって組成を決定して
いるが、第4図のような装置でもスパンターが可能であ
る。第4図中において、14は基板、16は基板支持台
であって、内部の空洞に液体窒素などの寒剤を入れるか
、冷却されて十分に/l′1l11度制徊1された乾燥
気体を導入することによって基板の冷却をイイう。この
支持台16は基板14を取りつけたまま高速で回転でき
るようになっている。18はその回転用のモータである
。ターゲノ1−11は、この図では2個示されており、
高周波?E源19も2個独立に設置する。磁性金属と非
磁性金属はおのおのの別々のターゲットとじて独立にコ
ン]−ロールされてスパッタされ、回転する基板−」−
に堆(責する。
In FIG. 3, the composition is determined by the shape of the target, but spuntering is also possible with the apparatus shown in FIG. 4. In Fig. 4, reference numeral 14 denotes a substrate, and 16 denotes a substrate support stand, in which a cryogen such as liquid nitrogen is filled into the internal cavity, or dry gas which has been cooled and sufficiently permeated at /l'1l11 degrees is injected into the internal cavity. By introducing this, cooling of the board is improved. This support stand 16 can be rotated at high speed with the substrate 14 attached thereto. 18 is a motor for its rotation. Two Target Nos. 1-11 are shown in this figure,
high frequency? Two E sources 19 are also installed independently. Magnetic metals and non-magnetic metals are each controlled independently as separate targets] - A rotating substrate that is sputtered by rolling.
to blame.

本発明に開示された磁性薄膜は第1図から第3図に示さ
れたいずれの装置でも作製することができ、木質的には
同一の特性を示すが、基板温度や導入されているガスの
効果により当然のことながら多少の特性の変化がある。
The magnetic thin film disclosed in the present invention can be produced using any of the apparatuses shown in FIGS. Naturally, there are some changes in characteristics depending on the effect.

本発明による磁性薄膜の特徴は、高残留磁束密であるの
で、従来の異方性を有するFe−Ni合金薄膜とは本質
的に異なり、そういった見方からすると、どちらかと言
えば非晶質薄膜に特性が類似している。
The magnetic thin film according to the present invention is characterized by a high residual magnetic flux density, which is essentially different from conventional Fe-Ni alloy thin films with anisotropy, and from this perspective, it is more like an amorphous thin film. Similar characteristics.

また、この磁性薄膜を得るためには蒸着中まだはスパッ
タ中の基板温度が重要で、100℃よりも高い温度にす
ると良好な特性が得られない。
Further, in order to obtain this magnetic thin film, the substrate temperature during vapor deposition and sputtering is important, and if the temperature is higher than 100° C., good characteristics cannot be obtained.

100℃以fにすれば良好な特性が得られるが、基板温
度の低い方がさらによい特性が得られるので、第2図、
第3図および第4図に示したような基板を寒剤で冷却す
る装置が必要となる。
Although good characteristics can be obtained at temperatures below 100°C, even better characteristics can be obtained at lower substrate temperatures.
A device for cooling the substrate with a cryogen as shown in FIGS. 3 and 4 is required.

以下に実施例を示し、本発明の効果について述べる。Examples will be shown below to describe the effects of the present invention.

実施例の説明 実施例1 第1図に示す装置でFe−Ag 混合薄膜を作製した。Description of examples Example 1 A Fe-Ag mixed thin film was produced using the apparatus shown in FIG.

作製条件を以下に示す。The manufacturing conditions are shown below.

真空度  5X10−8Torr 基板温度   300’ K 基   板   ソーダガラヌ、面業性高分子フィルム
蒸着速度  Fe   300人/分 (一定)Ag 
 0−20QO人/10(可変)入射角   0〜30 r)られた薄膜のFeとAgの原子比に対する抗磁力H
cと初透磁率μの値を第6図に示す。
Vacuum degree 5X10-8 Torr Substrate temperature 300'K Substrate Soda galanu, commercial polymer film deposition rate Fe 300 people/min (constant) Ag
0-20 QO person/10 (variable) incident angle 0-30 r) Coercive force H for the atomic ratio of Fe and Ag in the thin film
Figure 6 shows the values of c and initial permeability μ.

