JPH0228883B2 - JISEIHAKUMAKUOYOBISONOSEIZOHOHO - Google Patents

JISEIHAKUMAKUOYOBISONOSEIZOHOHO

Info

Publication number
JPH0228883B2
JPH0228883B2 JP15218282A JP15218282A JPH0228883B2 JP H0228883 B2 JPH0228883 B2 JP H0228883B2 JP 15218282 A JP15218282 A JP 15218282A JP 15218282 A JP15218282 A JP 15218282A JP H0228883 B2 JPH0228883 B2 JP H0228883B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
substrate
metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15218282A
Other languages
Japanese (ja)
Other versions
JPS5941810A (en
Inventor
Masatoshi Takao
Kyokazu Toma
Harufumi Sakino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15218282A priority Critical patent/JPH0228883B2/en
Publication of JPS5941810A publication Critical patent/JPS5941810A/en
Publication of JPH0228883B2 publication Critical patent/JPH0228883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁性薄膜主に低抗磁力を有する軟質
磁性薄膜とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetic thin film, mainly a soft magnetic thin film having low coercive force, and a method for manufacturing the same.

従来例の構成とその問題点 従来より低抗磁力の軟磁性金属材料としては、
Ni−Fe系合金、Ni−Fe−Mo系合金のような結
晶質材料と、Co−Fe−Si−B系のような金属−
メタロイド系非結晶質材料、Co−Zr系のような
金属−金属系非晶質材料が知られている。
Conventional structure and its problems As soft magnetic metal materials with lower coercive force than conventional ones,
Crystalline materials such as Ni-Fe alloys and Ni-Fe-Mo alloys, and metals such as Co-Fe-Si-B alloys.
Metalloid amorphous materials and metal-metal amorphous materials such as Co-Zr are known.

軟質磁性材料は変圧器のコア材や磁気ヘツドの
コア材、磁気シールド材などに使用されている。
Soft magnetic materials are used in transformer core materials, magnetic head core materials, magnetic shield materials, etc.

一方、軟磁性材料の薄膜も、薄膜メモリー、薄
膜磁気ヘツド、磁気パルプ素子の転送パターン構
成要素などに用いられて来ている。
On the other hand, thin films of soft magnetic materials have also been used for thin film memories, thin film magnetic heads, transfer pattern components of magnetic pulp devices, and the like.

軟質磁性材料に対して要求される特性は用途に
よつて多少の違いがあるものの、基本的には抵抗
磁力、高残留磁束密度、高透磁率といつた特性が
必要とされる。
Although the properties required for soft magnetic materials differ somewhat depending on the application, they basically require properties such as resistive magnetic force, high residual magnetic flux density, and high magnetic permeability.

現在のところ、薄膜軟質磁性材料としては、
Fe−Ni合金(パーマロイ材料)と金属−金属系
のアモルフアス材料が主として用いられている。
At present, thin film soft magnetic materials include:
Fe-Ni alloy (permalloy material) and metal-metal amorphous material are mainly used.

Fe−Ni合金についてはNiの濃度が高く、その
ため飽和磁束密度が約8000ガウス程度であり鉄単
体の飽和磁束密度約22000ガウスに比べて約3分
の1程度となり、多少の不満が残る。
Fe-Ni alloys have a high concentration of Ni, so the saturation magnetic flux density is about 8,000 Gauss, which is about one-third of the saturation magnetic flux density of iron alone, which is about 22,000 Gauss, which leaves some dissatisfaction.

また、透磁率を増加させるためにはMoなどの
添加元素の働きが必要である。一方、金属−金属
系のアモルフアス薄膜の場合、主にスパツタリン
グ法で作製されるので、膜中にアルゴンガスが残
存して特性に時効がある。
Furthermore, in order to increase the magnetic permeability, the action of additive elements such as Mo is required. On the other hand, in the case of a metal-metal type amorphous thin film, since it is mainly produced by a sputtering method, argon gas remains in the film and its characteristics deteriorate over time.

そこで発明者らは、これまでの金属−金属系ア
モルフアス薄膜よりも単純な組成を有して真空中
または減圧雰囲気中で作製することによりガスを
不純物として含まない薄膜の可能性を検討した。
Therefore, the inventors investigated the possibility of creating a thin film that has a simpler composition than conventional metal-metal amorphous thin films and does not contain gas as an impurity by producing it in a vacuum or a reduced pressure atmosphere.

