JPS5939800A - Recovery of argon used for atmospheric gas of furnace for producing single crystal for semiconductor - Google Patents

Recovery of argon used for atmospheric gas of furnace for producing single crystal for semiconductor

Info

Publication number
JPS5939800A
JPS5939800A JP57149415A JP14941582A JPS5939800A JP S5939800 A JPS5939800 A JP S5939800A JP 57149415 A JP57149415 A JP 57149415A JP 14941582 A JP14941582 A JP 14941582A JP S5939800 A JPS5939800 A JP S5939800A
Authority
JP
Japan
Prior art keywords
argon
gas
cooled
furnace
sent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57149415A
Other languages
Japanese (ja)
Inventor
Katsuhiko Noro
野呂 克彦
Hideaki Takano
英明 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO KK
Original Assignee
KYODO SANSO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO KK filed Critical KYODO SANSO KK
Priority to JP57149415A priority Critical patent/JPS5939800A/en
Publication of JPS5939800A publication Critical patent/JPS5939800A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/0285Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To recover efficiently argon used for atmospheric gas of the titled producing furnace, by treating the argon used as the atmospheric gas, and separating by cryogenic liquefaction in a distillation tower after cooling by unused liquid argon. CONSTITUTION:High-purity liquid argon in a storage tank 1 is charged to a heat exchanger 19 to exchange its heat of low temp. with the recovered argon, gasified and supplied to a single crystal producing furnace 3. The argon discharged from the furnace 3 is introduced to a reactor 9 adding oxygen 33 and combustible components contained in it are converted to CO2 and water. After cooled in coolers 11, 12, CO2 is removed in a caustic soda washing tower 14, and water is removed in an adsorption tower 18. Next, the recovered argon treated as stated above is introduced to the heat exchanger 19 to exchange the heat with the unused liquid argon, cooled, and transported to an argon distillation tower 24. The argon separated by cryogenic liquefaction is transported to a storage tank of the recovered argon 25 and reused.

Description

【発明の詳細な説明】 この発明は、半導体用単結晶製造炉の雰囲気ガスとして
使用される高純アルゴンガスの使用後の不純アルゴンを
回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering impure argon after use of high-purity argon gas used as atmospheric gas in a semiconductor single crystal production furnace.

半導体用単結晶製造炉の保囲気ガスとして使用される高
純アルゴンがスは、通常液体で貯槽に貯えられ、使用す
る際気化器で大気との熱交換を行い冷熱を放出し常温の
ガスとして使用され、使用後は大気中に放出されている
High-purity argon gas, which is used as a protective gas in single-crystal manufacturing furnaces for semiconductors, is normally stored as a liquid in a storage tank, and when used, it exchanges heat with the atmosphere in a vaporizer and releases cold heat, turning it into a room-temperature gas. used and released into the atmosphere after use.

アルゴンは空気中に0.93%含まれており、線点が酸
素、窒素の中間にあるため、空気深冷分離のさい濃縮さ
れ租アルゴンとして得られ、さらに酸素、冨素を分離除
去し、99.999チ以上の精製アルゴンが作られるの
である。
Argon is contained in the air at 0.93%, and since the line point is between oxygen and nitrogen, it is concentrated during air cryogenic separation and obtained as free argon, and further, oxygen and nitrogen are separated and removed. More than 99.999 degrees of purified argon is produced.

近年、との望気中にわずかに含まれるアルゴンは金属精
錬用、熱処理用、溶接用、゛電子工業用の保護ガスとし
て需要が増えている。
In recent years, the demand for argon, which is present in a small amount in the air, has been increasing as a protective gas for metal refining, heat treatment, welding, and the electronics industry.

上記のごとく、空気中にわずかに含まれ、空気の深冷分
離によって製造される高純アルゴンを使用後に大気中へ
放出して、新たな高純アルゴンを使用するのは不経済な
ことである。
As mentioned above, it is uneconomical to release high-purity argon, which is slightly contained in the air and is produced by cryogenic separation of air, into the atmosphere after use and use new high-purity argon. .