Ag/ (Fe +Ag)なる原子比の値が0.3〜0
.8の範囲内でμが最大となり、Haは実用範囲内とな
る。
The atomic ratio value of Ag/(Fe +Ag) is 0.3 to 0
.. μ is maximum within the range of 8, and Ha is within the practical range.

実施例2 実施例1とほぼ同様の蒸着条件で、ただ基板温度を変化
させて、Ag/(Fe+Ag) −0,5の薄膜を第2
図に示す蒸着装置を用いて作製した。
Example 2 A second thin film of Ag/(Fe+Ag) −0.5 was deposited under almost the same vapor deposition conditions as Example 1, but by changing the substrate temperature.
It was produced using the vapor deposition apparatus shown in the figure.

抗磁力と初透磁率を第7図に示す。これから、ノ、(板
温度を100℃以下に保持して薄膜を形成し/こときと
、100℃を超える温度で薄膜を形成したときでは、特
性に明らかに差があるのがわかる。
Figure 7 shows the coercive force and initial permeability. From this, it can be seen that there is a clear difference in the characteristics between when the thin film is formed by keeping the plate temperature below 100°C and when the thin film is formed at a temperature exceeding 100°C.

実施例3 第2図に示す装置で、基板温度を1 ooxに保持しテ
C0−Ag系、Ni−Ag系、 (Fe−78%Ni)
−Ag系の薄膜をそ力ぞれ人gの割合を変えて作製した
。薄膜の組成比率と特性との関係を第8図に示す。Ni
 、 Fe−78%Niを磁性金属もしくは磁性合金と
する薄膜はもともとバルクの結晶磁気異方性が小さいだ
め、Haが小さくμが増加している。
Example 3 Using the apparatus shown in FIG. 2, the substrate temperature was maintained at 1 oox, and the substrate temperature was maintained at 100 ox.
-Ag-based thin films were prepared with varying proportions of g. FIG. 8 shows the relationship between the composition ratio and characteristics of the thin film. Ni
A thin film made of Fe-78%Ni as a magnetic metal or magnetic alloy has originally a small bulk crystal magnetic anisotropy, so its Ha is small and μ is increased.

実施例4 第3図に示すスパッタリング装置でFe−(Ago、5
CuQ、5)の組成の薄膜を基板温度126にで作製し
た。ターゲットは第3図中)に示す構成とし、それぞれ
の面積を調節して組成比率を制御した。
Example 4 Fe-(Ago, 5
A thin film having a composition of CuQ, 5) was prepared at a substrate temperature of 126°C. The target had the configuration shown in Figure 3), and the composition ratio was controlled by adjusting the area of each target.

抗磁力と初透磁率の測定結果を第9図に示す。Figure 9 shows the measurement results of coercive force and initial permeability.

抗磁力も初透磁率も実施例2,3で示した結果に比べて
若干見劣りするが、はぼ同様の効果のあることがわかる
Although both the coercive force and the initial magnetic permeability are slightly inferior to the results shown in Examples 2 and 3, it can be seen that the results are similar to those shown in Examples 2 and 3.

実施例5 第4図に示す二源スパYり装置で(Coo、8Ni。、
2)。、5−Ag0.5  の組成の薄膜を基板支持台
の回転数を変化させて作製した。基板温度は160’に
である。
Example 5 A two-source spa Ying apparatus shown in FIG. 4 (Coo, 8Ni,
2). , 5-Ag0.5 were prepared by changing the rotation speed of the substrate support. The substrate temperature is at 160'.