発明の目的 本発明は低抗磁力でかつ高残留磁束密度を有す
る軟磁性材料を得ることを目的とし、かつ前記材
料を効率よく得ようとするための方法に関するも
のである。
OBJECTS OF THE INVENTION The present invention aims to obtain a soft magnetic material having low coercive force and high residual magnetic flux density, and relates to a method for efficiently obtaining the material.

発明の構成 本発明は、たとえばFeとAg,FeとPb,Co−
Agなどのように相互が完全に固溶しないような
系、またはFeとCu,CoとAuのように固溶して
もごくわずかで本質的に固溶しないと考えられる
系よりなる薄膜に関するものである。
Structure of the Invention The present invention provides, for example, Fe and Ag, Fe and Pb, Co-
Regarding thin films made of systems such as Ag, which do not completely dissolve each other in solid solution, or systems such as Fe and Cu, Co and Au, which are considered to be in a very small amount and not essentially solid solution, such as Fe and Cu or Co and Au. It is.

こういう構成を有する薄膜のうちで各構成元素
が薄膜内で一様かつ無秩序に分布しているもので
は結晶に供存する異方性が小さくなり、たとえ
ば、磁気特性も面内では異方性がなくなるので、
抵抗磁力のものが得られる。残留磁束密度は磁性
体が本質的に金属であるので、酸化物磁性体より
大きくなるのは自明のことである。
Among thin films with such a structure, in which each constituent element is uniformly and disorderly distributed within the thin film, the anisotropy existing in the crystal is small, and for example, the magnetic properties have no in-plane anisotropy. So,
A resistive magnetic force can be obtained. Since the magnetic material is essentially a metal, it is obvious that the residual magnetic flux density is greater than that of an oxide magnetic material.

またその製法については、基本的には真空中も
しくは減圧雰囲気中で薄膜を形成する方法におい
て基体の温度を高くとも100℃以下に保持するこ
とである。この温度制御により薄膜作製中に上述
のように相互が完全に固溶しないような系、ある
いは固溶してもごくわずかで本質的に固溶しない
と考えられる系が、温度が上昇して薄膜が各構成
要素に分離析出してしまうのを防ぐ。もし温度が
100℃を超えると、分離析出が起こり、目的とす
る特性を有する薄膜が得られない。
The manufacturing method is basically a method of forming a thin film in a vacuum or a reduced pressure atmosphere, and the temperature of the substrate is maintained at 100° C. or less at the most. With this temperature control, during thin film production, systems that do not completely dissolve each other as described above, or systems that are considered to be in a very small amount and essentially not dissolved in solid solution, can be heated up to form a thin film. This prevents the substances from separating and precipitating into each component. If the temperature
If the temperature exceeds 100°C, separation and precipitation will occur, making it impossible to obtain a thin film with the desired properties.

基板温度を十分に管理することが本発明の目的
とする低抗磁力でかつ高残留磁束密度を有する軟
磁性の薄膜を得る上で重要である。
It is important to adequately control the substrate temperature in order to obtain a soft magnetic thin film having low coercive force and high residual magnetic flux density, which is the object of the present invention.

製造装置としては、たとえば、第1図に示すよ
うな2源蒸着装置を用いる。図において、1は
Feなどの磁性金属の蒸発源である。ここでは電
子ビーム加熱法を示しているが、これに限る必要
はなく、通常の加熱法を用いてもよい。2はAg
などの非磁性金属を蒸発させるための蒸発源であ
る、これについても蒸発源1と同様の加熱方法を
用いる。3は基板であり、ヒータ4により加熱さ
れる。5は水晶振動子による膜厚モニターで、装
置内に2つ設置されており、磁性金属と非磁性金
属を別々にモニターきるようになつている。6は
リークバルブ、7は基板温度を監視する温度計で
ある。8は排気系である。
As a manufacturing apparatus, for example, a two-source vapor deposition apparatus as shown in FIG. 1 is used. In the figure, 1 is
It is an evaporation source for magnetic metals such as Fe. Although an electron beam heating method is shown here, there is no need to be limited to this, and a normal heating method may be used. 2 is Ag
This is an evaporation source for evaporating non-magnetic metals such as . 3 is a substrate, which is heated by a heater 4; 5 is a film thickness monitor using a crystal oscillator, two of which are installed in the device so that magnetic metal and non-magnetic metal can be monitored separately. 6 is a leak valve, and 7 is a thermometer for monitoring the substrate temperature. 8 is an exhaust system.