この発明は、かかる現状に鑑み、半導体用単結晶製造炉
の雰囲気ガスとして使用された不純アルゴンの回収再利
用を図るものであって、従来使用前の高純成体アルゴン
を気化器で気化させるさいに大気に放出されていた冷熱
を利用して、使用後のアルゴンガスを冷却液化するのに
しすると共に、不純アルゴンガスの純度を高め、高収率
で液化アルゴンとして回収する方法を提案するものであ
る。
In view of the current situation, this invention aims to recover and reuse impure argon used as atmospheric gas in semiconductor single crystal production furnaces, and is aimed at recovering and reusing impure argon used as atmospheric gas in semiconductor single crystal manufacturing furnaces. This project uses the cold energy released into the atmosphere to cool and liquefy used argon gas, and also proposes a method to improve the purity of impure argon gas and recover it as liquefied argon with high yield. be.

すなわち、この出願は、半導体用単結晶製造炉の雰囲気
ガスとして使用後の不純アルゴンガスを昇圧して反応装
置中で酸素又は空気と反応させ不純アルゴンガス中に含
有する可燃性成分を二酸化炭素と水に置換した後、冷却
して苛性ソーダ洗浄塔に送入して二酸化炭素を除去し、
さらに吸着塔に送入して水分を除去し、熱交換器で使用
前の高純液化アルゴンと熱交換させて冷却した後蒸留塔
で深冷液化分離することを第1の発明とし、又前記第1
発明において苛性ソーダ洗浄塔における二酸化炭素の除
去の後に、触媒を充填した反応装置で水素と反応させて
不純アルゴンガス中に残拝する酸素を水に変換すること
を付加して、高純液化アルゴンを回収することを第2の
発明とし、さらに第2発明の回収した高純液化アルゴン
を再び半導体用単結晶製造炉の雰囲気ガスとして循環使
用することを第3の発明とする。
That is, this application pressurizes impure argon gas after being used as an atmospheric gas in a semiconductor single crystal manufacturing furnace and reacts it with oxygen or air in a reaction device to convert combustible components contained in the impure argon gas into carbon dioxide. After replacing the water with water, it is cooled and sent to a caustic soda washing tower to remove carbon dioxide.
The first invention further comprises feeding the water into an adsorption tower to remove moisture, exchanging heat with high-purity liquefied argon before use in a heat exchanger to cool it, and then performing cryogenic liquefaction separation in a distillation tower. 1st
In the invention, after the removal of carbon dioxide in the caustic soda washing tower, the oxygen remaining in the impure argon gas is converted into water by reacting with hydrogen in a reaction device packed with a catalyst, and high purity liquefied argon is produced. A second invention is to recover the high purity liquefied argon, and a third invention is to recirculate and use the recovered high-purity liquefied argon of the second invention as atmospheric gas in a semiconductor single crystal manufacturing furnace.

次に、この発明の実施例を図面に基づいて説明する。Next, embodiments of the present invention will be described based on the drawings.

まず、回収アルゴンの純度が低くてもよい場合、たとえ
ば溶接用雰囲気ガスとして、又はAOD精錬法でステン
レス鋼を溶製する際のガス等として使用される低純度ア
ルゴンを回収する場合について説明する。
First, a case where the purity of the recovered argon may be low will be described, for example, a case where low-purity argon is recovered used as an atmospheric gas for welding or as a gas when melting stainless steel by AOD refining method.

高純アルゴン貯槽(1)に貯えられた高純液化アルゴン
は弁翰を有する配管(至)で熱交換器0Oに送入され、
ここでコンデンサ6Dを通る回収アルゴンガスと熱交換
し、液化アルゴンの冷熱は回収アルゴンの冷却に使用さ
れ、自らは蒸発して常温の高純アルゴンガスとなって供
給管6のにより半導体用単結晶製造炉(3)に供給され
る。
The high-purity liquefied argon stored in the high-purity argon storage tank (1) is sent to the heat exchanger 0O through a pipe with a valve (toward).
Here, heat is exchanged with the recovered argon gas passing through the condenser 6D, and the cold energy of the liquefied argon is used to cool the recovered argon, and it evaporates to become high-purity argon gas at room temperature, which is then passed through the supply pipe 6 to form a semiconductor single crystal. It is supplied to the manufacturing furnace (3).