第1o図に基板回転数と抗磁力Ha、  初透磁率μと
の関係を示す。基板支持台の回転数が40回/分以上に
なると抗磁力が低下し、また初透磁率の増加があって特
性の良好な薄膜が得られる。なお同装置にて基板温度を
400’ Kに保持したところ、抗磁力は通常のB−H
カーブトレーサでは測定できない程大きくなり、しだが
って、初透磁率も非常に小さく、温度効果が大きいこと
が確認された。
Figure 1o shows the relationship between the substrate rotation speed, coercive force Ha, and initial permeability μ. When the rotation speed of the substrate support is 40 times/min or more, the coercive force decreases and the initial magnetic permeability increases, resulting in a thin film with good properties. Furthermore, when the substrate temperature was maintained at 400'K using the same device, the coercive force was the same as that of normal B-H.
It became so large that it could not be measured with a curve tracer, and therefore the initial permeability was also very small, confirming that the temperature effect was large.

実施例1〜5では非磁性金属としてA[を用いた場合に
ついて具体的に述べたが、それ以外にPb、 Au、 
Cuであっても、あるいはこれらの合金であっても同様
の傾向がみられた。
In Examples 1 to 5, the case where A[ was used as the nonmagnetic metal was specifically described, but in addition to that, Pb, Au,
Similar trends were observed for Cu and alloys of these.

発明の効果 以」二のように本発明による磁性薄膜は、十分小さい抗
磁力と、十分大きな初透磁率を有する薄膜であり、まだ
、作製時の基板温度を100℃以下にすると非常に効果
的であることがわかる。
Effects of the Invention As described in Part 2, the magnetic thin film according to the present invention has a sufficiently small coercive force and a sufficiently large initial magnetic permeability, and is still very effective when the substrate temperature during fabrication is kept below 100°C. It can be seen that it is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図までは本発明にかかる磁性薄膜られた
薄膜の特性を示す図である。 1・・・・・・磁性金属の蒸発源、2・・・・・・非磁
性金属の蒸発源、3・・・・・・基板、4・・・・・・
基板加熱用ヒータ、8・・・・・・排気装置、11・・
・・・・ターゲット、14・・・・・・基板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 a 2 図 0 14図 第5図 0 02 04 01r  0.8 10璃6図 0     ’0.2    0.4    0Δ  
  Oδ    10A>  (滑子比ジ Fi+幻 第7図 基板」(°り 第8図 0 0.2 0.4 0.6 0.3 70第9図 0 0.2 0.4 0.6  θB  10第10図 to       ioo       zo。 基板回転数(−疹ジ
1 to 4 are diagrams showing the characteristics of the magnetic thin film according to the present invention. 1... Magnetic metal evaporation source, 2... Non-magnetic metal evaporation source, 3... Substrate, 4...
Substrate heating heater, 8... Exhaust device, 11...
...Target, 14...Substrate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure a 2 Figure 0 14 Figure 5 0 02 04 01r 0.8 10 Li 6 Figure 0 '0.2 0.4 0Δ
Oδ 10A> (Slide ratio diFi + phantom Fig. 7 board) Figure 10 to ioo zo.

Claims (2)

【特許請求の範囲】[Claims] (1)強磁性金属もしくは強磁性合金と、前記金属もし
くは合金と固溶しない非磁性金属もしくは非磁性合金と
が薄膜内で一様に、かつ無秩序に分布しているところの
組成式A1−JcBx(ただしA : Fe、 Co、
 Niの少なくとも1種、B:AgPb、 Au、 C
uの少なくとも1種、ただし、0.3≦X≦0.8)で
表わされる磁性薄膜。
(1) Composition formula A1-JcBx where a ferromagnetic metal or ferromagnetic alloy and a non-magnetic metal or non-magnetic alloy that does not form a solid solution with the metal or alloy are uniformly and disorderly distributed within the thin film. (However, A: Fe, Co,
At least one type of Ni, B: AgPb, Au, C
A magnetic thin film represented by at least one u, provided that 0.3≦X≦0.8).
(2)真空中もしくは減圧雰囲気中において、基体の温
度を100℃以下に保持して、強磁性合金もしくは強磁
性合金と、前記金属もしくは合金と固溶しない非磁性金
属もしくは非磁性合金とで構成される薄膜を前記基体上
に形成することを特徴とする磁性薄膜の製造方法。
(2) The temperature of the substrate is maintained at 100°C or less in a vacuum or a reduced pressure atmosphere, and is composed of a ferromagnetic alloy or ferromagnetic alloy and a nonmagnetic metal or nonmagnetic alloy that does not form a solid solution with the metal or alloy. A method for manufacturing a magnetic thin film, comprising forming a thin film on the substrate.
JP15218282A 1982-08-31 1982-08-31 JISEIHAKUMAKUOYOBISONOSEIZOHOHO Expired - Lifetime JPH0228883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15218282A JPH0228883B2 (en) 1982-08-31 1982-08-31 JISEIHAKUMAKUOYOBISONOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15218282A JPH0228883B2 (en) 1982-08-31 1982-08-31 JISEIHAKUMAKUOYOBISONOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS5941810A true JPS5941810A (en) 1984-03-08
JPH0228883B2 JPH0228883B2 (en) 1990-06-27