第2図には室温以下の温度で薄膜を形成する装
置の概略図を示す。図において、第1図に示した
装置と対応する部分には同じ符号を付している。
9は基板冷却用の液体窒素やドライアイスとアル
コールのような寒剤を入れるクライオスタツト、
10は寒剤を蒸発させるためのヒータである。
FIG. 2 shows a schematic diagram of an apparatus for forming thin films at temperatures below room temperature. In the figure, parts corresponding to those of the apparatus shown in FIG. 1 are given the same reference numerals.
9 is a cryostat that contains liquid nitrogen, dry ice, and a cryogen such as alcohol for cooling the substrate;
10 is a heater for evaporating the cryogen.

本発明による磁性薄膜は第1図および第2図に
それぞれ示すような蒸着装置で作製する。
The magnetic thin film according to the present invention is produced using a vapor deposition apparatus as shown in FIGS. 1 and 2, respectively.

前述した組成の薄膜を構成する元素はそれぞれ
蒸気圧が大幅に違い、また、融液も一切混合しな
いので、同一の蒸発源から蒸発させるのは制御上
問題があり、そのため二源蒸発が必要である。
The elements that make up the thin film with the composition described above have significantly different vapor pressures, and the melts do not mix at all, so evaporating them from the same evaporation source is problematic in terms of control, so dual-source evaporation is necessary. be.

スパツタリングでも薄膜を作製することが可能
である。スパツタリングでは、たとえば第3図a
に示すような構成の装置を使用する。図において
11は母材のターゲツト、12,13はそれぞれ
冷却水の導入口と排水口、14は基板、15は基
板加熱用のヒータ、16は寒剤、17は寒剤加熱
用のヒータである。第3図bはターゲツトの構成
を示す図であつて、母金属の素材の円板21上に
もう一方の素材20を分割して配置したものであ
る。組成は素材20,21の開口面積比によつて
定められるが、それぞれのスパツター効率を考慮
して最終の面積を決定する。
Thin films can also be produced by sputtering. In sputtering, for example, Fig. 3a
Use a device configured as shown. In the figure, 11 is a base material target, 12 and 13 are a cooling water inlet and a water outlet, respectively, 14 is a substrate, 15 is a heater for heating the substrate, 16 is a cryogen, and 17 is a heater for heating the cryogen. FIG. 3b is a diagram showing the structure of the target, in which the other material 20 is divided and arranged on a disc 21 of the base metal material. The composition is determined by the open area ratio of the materials 20 and 21, and the final area is determined by considering the sputtering efficiency of each.

第3図では、ターゲツトの形状によつて組成を
決定しているが、第4図のような装置でもスパツ
ターが可能である。第4図において、14は基
板、16は基板支持台であつて、内部の空洞に液
体窒素などの寒剤を入れるか、冷却されて十分に
温度制御された乾燥気体を導入することによつて
基板の冷却を行う。この支持台16は基板14を
取りつけたままで高速で回転できるようになつて
いる。18はその回転用のモータである。ターゲ
ツト11は、この図では2個示されており、高周
波電源19も2個独立に設置する。磁性金属と非
磁性金属はおのおのの別々のターゲツトとして独
立にコントロールされてスパツタされ、回転する
基板上に堆積する。
In FIG. 3, the composition is determined by the shape of the target, but sputtering can also be performed using the apparatus shown in FIG. 4. In FIG. 4, reference numeral 14 denotes a substrate, and 16 denotes a substrate support stand, in which a cryogen such as liquid nitrogen is introduced into the internal cavity, or a cooled and sufficiently temperature-controlled dry gas is introduced to support the substrate. cooling. This support stand 16 is designed to be able to rotate at high speed with the substrate 14 attached thereto. 18 is a motor for its rotation. Two targets 11 are shown in this figure, and two high frequency power supplies 19 are also installed independently. The magnetic and non-magnetic metals are sputtered as separate targets and independently controlled and deposited onto a rotating substrate.

本発明に開示された磁性薄膜は第1図から第3
図に示されたいずれの装置でも作製することがで
き、本質的には同一の特性を示すが、基板温度や
導入されているガスの効果により当然のことなが
ら多少の特性の変化がある。
The magnetic thin film disclosed in the present invention is shown in FIGS.
Any of the devices shown in the figure can be manufactured and exhibit essentially the same characteristics, but the characteristics will naturally vary somewhat depending on the substrate temperature and the effects of the gas introduced.