半導体用単結晶製造炉(3)で使用された此純アルゴン
ガスは、回収系に導入される。なお、炉は材料の装填、
製品の取出し等で開放され炉内へ空気が侵入する。この
侵入空気を回収系へ持ち込まないため、回収系への弁(
5)を閉じ、大気中への放出管の放出弁(4)を開いて
、回収の初期には、空気の混入したアルゴンを大気中へ
放出する。
This pure argon gas used in the semiconductor single crystal production furnace (3) is introduced into a recovery system. In addition, the furnace is used for loading materials,
It opens when products are removed, allowing air to enter the furnace. In order to prevent this intruding air from entering the recovery system, a valve (
5) and open the discharge valve (4) of the discharge pipe to the atmosphere to discharge the argon mixed with air into the atmosphere at the beginning of recovery.

又、上記熱交換器tSを経て炉に供給されるアルゴンが
不足するときは、従来装置で使われている気化器(2)
を使って補給する。
In addition, when there is a shortage of argon supplied to the furnace via the heat exchanger tS, the vaporizer (2) used in conventional equipment is used.
Replenish using.

上記のごとくして大気放出が終れば、放出弁(4)を閉
じ弁(5)を開いて使用されたアルゴンガスは回収系に
導入する。この際の回収アルゴンガス組成を第1表のA
に示す。
When the release into the atmosphere is completed as described above, the release valve (4) is closed and the valve (5) is opened to introduce the used argon gas into the recovery system. The recovered argon gas composition at this time is A in Table 1.
Shown below.

第 1 表  組  成  (%) 回収系においては、回収アルゴンガスをまずバッファタ
ンク(7)を通して圧縮機(8)で所定の圧力(この実
施例では8KV′i G )まで圧縮する。圧縮された
回収アルゴンガスに、この回収アルゴンガス中の可燃性
成分の量を完全に虚位するのに必要な酸素−又は空気を
混入させて触媒を充填している反応装置(9)に送入す
る。この反応装置(9)で可燃性成分を酸素と反応させ
二酸化炭素と水に変換する。そして、この反応装置(9
)を出た回収アルゴンガスは第1冷却器αυ、冷凍au
at付設した第2冷却器(イ)を通して7℃程度まで冷
却され、この際析出する水分はドレントラップQOで系
外に排出される。
Table 1 Composition (%) In the recovery system, recovered argon gas is first passed through a buffer tank (7) and compressed to a predetermined pressure (8 KV'i G in this example) by a compressor (8). The compressed recovered argon gas is mixed with oxygen or air necessary to completely eliminate the amount of combustible components in the recovered argon gas, and the mixture is sent to a reaction device (9) filled with a catalyst. Enter. In this reactor (9) the combustible components are reacted with oxygen and converted into carbon dioxide and water. And this reaction device (9
), the recovered argon gas is sent to the first cooler αυ and the freezer au.
It is cooled to about 7° C. through a second cooler (a) attached to at, and the moisture precipitated at this time is discharged out of the system through a drain trap QO.

冷却された回収アルゴンガスは苛性ソーダ洗浄塔04に
送入され、ここで二酸化炭素は苛性ソーダに吸収除去さ
れる。さらに二酸化炭素を除去された回収アルゴンガス
はバイパスフィンgBを通り吸着塔(ト)に送られ水分
が除去される。以上の処理を終った後の代表的な回収ア
ルゴン組成を第1表のBに示す。
The cooled recovered argon gas is sent to the caustic soda washing tower 04, where carbon dioxide is absorbed and removed by the caustic soda. Furthermore, the recovered argon gas from which carbon dioxide has been removed is sent to an adsorption tower (g) through a bypass fin gB, where moisture is removed. A typical composition of recovered argon after the above treatment is shown in B of Table 1.

なお、(ロ)は苛性ソーダを補充するための供給フィン
である。
Note that (b) is a supply fin for replenishing caustic soda.