Family

ID=15534841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15218282A Expired - Lifetime JPH0228883B2 (en) 1982-08-31 1982-08-31 JISEIHAKUMAKUOYOBISONOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0228883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471946A2 (en) * 1990-08-23 1992-02-26 International Business Machines Corporation High magnetic moment materials and process for fabrication of thin film heads

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466192U (en) * 1990-10-15 1992-06-10
JPH0663569U (en) * 1993-02-12 1994-09-09 株式会社大林組 Holding jig

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471946A2 (en) * 1990-08-23 1992-02-26 International Business Machines Corporation High magnetic moment materials and process for fabrication of thin film heads
JPH065423A (en) * 1990-08-23 1994-01-14 Internatl Business Mach Corp <Ibm> Machining method for high magnetic efficiency material and thin film head
US5582927A (en) * 1990-08-23 1996-12-10 International Business Machines Corporation High magnetic moment materials and process for fabrication of thin film heads

Also Published As

Publication number Publication date
JPH0228883B2 (en) 1990-06-27

Similar Documents

Publication Publication Date Title
US4236946A (en) Amorphous magnetic thin films with highly stable easy axis
Leamy et al. The microstructure of amorphous rare-earth/transition-metal thin films
Mitani et al. Structural and magnetic properties of Fe/noble metal monatomic multilayers equivalent to L10 ordered alloys
Yasugi et al. Cross‐sectional structures and depth profiles in bias sputtered GdCo films
JPS5941810A (en) Magnetic thin-film and manufacture thereof
Aboaf et al. Amorphous magnetic alloys of cobalt‐titanium
DK144153B (en) MAGNETIC Bubble Domain Domain Apparatus
Liu et al. Magnetic properties of vapor-deposited iron–noble-metal multilayers
JPH0320007A (en) Manufacture of magnetic thin film
JPH03263306A (en) Magnetic film and magnetic head
Hwang et al. Magnetic properties and structures of CoCrTa films for wide range of Cr variation
Ma et al. The effect of Ta on structure and magnetic properties in Fe–N films
JPH0192359A (en) Manufacture of thin amorphous film
Jaiswal et al. Effect of Si layer thickness on the structural properties of a Co/Si multilayer system
JPH03265105A (en) Soft magnetic laminate film
JP2842683B2 (en) Soft magnetic thin film material
JPS6276710A (en) Manufacture of magnetic thin film
KATORI et al. Soft magnetic properties for Fe-Al-N/Si-N multilayered films
JPH0448868B2 (en)
JPS61124564A (en) Formation of thin film
JPH02152209A (en) Soft magnetic film
Araki et al. Uniformity of magnetic properties in amorphous thin films
Kubota et al. Magnetic properties of Fe‐N/Al‐N multilayered films prepared by Ar ion‐assist sputtering
Gościańska et al. Some Magnetic Properties of Thin Films Prepared from Fe-(M-NO-Si-B (M= Cu, Ag, Pt, Pd) Alloys
Soltani Structural and magnetic effects induced by annealing in sputtered thin films of R1-XCoX amorphous alloys