本発明による磁性薄膜の特徴は、高残留磁束密
度低抗磁力性であつて、基本的に面内では等方性
であるので、従来の異方性を有するFe−Ni合金
薄膜とは本質的に異なり、そういつた見方からす
ると、どちらかと言えば非晶質薄膜に特性が類似
している。
The magnetic thin film according to the present invention is characterized by high residual magnetic flux density and low coercive force, and is basically isotropic in the plane, so it is essentially different from the conventional anisotropic Fe-Ni alloy thin film. From this point of view, their properties are rather similar to amorphous thin films.

また、この磁性薄膜を得るためには蒸着中また
はスパツタ中の基板温度が重要で、100℃よりも
高い温度にすると良好な特性が得られない。
Furthermore, in order to obtain this magnetic thin film, the substrate temperature during vapor deposition or sputtering is important, and if the temperature is higher than 100°C, good characteristics cannot be obtained.

100℃以下にすれば良好な特性が得られるが、
基板温度の低い方がさらによい特性が得られるの
で、第2図、第3図および第4図に示したような
基板を寒剤で冷却する装置が必要となる。
Good characteristics can be obtained if the temperature is below 100℃, but
Since better characteristics can be obtained at a lower substrate temperature, an apparatus for cooling the substrate with a cryogen as shown in FIGS. 2, 3, and 4 is required.

以下に実施例を示し、本発明の効果について述
べる。
Examples will be shown below to describe the effects of the present invention.

実施例の説明 実施例 1 第1図に示す装置でFe−Ag混合薄膜を作製し
た。作製条件を以下に示す。
Description of Examples Example 1 A Fe-Ag mixed thin film was produced using the apparatus shown in FIG. The manufacturing conditions are shown below.

真空度 5×10-8 Torr 基板温度 300°K 基板 ソーダガラス、耐熱性高分子フイルム 蒸着速度 Fe 300Å/分(一定) Ag 0〜2000Å/分(可変) 入射角 0°〜30° 得られた薄膜のFeとAgの原子比に対する抗磁
力Hcと初透磁率μの値を第6図に示す。
Vacuum degree 5×10 -8 Torr Substrate temperature 300°K Substrate Soda glass, heat-resistant polymer film Vapor deposition rate Fe 300Å/min (constant) Ag 0 to 2000Å/min (variable) Incident angle 0° to 30° Obtained Figure 6 shows the values of coercive force Hc and initial magnetic permeability μ for the atomic ratio of Fe and Ag in the thin film.

Ag/(Fe+Ag)なる原子比の値が0.3〜0.8の
範囲内でμが最大となり、Hcは実用範囲内とな
る。
When the value of the atomic ratio Ag/(Fe+Ag) is within the range of 0.3 to 0.8, μ becomes maximum and Hc falls within the practical range.

実施例 2 実施例1とほぼ同様の蒸着条件で、ただ基板温
度を変化させて、Ag/(Fe+Ag)=0.5の薄膜を
第2図に示す蒸着装置を用いて作製した。
Example 2 A thin film with Ag/(Fe+Ag)=0.5 was fabricated using the vapor deposition apparatus shown in FIG. 2 under substantially the same vapor deposition conditions as in Example 1 but only by changing the substrate temperature.

抗磁力と初透磁率を第7図に示す。これから、
基板温度を100℃以下に保持して薄膜を形成した
ときと、100℃を超える温度で薄膜を形成したと
きでは、特性に明らかに差があるのがわかる。
Figure 7 shows the coercive force and initial permeability. from now,
It can be seen that there is a clear difference in the characteristics when the thin film is formed while keeping the substrate temperature below 100°C and when the thin film is formed at a temperature above 100°C.

実施例 3 第2図に示す装置で、基板温度を100°Kに保持
してCo−Ag系、Ni−Ag系(Fe−78%Ni)−Ag
系の薄膜をそれぞれAgの割合を変えて作製した。
薄膜の組成比率と特性との関係を第8図に示す。
Ni,Fe−78%Niを磁性金属もしくは磁性合金と
する薄膜はもともとバルクの結晶磁気異方性が小
さいため、Hcが小さくμが増加している。
Example 3 Using the apparatus shown in Figure 2, the substrate temperature was maintained at 100°K and Co-Ag system, Ni-Ag system (Fe-78%Ni)-Ag
Thin films of each system were fabricated with different proportions of Ag.
FIG. 8 shows the relationship between the composition ratio and characteristics of the thin film.
Thin films made of Ni, Fe-78%Ni as magnetic metals or magnetic alloys originally have low bulk crystal magnetic anisotropy, so Hc is small and μ is increased.