そして、吸着塔(至)を出た後の回収アルゴンガスは前
記熱交換器QlのコンデンサC+υに送られ、使用前の
高純液化アルゴンガスと熱交換して冷却される。冷却さ
れた回収アルゴンガスは膨張弁ので減圧されてアルゴン
蒸留塔(ハ)へ供給されるが、回収アルゴンガスの一部
はディボイラ(ロ)の熱源として使用した後供給される
。アルゴン蒸留塔(ハ)のコンデンサ(至)には液体窒
素(至)を送入し、熱交換してガス化した窒素は配管(
ロ)途中の加熱器■で加熱された後吸着塔(至)に送ら
れ再生ガスとして使用する。
The recovered argon gas after leaving the adsorption tower is sent to the condenser C+υ of the heat exchanger Ql, where it is cooled by exchanging heat with the high-purity liquefied argon gas before use. The cooled recovered argon gas is depressurized by the expansion valve and supplied to the argon distillation column (c), but a portion of the recovered argon gas is used as a heat source for the deboiler (b) and then supplied. Liquid nitrogen (see) is fed into the condenser (see) of the argon distillation column (c), and the nitrogen gasified through heat exchange is piped (
(b) After being heated in the intermediate heater (ii), it is sent to the adsorption tower (to) and used as regeneration gas.

アルゴン蒸留塔(ハ)に送入された回収アルゴンガスは
、ここで液化精製されつつ不純成分はペントガス放出ラ
インaより大気中へ放出される。そして液化精製した回
収アルゴンは回収アルゴン貯槽□□□に貯留される。こ
の貯留された回収アルゴン組成の1例を第1表のCに示
す。この際のアルゴン回収率は97チであった。
The recovered argon gas sent to the argon distillation column (c) is liquefied and purified there, while impurity components are discharged into the atmosphere from the pent gas discharge line a. The recovered argon that has been liquefied and purified is stored in the recovered argon storage tank □□□. An example of the composition of this stored recovered argon is shown in C of Table 1. The argon recovery rate at this time was 97 cm.

次に回収アルゴンの純度を99.999ts以上に高純
化して回収した場合の実施例について説明する。
Next, an example will be described in which recovered argon is purified to a purity of 99.999 ts or higher and recovered.

この場合は、第1図において苛性ソーダ洗浄塔α→と吸
着塔(ト)の間に水素供給設備(至)、触媒を充填した
反応装置(ハ)、第3冷却器a・、冷凍機(至)を付設
した第4冷却器αカ及びドレントラップQ0を有し、バ
イパスラインC2])はその両端部に設けた弁に)轡を
閉じておく。
In this case, in Figure 1, between the caustic soda washing tower ) and a drain trap Q0, and the bypass line C2 is closed with valves provided at both ends thereof.

すなわち、高純アルゴン貯槽(1)に貯えた高純液化ア
ルゴンは、前記実施例の低純度アルゴン回収の場合と同
様に、熱交換器a呻、供給管(至)を経て半導体用単結
晶製造炉(3)に供給される。
That is, the high-purity liquefied argon stored in the high-purity argon storage tank (1) passes through the heat exchanger a and the supply pipe (to) to produce single crystals for semiconductors, as in the case of low-purity argon recovery in the previous embodiment. It is fed to the furnace (3).

そして、使用後のアルゴンガスは前記実施例と同様にし
てアルゴンガス回収系に導入される。その回収アルゴン
ガスの組成の一例を第2表のAに示す。
The used argon gas is then introduced into the argon gas recovery system in the same manner as in the previous embodiment. An example of the composition of the recovered argon gas is shown in A of Table 2.

第 2 表  組  成  (%) 回収系においては、前記低線!Wアルゴンを回収する場
合と同様に、バッファタンク(7)を通し圧縮機(8)
で所定圧力まで圧縮した後酸素(至)又は空気を混入し
て反応装置(9)で可燃性成分を二酸化炭素と水に変換
し、冷却した後、まず苛性ソーダ洗浄塔Q4で二酸化炭
素を苛性ソーダに吸収除去させる。
Table 2 Composition (%) In the recovery system, the low line! As in the case of recovering W argon, it is passed through the buffer tank (7) and compressed by the compressor (8).
After compressing to a predetermined pressure, oxygen or air is mixed in and the flammable components are converted into carbon dioxide and water in the reaction device (9). After cooling, carbon dioxide is first converted into caustic soda in a caustic soda washing tower Q4. Absorb and remove.

そして、回収アルゴンガス中に残存する酸素を完全燃焼
させるのに必要な水素を混入させて反応域MQGに送入
し、ここで回収アルゴンガス中の酸素を水に変換する。
Then, the hydrogen necessary for completely burning the oxygen remaining in the recovered argon gas is mixed and sent to the reaction zone MQG, where the oxygen in the recovered argon gas is converted into water.

そして第3冷却器Q呻、第4冷却器αηで7℃程度まで
冷却し、析出する水分はドレントラップαQで系外へ排
出する。冷却された回収アルゴンガスは吸着塔(至)に
送入し水分を除去する。この吸着塔(至)で処理され出
てきた回収アルゴンガスの代表的組成を第2表のBに示
す。
Then, it is cooled to about 7° C. by a third cooler Q and a fourth cooler αη, and the precipitated moisture is discharged out of the system by a drain trap αQ. The cooled recovered argon gas is sent to an adsorption tower to remove moisture. B in Table 2 shows a typical composition of the recovered argon gas treated in this adsorption tower.

吸着塔(ト)を出た後の回収アルゴンガスは前記実施例
と同様に熱交換器(In及びアルゴン蒸留塔(至)で処
理して液化精製され回収アルゴン貯槽−に貯留される。
The recovered argon gas after leaving the adsorption tower (7) is treated in a heat exchanger (In and argon distillation column (2)) to be liquefied and purified, and stored in a recovered argon storage tank, as in the previous embodiment.

この貯留された回収アルゴンの組成の一例を!2表のC
に示した。この際のアルゴン回収率は92チであった。
An example of the composition of this stored recovered argon! C in table 2
It was shown to. The argon recovery rate at this time was 92 inches.

又、この実施例で得た回収高純液化アルゴンを半導体用
単結晶製造炉における雰囲気ガスとして再使用する際は
貯槽□□□に付設したポンプ(至)によシ昇圧して配管
−υにより高純アルゴン貯槽(1)に移送して循環使用
することができる。
In addition, when the recovered high-purity liquefied argon obtained in this example is to be reused as an atmospheric gas in a semiconductor single crystal production furnace, the pressure is increased by a pump attached to the storage tank It can be transferred to a high-purity argon storage tank (1) and used for circulation.

なお、アルゴン蒸留塔(ハ)と回収アルゴン貯槽Qi5
1との配管途中に設けた弁(至)及び配管(至)に設け
た弁翰を閉じ、アルゴン蒸留塔(至)と配−f(1)と
を結ぶ枝管に設けた弁に)を開き、アルゴン蒸留塔■か
ら得られる回収高純液化アルゴンを直接に熱交換器0呻
へ送り循環使用することも出来る。
In addition, the argon distillation column (c) and the recovered argon storage tank Qi5
Close the valve (to) installed in the middle of the piping with 1 and the valve wire installed in the piping (to), and close the valve (to) installed in the branch pipe connecting the argon distillation column (to) and piping (to). It is also possible to open the argon distillation column (1) and send the recovered high-purity liquefied argon directly to the heat exchanger (2) for circulation.

又アルゴン蒸留塔(至)のコンデンサc骨の冷熱として
は液体窒素の代りに高純液化アルゴンを使用することは
可能であるが、この場合は気化した高純アルゴンガスが
配管図に流入できるように配管に)を接続し、熱交換器
Q・で回収アルゴンガスと熱交換した後雰囲気ガスとし
て使用し、かつ回収するのである。
Also, it is possible to use high-purity liquefied argon instead of liquid nitrogen to cool the condenser c-bone of the argon distillation column, but in this case, it is necessary to make sure that the vaporized high-purity argon gas can flow into the piping diagram. The argon gas is connected to the argon gas (to the piping), and after heat exchange with the recovered argon gas in the heat exchanger Q, it is used as an atmospheric gas and recovered.