実施例 4 第3図に示すスパツタリング装置でFe−(Ag0.5
Cu0.5)の組成の薄膜を基板温度120°Kで作製し
た。ターゲツトは第3図bに示す構成とし、それ
ぞれの面積を調節して組成比率を制御した。
Example 4 Fe-(Ag 0.5
A thin film with a composition of Cu 0.5 ) was fabricated at a substrate temperature of 120°K. The target had the configuration shown in FIG. 3b, and the composition ratio was controlled by adjusting the area of each target.

抗磁力と初透磁率の測定結果を第9図に示す。
抗磁力も初透磁率も実施例2、3で示した結果に
比べて若干見劣りするが、ほぼ同様の効果のある
ことがわかる。
Figure 9 shows the measurement results of coercive force and initial permeability.
Although both the coercive force and the initial magnetic permeability are slightly inferior to the results shown in Examples 2 and 3, it can be seen that they have almost the same effects.

実施例 5 第4図に示す二源スパツタ装置で(Co0.8Ni0.2
0.5−Ag0.5の組成の薄膜を基板支持台の回転数を
変化させて作製した。基板温度は160°Kである。
第10図に基板回転数と抗磁力Hc、初透磁率μ
との関係を示す。基板支持台の回転数が40回/分
以上になると抗磁力が低下し、また初透磁率の増
加があつて特性の良好な薄膜が得られる。なお同
装置にて基板温度を400°Kに保持したところ、抗
磁力は通常のB−Hカーブトレーサでは測定でき
ない程大きくなり、したがつて、初透磁率も非常
に小さく、温度効果が大きいことが確認された。
Example 5 With the dual source sputtering device shown in Fig. 4 (Co 0.8 Ni 0.2 )
A thin film having a composition of 0.5 -Ag 0.5 was prepared by changing the rotation speed of the substrate support. The substrate temperature is 160°K.
Figure 10 shows the substrate rotation speed, coercive force Hc, and initial permeability μ.
Indicates the relationship between When the rotation speed of the substrate support is 40 times/min or more, the coercive force decreases and the initial magnetic permeability increases, resulting in a thin film with good properties. Furthermore, when the substrate temperature was maintained at 400°K using the same device, the coercive force became so large that it could not be measured with a normal B-H curve tracer, and therefore the initial magnetic permeability was also very small, indicating that the temperature effect was large. was confirmed.

発明の効果 以上のように本発明による磁性薄膜は、十分小
さい抗磁力と、十分大きな初透磁率を有する薄膜
であり、また、作製時の基板温度を100℃以下に
すると非常に効果的であることがわかる。
Effects of the Invention As described above, the magnetic thin film according to the present invention is a thin film having a sufficiently small coercive force and a sufficiently large initial magnetic permeability, and is very effective when the substrate temperature during fabrication is 100°C or less. I understand that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図までは本発明にかかる磁性薄
膜を製造するための装置の構造を示す断面図、第
5図から第10図までは本発明にかかる製造方法
で得られた薄膜の特性を示す図である。 1……磁性金属の蒸発源、2……非磁性金属の
蒸発源、3……基板、4……基板加熱用ヒータ、
8……排気装置、11……ターゲツト、14……
基板。
FIGS. 1 to 4 are cross-sectional views showing the structure of an apparatus for manufacturing a magnetic thin film according to the present invention, and FIGS. 5 to 10 are characteristics of thin films obtained by the manufacturing method according to the present invention. FIG. 1... evaporation source of magnetic metal, 2... evaporation source of non-magnetic metal, 3... substrate, 4... heater for heating substrate,
8...Exhaust system, 11...Target, 14...
substrate.

Claims (1)