この発明は上記のごとく、半導体用単結晶製造炉におい
て雰囲気ガスとして使用し九アルゴンガスを大気中へ放
出することなく、炉に供給される高純液化アルゴンの冷
熱を利用して、液化回収し循環使用をも可能としたもの
であり、半導体用単結晶製造コストの低減等に寄与する
こと大なるものがあり、工業的にきわめて有益である。
As described above, this invention uses the cold heat of high-purity liquefied argon supplied to the furnace to liquefy and recover the argon gas used as an atmospheric gas in a semiconductor single crystal production furnace without releasing it into the atmosphere. It also enables cyclic use, greatly contributes to reducing the cost of manufacturing single crystals for semiconductors, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を、フローシート化して示
す説明図である。 図中、1・・・高純アルゴン貯槽、2・・・気化器、3
・・・半導体用単結晶製造炉、4・・・放出弁、5・・
・弁、6・・・真空ポンプ、7・・・バッファタンク、
8・・・圧縮機、9・・・反応装置、10・・・ドレン
トラップ、11・・・第1冷却器、12・・・第2冷却
器、13・・・冷凍機、14・・・苛性ソーダ洗浄塔、
15・・・反応装置tffi、16・・・第3冷却器、
17・・・第4冷却器、18・・・吸着塔、19・・・
熱交換器、2゜・・・加熱器、21・・・パイバヌフィ
ン、22・・・膨張弁、23・・・ベントガス放出ライ
ン、24・・・アルゴン蒸留塔、25・・・回収高純ア
ルゴン貯槽、26・・・ポンプ、27.28゜29・・
・弁、30・・・配管、31・・・コンデンサ、32・
・・供給管、33・・・酸素、34・・・ディボイラ、
35・・・コンデンサ、36・・・液体窒素、37・・
・配管、38”・・・水素供給設備、39゜40・・・
弁、41・・・配管、42・・・苛性ソーダ供給ツイン
。 出願人 共同酸素株式会社 代理人  押 1)  良 久:う:ji+。 1・  i
FIG. 1 is an explanatory diagram showing an embodiment of the present invention in the form of a flow sheet. In the figure, 1... High purity argon storage tank, 2... Vaporizer, 3
... Single crystal production furnace for semiconductors, 4... Release valve, 5...
・Valve, 6... Vacuum pump, 7... Buffer tank,
8... Compressor, 9... Reactor, 10... Drain trap, 11... First cooler, 12... Second cooler, 13... Freezer, 14... caustic soda washing tower,
15... Reactor tffi, 16... Third cooler,
17... Fourth cooler, 18... Adsorption tower, 19...
Heat exchanger, 2°... Heater, 21... Pibanupine, 22... Expansion valve, 23... Vent gas discharge line, 24... Argon distillation column, 25... Recovery high purity argon storage tank , 26...Pump, 27.28°29...
・Valve, 30... Piping, 31... Capacitor, 32.
... Supply pipe, 33 ... Oxygen, 34 ... Deboiler,
35... Capacitor, 36... Liquid nitrogen, 37...
・Piping, 38"...Hydrogen supply equipment, 39°40...
Valve, 41... Piping, 42... Caustic soda supply twin. Applicant: Kyodo Sanso Co., Ltd. Agent: 1) Yoshihisa: U: ji+. 1・i

Claims (1)

【特許請求の範囲】 1 炉雰囲気ガスに使用後の不純アルゴンガスを昇圧し
て反応装置中で酸素又は空気と反応させ不純アルゴンガ
ス中に含有する可燃性成分を二酸化炭素と水に変換した
後、冷却して苛性ソーダ洗浄塔に送入して二酸化炭素を
除去し、さらに吸着塔に送入して水分を除去し、熱交換
器で高純液化アルゴンと熱交換させて冷却した後蒸留塔
で深冷液化分離することを特徴とす゛る半導体用単結晶
製造炉における算囲気用アルゴン回収方法。 2 炉雰囲気ガヌに使用後の不純アルゴンガスを昇圧し
て反応装置中で酸素又は空気と反応させ不純アルゴンガ
ス中に含有する可燃性成分を二酸化炭素と水に変換した
後、冷却して苛性ソーダ洗浄塔に送入して二酸化炭素を
除去し、さらに吸着塔に送入して水分を除去し、次いで
反応装置中で水素と反応させ不純アルゴンガス中に残存
する酸素を水に変換し、冷却して吸着塔に送入して水分
を除去し、熱交換器で高純液化アルゴンと熱交換させて
冷却した後蒸留塔で深冷液化分離し、高純液化アルゴン
を回収することを特徴とする半導体用単結晶製造炉にお
ける雰囲気用アルゴン回収方法。 3 炉雰囲気ガスに使用後の不純アルゴンガスを昇圧し
て反応装置中で酸素又は空気と反応させ不純アルゴンガ
ス中に含有する可燃性成分を二酸化炭素と水に変換した
後、冷却して苛性ソーダ洗浄塔に送入して二酸化炭素を
除去し、さらに吸着塔に送入して水分を除去し、次いで
反応装置中で水素と反応させ不純アルゴンガス中に残存
する酸素を水に変換し、冷却して吸着塔に送入して水分
を除去し、熱交換器で高純液化アルゴンと熱交換させて
冷却した後蒸留塔で深冷液化分離し、高純液化アルゴン
を回収し、回収した高純液化アルゴンを再び炉雰囲気ガ
スとして循環使用することを特徴とする半導体用単結晶
製造炉における雰囲気用アルゴン回収方法。
[Claims] 1. After the impure argon gas used as the furnace atmosphere gas is pressurized and reacted with oxygen or air in a reactor to convert the combustible components contained in the impure argon gas into carbon dioxide and water. It is cooled and sent to a caustic soda washing tower to remove carbon dioxide, then sent to an adsorption tower to remove moisture, and after being cooled by exchanging heat with high-purity liquefied argon in a heat exchanger, it is sent to a distillation tower. A method for recovering argon for ambient air in a semiconductor single crystal production furnace characterized by cryogenic liquefaction separation. 2 The impure argon gas used in the furnace atmosphere is pressurized and reacted with oxygen or air in the reactor to convert the flammable components contained in the impure argon gas into carbon dioxide and water, and then cooled and converted into caustic soda. The gas is sent to a cleaning tower to remove carbon dioxide, then to an adsorption tower to remove water, and then reacted with hydrogen in a reactor to convert the oxygen remaining in the impure argon gas into water, and then cooled. It is characterized in that it is sent to an adsorption tower to remove moisture, is cooled by exchanging heat with high-purity liquefied argon in a heat exchanger, and is then cryogenically liquefied and separated in a distillation tower to recover high-purity liquefied argon. A method for recovering argon for the atmosphere in a semiconductor single crystal manufacturing furnace. 3 The impure argon gas used as the furnace atmosphere gas is pressurized and reacted with oxygen or air in the reactor to convert the flammable components contained in the impure argon gas into carbon dioxide and water, then cooled and washed with caustic soda. The gas is sent to a column to remove carbon dioxide, then to an adsorption column to remove moisture, and then reacted with hydrogen in a reactor to convert the oxygen remaining in the impure argon gas to water, and then cooled. It is sent to an adsorption tower to remove water, cooled by exchanging heat with high-purity liquefied argon in a heat exchanger, and then cryogenically liquefied and separated in a distillation tower to recover high-purity liquefied argon. A method for recovering atmosphere argon in a semiconductor single crystal manufacturing furnace, characterized in that liquefied argon is reused as a furnace atmosphere gas.
JP57149415A 1982-08-28 1982-08-28 Recovery of argon used for atmospheric gas of furnace for producing single crystal for semiconductor Pending JPS5939800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57149415A JPS5939800A (en) 1982-08-28 1982-08-28 Recovery of argon used for atmospheric gas of furnace for producing single crystal for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57149415A JPS5939800A (en) 1982-08-28 1982-08-28 Recovery of argon used for atmospheric gas of furnace for producing single crystal for semiconductor