【特許請求の範囲】 1 強磁性金属もしくは強磁性合金と、前記金属
もしくは合金と固溶しない非磁性金属もしくは非
磁性合金とが薄膜内で一様に、かつ無秩序に分布
しているところの組成式A1-xBx(ただしA:Fe、
Co、Niの少なくとも1種、B:Ag、ただし、
0.3≦x≦0.8)で表わされる磁性薄膜。 2 真空中もしくは減圧雰囲気中において、基体
の温度を100℃以下に保持して、強磁性合金もし
くは強磁性合金と、前記金属もしくは合金と固溶
しない非磁性金属もしくは非磁性合金とが組成式
A1-xBx(ただしA:Fe、Co、Niの少なくとも1
種、B:Ag、ただし、0.3≦x≦0.8)で表わさ
れ、一様かつ無秩序に分布する様に薄膜を前記基
体上に形成することを特徴とする磁性薄膜の製造
方法。
[Claims] 1. A composition in which a ferromagnetic metal or ferromagnetic alloy and a non-magnetic metal or non-magnetic alloy that does not form a solid solution with the metal or alloy are uniformly and disorderly distributed within a thin film. Formula A 1-x B x (where A: Fe,
At least one of Co, Ni, B: Ag, however,
0.3≦x≦0.8). 2 In a vacuum or a reduced pressure atmosphere, the temperature of the substrate is maintained at 100°C or less, and the composition formula of the ferromagnetic alloy or ferromagnetic alloy and the non-magnetic metal or non-magnetic alloy that does not form a solid solution with the metal or alloy is formed.
A 1-x B x (However, A: At least one of Fe, Co, and Ni
A method for producing a magnetic thin film, characterized in that the thin film is formed on the substrate so that the species B: Ag (0.3≦x≦0.8) is uniformly and randomly distributed.
JP15218282A 1982-08-31 1982-08-31 JISEIHAKUMAKUOYOBISONOSEIZOHOHO Expired - Lifetime JPH0228883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15218282A JPH0228883B2 (en) 1982-08-31 1982-08-31 JISEIHAKUMAKUOYOBISONOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15218282A JPH0228883B2 (en) 1982-08-31 1982-08-31 JISEIHAKUMAKUOYOBISONOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS5941810A JPS5941810A (en) 1984-03-08
JPH0228883B2 true JPH0228883B2 (en) 1990-06-27

Family

ID=15534841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15218282A Expired - Lifetime JPH0228883B2 (en) 1982-08-31 1982-08-31 JISEIHAKUMAKUOYOBISONOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0228883B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466192U (en) * 1990-10-15 1992-06-10
JPH0663569U (en) * 1993-02-12 1994-09-09 株式会社大林組 Holding jig

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544845B2 (en) * 1990-08-23 1996-10-16 インターナショナル・ビジネス・マシーンズ・コーポレイション Magnetic thin film, laminate, magnetic recording head, magnetic shield, and method for producing laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466192U (en) * 1990-10-15 1992-06-10
JPH0663569U (en) * 1993-02-12 1994-09-09 株式会社大林組 Holding jig

Also Published As

Publication number Publication date
JPS5941810A (en) 1984-03-08

Similar Documents

Publication Publication Date Title
Gambino et al. Amorphous magnetic materials
CN102779533A (en) FeRhPt composite film adjustable in phase transition temperature and preparation method of FeRhPt composite film
JPH06283367A (en) Manufacture of structure provided with high magnetoresistance effect
Aboaf et al. Amorphous magnetic alloys of cobalt‐titanium
US4663193A (en) Process for manufacturing magnetic recording medium
Heiman et al. Magnetic and recording properties of noncrystalline FeN films
JPH0228883B2 (en) JISEIHAKUMAKUOYOBISONOSEIZOHOHO
JPS5893B2 (en) Magnetic recording media for thermal transfer
JPS63186844A (en) Amorphous material
EP0154158B1 (en) Process for manufacturing magnetic recording media
Hasegawa et al. Microstructure of carbide-dispersed nanocrystalline Fe–Ta–C films
Tappert et al. Fe spin structure in Tb/Fe multilayers
Mebarki et al. Effect of deposition conditions on the magnetic properties of evaporated Fe thin films
US6117282A (en) Method of producing amorphous Co-Tb magnetic recording thin films
EP0187169B1 (en) Process of manufacturing magnetic recording media and the media
Suzuki et al. Microstructure and Magnetic Properties of Sputter-Deposited Ho–Co Alloy Thin Films with Perpendicular Magnetic Anisotropy
Hwang et al. Magnetic properties and structures of CoCrTa films for wide range of Cr variation
US5534080A (en) Method for producing Mn-Al thin films
Sharp et al. Unidirectional anisotropy in multilayer films of Cr and NiFe
JP2937680B2 (en) Magnetoresistive element and method of manufacturing the same
JPH02123705A (en) Heat resistant iron based magnetic film and magnetic head using same
Gong et al. Microstructure and Magnetic Properties of Iron Nitride Films Prepared by a Two-facing Targets Type DC Sputtering Apparatus
JP2842683B2 (en) Soft magnetic thin film material
JPH0192359A (en) Manufacture of thin amorphous film
JPH0337724B2 (en)