Publications (1)

Publication Number Publication Date
JPS5939800A true JPS5939800A (en) 1984-03-05

Family

ID=15474613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57149415A Pending JPS5939800A (en) 1982-08-28 1982-08-28 Recovery of argon used for atmospheric gas of furnace for producing single crystal for semiconductor

Country Status (1)

Country Link
JP (1) JPS5939800A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197187A (en) * 1984-10-17 1986-05-15 Toshiba Ceramics Co Ltd Device for recovering inert gas for pulling device of single crystal
JPS6214686A (en) * 1985-07-13 1987-01-23 株式会社日立製作所 Navigation system
US6254362B1 (en) 1998-01-26 2001-07-03 Unozawa-Gumi Iron Works, Ltd. Vacuum pump with dust collecting function
WO2010027706A1 (en) * 2008-08-27 2010-03-11 Bp Corporation North America Inc. Gas recirculation heat exchanger for casting silicon
JP2012066948A (en) * 2010-09-21 2012-04-05 Covalent Materials Corp Cleaning method of silicon single crystal pulling apparatus
JP2016179916A (en) * 2015-03-24 2016-10-13 信越半導体株式会社 Method for purifying argon gas, and apparatus for recovering and purifying argon gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197187A (en) * 1984-10-17 1986-05-15 Toshiba Ceramics Co Ltd Device for recovering inert gas for pulling device of single crystal
JPH0214315B2 (en) * 1984-10-17 1990-04-06 Toshiba Ceramics Co
JPS6214686A (en) * 1985-07-13 1987-01-23 株式会社日立製作所 Navigation system
US6254362B1 (en) 1998-01-26 2001-07-03 Unozawa-Gumi Iron Works, Ltd. Vacuum pump with dust collecting function
WO2010027706A1 (en) * 2008-08-27 2010-03-11 Bp Corporation North America Inc. Gas recirculation heat exchanger for casting silicon
JP2012066948A (en) * 2010-09-21 2012-04-05 Covalent Materials Corp Cleaning method of silicon single crystal pulling apparatus
JP2016179916A (en) * 2015-03-24 2016-10-13 信越半導体株式会社 Method for purifying argon gas, and apparatus for recovering and purifying argon gas

Similar Documents

Publication Publication Date Title
JPH01313301A (en) Continuous production of hydrogen and carbon dioxide
JPH0316597B2 (en)
JP2966999B2 (en) Ultra high purity nitrogen / oxygen production equipment
US2983585A (en) Preparation of liquid hydrogen
JPS5939800A (en) Recovery of argon used for atmospheric gas of furnace for producing single crystal for semiconductor
KR20090005702A (en) Apparatus for enriching and purifying waste helium gases
JP5074433B2 (en) Hydrogen removal device
CN116332139A (en) Argon recovery device integrating high-purity nitrogen and enhancing efficiency and application method thereof
US3169845A (en) Method of and apparatus for producing high purity inert gases
JPS5946473A (en) Method of recovering argon for atmosphere in manufacturing furnace for single crystal for semiconductor
JP3268193B2 (en) Method for producing shielded argon for welding from furnace exhaust gas
JP3325805B2 (en) Air separation method and air separation device
JP3237892B2 (en) Pressurized air separation device
US1807897A (en) Process of obtaining substantially pure hydrogen
JPH0412393B2 (en)
JP3678662B2 (en) Hydrogen production method and apparatus used therefor
JPS58213175A (en) Method of recovering argon for atmosphere in single crystal manufacturing furnace for semiconductor
JPH05347161A (en) Power generation system by fuel cell
JPS58208104A (en) Method for purifying chlorine
JPH0624737A (en) Purification of ammonia gas
JPH0451753B2 (en)
JPS59198669A (en) Fuel cell power generation plant
JP3467178B2 (en) Air separation equipment
JP2969360B2 (en) Method for heating and drying an air liquefaction / separation apparatus for collecting high-purity products and an air liquefaction / separation apparatus for collecting high-purity products for implementing the method
JP3466437B2 (en) Air separation equipment